
HAL Id: hal-02506364
https://inria.hal.science/hal-02506364

Submitted on 12 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Automated Keyword Extraction from ”One-day”
Vulnerabilities at Disclosure

Clément Elbaz, Louis Rilling, Christine Morin

To cite this version:
Clément Elbaz, Louis Rilling, Christine Morin. Automated Keyword Extraction from ”One-day”
Vulnerabilities at Disclosure. NOMS 2020 - IEEE/IFIP Network Operations and Management Sym-
posium, Apr 2020, Budapest, Hungary. pp.1-9. �hal-02506364�

https://inria.hal.science/hal-02506364
https://hal.archives-ouvertes.fr


Automated Keyword Extraction from “One-day”
Vulnerabilities at Disclosure

Clément Elbaz
Univ Rennes, Inria, CNRS, IRISA

Rennes, France
clement.elbaz@inria.fr

Louis Rilling
DGA

Rennes, France
louis.rilling@irisa.fr

Christine Morin
Univ Rennes, Inria, CNRS, IRISA

Rennes, France
christine.morin@inria.fr

Abstract—Common Vulnerabilities and Exposures (CVE)
databases such as Mitre’s CVE List and NIST’s NVD database
identify every disclosed vulnerability affecting any public soft-
ware. However, during the early hours of a vulnerability disclo-
sure, the metadata associated with these vulnerabilities is either
missing, wrong, or at best sparse. This creates a challenge for ro-
bust automated analysis of new vulnerabilities. We present a new
technique based on TF-IDF to assess the software products most
probably affected by newly disclosed vulnerabilities, formulated
as an ordered list of relevant keywords. For doing so we rely
only on the human readable description of a new vulnerability
without any need for its metadata. Our evaluation results suggest
real world applicability of our technique.

I. INTRODUCTION

The disclosure of a vulnerability is the most critical part
of its life cycle. As a confidential zero-day, a vulnerability
is a high value asset used sparingly to attack high value
targets. On the other hand, well known public vulnerabilities
can be mitigated using standard security practices such as
applying software updates diligently, or using a signature-
based intrusion detection system (IDS). Bilge et al. [1] showed
that at disclosure, the usage of exploits of a vulnerability in the
wild increases as high as five orders of magnitude while tran-
sitioning from a zero-day to a public vulnerability. A software
patch is sometimes already available, but its adoption may
not be widespread. At this early stage the vulnerability is not
understood well enough to author a proper signature rule for
an IDS. All these factors contribute to making the disclosure
a dangerous time, since a lot of systems are vulnerable in
practice. We call one-day these newly disclosed vulnerabilities
that are still in the critical part of their life cycle. One-day
should not be taken literally here: a vulnerability disclosure
can be 72 hours old and still be at its most threatening period.

The vulnerability disclosure process is coordinated by the
Common Vulnerabilities and Exposures (CVE) system over-
seen by Mitre’s Corporation [2]. Newly disclosed vulnerabili-
ties are first published on the CVE List data feed managed by
Mitre. They are then forwarded to other security databases,
such as NIST’s NVD database [3] or SCAP data feeds [4],
where they will eventually be annotated by multiple security
experts. These annotations include metadata such as the af-
fected software, as described by an entry from the Common
Platform Enumeration (CPE) [5]. It also includes a Common
Vulnerability Scoring System (CVSS) score and vector [6].

NIST security experts take at least a few days to analyze and
annotate a vulnerability, and often weeks (see Section III-A). It
is common to find vulnerabilities that have been disclosed for
several days that are still not analyzed by NVD. For example
CVE-2019-9084, disclosed on the CVE List on 06/07/2019,
has no NVD analysis as of 06/11/2019. This delay means that
in order to reliably analyze one-day vulnerabilities, one should
not rely at all on enriched metadata provided by databases such
as NVD. Instead one should focus on the data available when
the vulnerability is first disclosed on Mitre’s CVE List, which
consists of three elements only: a unique CVE identifier, a
free-form human readable description, and at least one public
reference [7].

The vulnerability analysis ecosystem presented above makes
it expensive for organizations to analyze one-day vulnerabili-
ties at disclosure. On the one hand achieving real-time threat
evaluation of new vulnerabilities through manual analysis
requires extensive man power as hundreds of vulnerabilities
are disclosed daily. On the other hand there is not enough
machine-readable metadata available at disclosure for auto-
mated analysis. Real-time threat analysis is therefore pro-
hibitively expensive for most organizations, although it would
benefit them as severe vulnerabilities such as Shellshock have
been massively exploited within hours of their disclosure [8].

Automating real-time threat evaluation for newly disclosed
vulnerabilities would make it affordable for more organiza-
tions. This would allow cloud service providers (CSP) and
information systems to react in real-time to vulnerability
disclosures. Examples of automated reactions include reconfig-
uring security policies by elevating logging levels for critical
systems, switching these systems into degraded mode or even
shutting them down while waiting for a remediation to be
applied. Such a reaction service could help the CSP to protect
both its internal systems and tenants (the latter constituting a
potential source of revenues for the CSP).

We propose an automated system that uses free-form de-
scriptions of newly-disclosed one-day vulnerabilities to extract
the most probable affected software from the description,
and can do so in near real-time (at most seconds after the
disclosure). Identifying which systems are vulnerable can be
achieved by extracting relevant keywords from the free-form
vulnerability description and forwarding them to an alert
service monitoring specific keywords related to these systems



(such as names of public software used in the system).
Our system associates CVE vulnerabilities to keywords

extracted from past CPE URIs to quickly point out the most
probable affected software. To the best of our knowledge this is
the first attempt at doing so while only relying on the free-form
description of vulnerabilities, without using their metadata.

In Section II we discuss related work and the real world
challenges of working with vulnerability data. In Section III
we present our approach. In Section IV we evaluate the accu-
racy of our proposed technique. We conclude in Section V.

II. RELATED WORK AND OPEN PROBLEMS

Most cloud providers provide Intrusion Prevention System
(IPS) or Web Application Firewall (WAF) capabilities among
their commercial offering [9] [10] [11]. However, to the best of
our knowledge, the process of monitoring new vulnerabilities
and adding related rules is always done manually [12]. Ex-
tracting information and insights from the CVE corpus is not
a new idea. Multiple works brought meaningful insights using
statistical analyses of historical vulnerabilities in the NVD
database. Frei et al. [13] found a statistical correlation between
the availability of exploits and patches and the number of
days since disclosure. Clark et al. [14] brought to light a
“honeymoon effect” where more recent software is less subject
to new vulnerabilities than older software, everything else
being equal. Ganz et al. [15] attempted to automatically enrich
the quality of the metadata in NVD, by blending the existing
metadata with textual analysis of the description. However
their technique still requires the availability of existing meta-
data for the enriched vulnerability, while ours does not. The
closest work to ours is by Jacobs et al. [16] who proposed the
Exploit Prediction Scoring System (EPSS). Like our work,
EPSS is to be used at vulnerability disclosure: they try to
determine a new vulnerability’s probability of exploitation in
the next twelve months. They use a logistic regression model
trained using both public and non-public data-sources that can
infer probabilities for new vulnerabilities using only public
data-sources. Our work does not require any non-public data-
source. All of these studies point out inconsistent metadata as a
major difficulty when working with the corpus. By being a the-
oretical database authored manually by security experts, CPE
cannot map perfectly to actual software binaries and packages
in a production system [17], [18]. This situation creates a lot of
discrepancies when doing analysis, such as associating a CVE
vulnerability to incorrect or inexisting CPE entries. Moreover,
even if this situation was solved and it was possible to fully
map CVE to CPE, and CPE to actual software, this mapping
would still be done manually by security experts. This is
however impractical when dealing with one-day vulnerabilities
because the analysis arrives too late in the vulnerability life
cycle. Last, all these studies except [16] considered the NVD
database as static historical data to be studied retroactively.
To the best of our knowledge, our technique and evaluation
protocol are the first to focus on disclosure time analysis
of new vulnerabilities, only considering vulnerabilities and
metadata publicly available at disclosure.

TF-IDF weighting of keywords

Text description of analyzed vulnerability

Set of unordered keywords

Ordered list of weighted keywords

Improved ordered list of weighted keywords

Word filtering

Domain-specific heuristics

Available CPE URIs

Available vulnerability 
descriptions

Process

Data

Input / Output Final ordered list of weighted keywords

Keyword list truncation

Fig. 1: Overview of the vulnerability description processing pipeline.

CVE-2018-1336
Published on 08/02/2018
An improper handing of overflow in the UTF-8 
decoder with supplementary characters can lead to 
an infinite loop in the decoder causing a Denial of 
Service. Versions Affected: Apache Tomcat 
9.0.0.M9 to 9.0.7, 8.5.0 to 8.5.30, 8.0.0.RC1 
to 8.0.51, and 7.0.28 to 7.0.86.

CPE entry
Apache Software Foundation 
Tomcat 7.0.28

CPE URI
cpe:2.3:a:apache:tomcat:7.0.28:*:*:*:*:*:*:*

*

0..11

*

Published at disclosure by Mitre

Published after security analysis by NVD

Published independently by NVD

Fig. 2: The relationships between the vulnerability CVE-2018-1336 and its
associated CPE URI and entries. The vulnerability, its metadata, and the CPE
entries have three different publication processes.

III. OUR APPROACH

In this section we present our keyword extraction pipeline.
Its input is the free-form description of a new vulnerability. It
is analyzed using all vulnerability descriptions and metadata
available at the time of disclosure. It outputs an ordered list of
keywords, where each keyword is given a weight represent-
ing its estimated relevance. As an intuitive example, Table
I presents a sample of vulnerabilities, including their free-
form description and the corresponding keywords extracted
by our analysis technique. We consider the explainability of
automated analysis as a paramount quality of security systems.
Therefore we deliberately chose to avoid elaborated machine
learning methods (such as deep learning) when their accuracy
comes at the expense of explainability. A high-level overview
of the proposed vulnerability analysis pipeline is shown in
Figure 1. We now describe each stage of the pipeline in more
details, starting with our choice of data sources.

A. Data Sources Considerations

The CVE and the CPE corpus are linked together using a
metadata called the CPE URI defined in NIST-IR 7695 [19].



CVE ID Disclosure date Description
CVE-2016-6808 04/12/2017 Buffer overflow in Apache Tomcat Connectors (mod jk) before 1.2.42.

Weight Keywords
27.54 tomcat connectors
12.41 mod jk
11.01 connectors
8.37 tomcat

CVE-2017-0155 04/12/2017 The Graphics component in the kernel in Microsoft Windows Vista SP2; Windows Server 2008 SP2
and R2 SP1; and Windows 7 SP1 allows local users to gain privileges via a crafted application, aka
“Windows Graphics Elevation of Privilege Vulnerability.”
Weight Keywords
18.46 windows server 2008
12.30 windows vista
12.28 windows 7
12.18 graphics
11.84 server 2008
11.74 windows server
8.70 windows
5.95 r2

CVE-2015-3421 07/21/2017 The eshop checkout function in checkout.php in the Wordpress Eshop plugin 6.3.11 and earlier does not
validate variables in the “eshopcart” HTTP cookie, which allows remote attackers to perform cross-site
scripting (XSS) attacks, or a path disclosure attack via crafted variables named after target PHP variables.
Weight Keywords
26.29 eshop plugin
19.10 eshop
12.33 checkout php
5.71 wordpress

CVE-2015-5194 07/21/2017 The log config command function in ntp parser.y in ntpd in NTP before 4.2.7p42 allows remote attackers
to cause a denial of service (ntpd crash) via crafted logconfig commands.
Weight Keywords
14.69 ntp
5.07 y
3.50 parser
3.44 config

TABLE I: A sample of keyword extraction results, using our analysis pipeline (with all heuristics enabled and a keyword list truncation target of 95% of the
norm).

Fig. 3: Historical rate of software names used in vulnerabilities CPE URIs
that are missing from the CPE dictionary.

A CPE URI is a unique reference to a specific entry in the
CPE database, a specific version of a piece of software. An
example of the relationships between CVE, CPE URI and CPE
entries can be found in Figure 2.

It is tempting to consider these corpus as two relational
tables linked together using a foreign key. However we dis-
covered two drawbacks of this approach. The first one is that
the life cycles of the two databases are very different, resulting
in an ever-increasing number of “dead” CPE URIs entries

CPE URI
cpe:2.3:a:apache:tomcat:7.0.28:*:*:*:*:*:*:*

*

*

Published at disclosure by Mitre

Published after security analysis by NVD

Field ‘vendor’ of CPE URI
apache

Field ‘product’ of CPE URI
tomcat

Field ‘version’ of CPE URI
7.0.28

*

*

*

1

1

1

CVE-2018-1336
Published on 08/02/2018
An improper handing of overflow in the UTF-8 
decoder with supplementary characters can lead to 
an infinite loop in the decoder causing a Denial of 
Service. Versions Affected: Apache Tomcat 
9.0.0.M9 to 9.0.7, 8.5.0 to 8.5.30, 8.0.0.RC1 
to 8.0.51, and 7.0.28 to 7.0.86.

Fig. 4: When discarding the CPE dictionary we get a more robust data life
cycle while retaining most of the inherent data.

referenced in vulnerabilities metadata that do not actually exist
in the CPE database. Figure 3 illustrates the problem. While
both databases were mostly kept consistent from 2011 to 2016,
the inconsistencies grew substantially in 2017 and 2018, to the
point that in 2018 73.8% of the software names mentioned in
CPE URIs included in vulnerabilities metadata are not present
in the CPE dictionary. From 2007 to 2018, on average 66.3%
of the software names are missing. We want to emphasize



Fig. 5: Number of days between vulnerability disclosure and analysis in NVD
from 2007 to 2018.

that this is an important problem that, if left unchecked, will
greatly decrease the relevance and real world usefulness of
the CPE dictionary. A second drawback is the lack of a date-
of-inclusion field for CPE entries in the CPE database. While
this would have no impact in a production system, it prevents
us from properly evaluating our results using a journaled view
of the corpus. In order to properly simulate an analysis at
disclosure time, we want to only consider CVE and CPE
published “in the past” compared to the disclosure date of
the analyzed vulnerability.

We solved both problems by discarding the CPE database
completely and instead use the data embedded in the fields
of the CPE URIs, as described in Figure 4. As CPE URIs
are part of a CVE vulnerability’s metadata, we can reuse the
date-of-publication field of the vulnerability for the included
CPE URIs. However as we saw in Section I, metadata is
not published at disclosure time, but authored by security
experts several days after. Figure 5 shows the number of days
between vulnerability disclosure and analysis publication in
NVD from 2007 to 2018. Historically the median analysis
duration has been zero day while the 9th decile has been two
days. While this remained true until 2016 (for the median)
and 2012 (for the 9th decile), there have been sharp drops
in NVD analyses timeliness since then. In 2018 the median
and 9th decile analysis duration reached 35 days and 63 days
respectively. Therefore we decided to set the notion of a fixed
metadata publication delay for all vulnerabilities which we
fixed at sixty days. This means that when a vulnerability
is disclosed on day N , we consider that its metadata will
be published on day N + 60. Conversely, when analyzing
a vulnerability disclosed on day N , we have access to all
vulnerability descriptions up to day N and to all vulnerability
metadata up to day N − 60. The choice of 60 days ensures
analysis conditions that are overall realistic (albeit simplified)
but strictly worse than any recorded median case, and close
to the worst recorded 9th decile. Therefore if our analysis
technique performs well during evaluation, we can be highly
confident that it will perform as well or better in the real world.
Figure 6 shows a simplified example of how time impacts the
data available when analyzing vulnerabilities at disclosure.

Data available when analyzing vulnerability V3 
at disclosure

Time

Description of 
vulnerability V1

Metadata of 
vulnerability V1

Description of 
vulnerability V2

Metadata of 
vulnerability V2

Description of 
vulnerability V3

Metadata of 
vulnerability V3

Disclosure of vulnerability

Security analysis of vulnerability

Metadata publication delay

Fig. 6: In this example, when analyzing the text description of vulnerability
V3 at disclosure time we have access to the text descriptions for V1 and V2
and to the metadata for V1, but not the metadata for V2 or V3.

Description SQL injection vulnerability in register.php
in GeniXCMS before 1.0.0 allows remote
attackers to execute arbitrary SQL com-
mands via the activation parameter.

Keyword set
(in alphabetical

order)

activation, before, commands, genixcms, in,
parameter, php, register, remote, sql, the, to,
via, vulnerability

TABLE II: Description and extracted keyword set for CVE-2016-10096, a
vulnerability disclosed on 01/01/2017. The filtering list included all CPE URIs
published between 01/01/2007 and 12/24/2016.

B. Word filtering

All available CPE URIs (considering the metadata pub-
lication delay) are parsed as a keyword filter list. Fields
extracted from the CPE URI are the software vendor, soft-
ware product, and target software. After extraction all these
fields are tokenized into individual words. When analyzing
vulnerabilities descriptions, only words belonging to this filter
list are considered, the others are discarded. This filtering is a
trade-off: it vastly reduces analysis noise but may filter out
some relevant information. Specifically a new vulnerability
affecting a never-seen-before software product will not have
any relevant CPE URI in available historical data therefore
the name of the product will be filtered out. However, we
argue this is the right trade-off in our context, as our goal is
to feed keyword alerts to a security monitoring system: it is
probably more relevant to output an alert because we did not
find any highly relevant keyword than outputing an alert on
a keyword that has never been seen before and is probably
not monitored. This filtering gives us a set of keywords for
every vulnerability. However this set is unordered and contains
a lot of irrelevant keywords, as illustrated in Table II. As we
can see the filtering list includes very common words such
as “before” that are not related to the present vulnerability
(“before” was added to the filtering list through vulnerability
CVE-2011-5107 affecting the Wordpress plugin Alert Before
You Post). It is clear that the mere presence of a keyword in a



Keyword list Keyword list
(after TF-IDF weighting) (after heuristics)
Keyword Weight Keyword Weight
genixcms 6.36 genixcms 12.71
activation 5.24 sql 5.46
register 3.40 activation 5.24
sql 2.73 register 3.40
commands 1.62 commands 1.62
parameter 1.22 parameter 1.22
php 1.19 php 1.19
vulnerability 0.57 vulnerability 0.57
before 0.56 before 0.56
the 0.21 the 0.21
in 0.18 in 0.18
remote 0.18 remote 0.18
via 0.12 via 0.12
to 0.01 to 0.01

TABLE III: Keywords order and weight for CVE-2016-10096, after TF-
IDF weighting (left) and heuristics (right). TF-IDF corpus included all
vulnerabilities disclosed between 01/01/2007 and 01/01/2017. Capitalization
heuristic doubled the scores of “genixcms” and “sql” (spelled “GeniXCMS”
and “SQL” in the description).

vulnerability description is not enough to assess its relevance
for the given vulnerability.

C. TF-IDF Weighting

Instead of treating the presence of a keyword in a vulnera-
bility as a binary event, we weight each keyword by the term
frequency-inverse document frequency (TF-IDF) [20] value
of the word, in the context of the CVE corpus. TF-IDF is
a numerical statistic reflecting the importance of a word to
a document, in the context of a corpus. In our context, we
consider the set of keywords extracted from a CVE description
as an individual document, and the set of these sets as a corpus.
TF-IDF is formally defined in Equation 1:

TF-IDF(t, d,D) = TF(t, d)× IDF(t,D), (1)

where t is a word and d is a document belonging to a corpus of
documents D. TF is based on the number of occurrence of the
word in the document. Several formulas have been proposed,
such as using the raw count directly or treating the presence
or absence of a word as a boolean event. We chose to use the
logarithmic version [21] of TF, defined in Equation 2, as it
better reflects the diminishing returns of repeating the same
term several times.

TF(t, d) = log(1 + |t ∈ d|), (2)

IDF is defined in Equation 3:

IDF(t,D) = log
|D|

|d ∈ D : t ∈ d|
, (3)

where |D| is the number of documents in the corpus, and |d ∈
D : t ∈ d| is the number of documents of the corpus containing
the word t. TF-IDF therefore allows more specific words to
have a bigger impact on the mapping than common words. As
an intuitive example, let us consider an actual software named
IBM Tivoli Service Request Manager. The word “Tivoli” is

much more specific than “Request”, therefore its weight should
be higher. Every keyword in the set is now weighted, which
allows us to order them by relevance. The left side of Table
III gives an example of such weighting.

D. Domain-specific Heuristics

A number of additional heuristics can be applied to the
existing ordering to improve it even further. In this section
we propose three of them which we detail below. We want to
emphasize that an important part of our contribution is to give
security experts the ability to formulate such kind of heuristics
and reliably evaluate their accuracy. While these heuristics are
very simple and domain-specific, we show in Section IV that
each of them increases the accuracy of the analysis.

Multiple-words keywords. When a CPE URI field contains
entries that are multiple words long, such as “linux kernel”,
this heuristic treats “linux”, “kernel”, and “linux kernel” as
three different individual terms with individual TF-IDF values.
Therefore this heuristic allows the existence of keywords that
are actually multiple words long. A match on “linux kernel” is
considered more relevant than two separate matches on “linux”
and “kernel”, so this heuristic also multiplies the score of a
keyword linearly by the number of words it is made of.

Capitalized words. We observed that software names in
vulnerability descriptions are often capitalized. This heuristic
doubles the score of every keyword that is capitalized in
the vulnerability description. The software industry has a
somewhat peculiar grasp of English capitalization rules, so this
heuristic is triggered for any capitalized letter in a word and
not just the first one: “iPhone” or “openSUSE” are considered
capitalized.

Words starting by “lib-”. We empirically observed that
words starting by “lib-” that are not “library” are rare in
English but are commonly used as software names (libxml2,
libssh, libpng, etc.). This heuristic doubles the score of every
keyword starting by “lib-” that is not “library”.

The right side of Table III gives an example of how applying
all three heuristics alter the weights and order of keywords.
We evaluate these heuristics in Section IV.

E. Keyword List Truncation

The list of keywords extracted from a vulnerability can
be long. Assuming the analysis did a good job at sorting
the relevant keywords first, the end of the list is empty of
meaningful information. It is therefore desirable to truncate the
list and only keep the beginning, as this operation retains most
of the information while removing most of the noise. However
it is not straightforward to decide where to cut. Keyword lists
lengths vary greatly (from 0 to 196 keywords in our evaluation
dataset) and the amount of relevant keywords inside them too.
This makes static truncation threshold not appropriate, as it
could remove too much information or retain too much noise.
Instead we propose a dynamic truncation scheme based on
the euclidean norm. At the truncation step of the pipeline, we
view the untruncated weighted keyword list as an euclidean
vector and we compute its norm. We then compute a truncation



Untruncated keyword list Truncated keyword list
(target norm = 95%)

Keyword Weight Keyword Weight
genixcms 12.71 genixcms 12.71
sql 5.46 sql 5.46
activation 5.24 activation 5.24
register 3.40
commands 1.62
parameter 1.22
php 1.19
vulnerability 0.57
before 0.56
the 0.21
in 0.18
remote 0.18
via 0.12
to 0.01

Norm Norm
15.38 14.79

TABLE IV: Untruncated and truncated weighted keyword lists for CVE-2016-
10096, with a target norm of 95% for the truncated list.

budget by defining a target for the truncated norm, such as
staying above 95% of the untruncated norm. Because most of
the norm of the vector comes from the most relevant keywords,
it is possible to cut out most irrelevant keywords while staying
under budget. Table IV gives a practical example of such a
truncation. We evaluate experimentally the impact of keyword
list truncation in Section IV-D.

IV. EVALUATION

A. Experimental Setup

We analyzed all 31156 CVE vulnerabilities disclosed be-
tween January 1st, 2017 and January 1st, 2019, using all 57640
CVE vulnerabilities disclosed between January 1st, 2007 and
December 31st, 2016 as past historical data. This experimental
setup simulates the behavior of a production system put online
on January 1st, 2017, initially fed with historical informa-
tion from ten years before, which then monitored all newly
disclosed vulnerabilities continuously for the next two years.
Each vulnerability was analyzed using the data available on
its disclosure day only, as described in Figure 6. As discussed
in Section III-A we chose a metadata publication delay of
sixty days. Any non-zero metadata publication delay implies
the actual metadata of a vulnerability including its CPE URIs
is not available during analysis. We can therefore use the CPE
URIs from the vulnerability metadata as a ground truth for
evaluation. We propose two metrics to evaluate the quality of
the ordered list of keywords: the position of the first relevant
keyword, and the number of keywords necessary to reconstruct
the software name. We evaluate our solution using the first
metric in Section IV-B and using the second in Section IV-C.

B. Position of the First Relevant Keyword

As our goal is to identify the software affected by a vulner-
ability, we formally define a relevant keyword as a substring
of any software name or software vendor fields present in
the CPE URIs included in this vulnerability metadata. As

Fig. 7: First relevant keyword position.

our analysis gives us a sorted list of keywords, we can
expect relevant keywords to be placed at the beginning of
the list before irrelevant ones. Therefore the position of the
first relevant keyword is directly tied to the usability of the
results. It should be emphasized that the number of CPE
URIs included in a vulnerability metadata can vary greatly,
as well as the reason these CPE URIs were included in the
first place. Usually at least one CPE URI is included as a
machine-readable summary of the affected software described
in the text description of the vulnerability. However security
analysts sometimes include additional CPE URIs for software
absent from the text description (but still relevant for the
vulnerability) to provide context after the fact. This metric
sidesteps the problem of choosing the most appropriate CPE
URI as an evaluation ground truth and instead focuses on
extracting the relevant information actually present in the
vulnerability text description. The experimental results for
this metric are described in Figure 7, for the base TF-IDF
weighting, each heuristic described in Section III-D, and all
heuristics combined. We can see that in all cases at least 70%
of vulnerabilities have a relevant keyword in the top three
keywords of their ordered list, at least 80% of vulnerabilities
have a relevant keyword in their top five keywords, and 90% of
vulnerabilities have a relevant keyword in the top ten. How to
interpret these scores? In a control trial we randomly sampled
200 vulnerabilites and asked a security expert to guess the
software product(s) affected by a vulnerability from the top
three keywords without reading the vulnerability description.
He gave 161 (80%) correct answers, which is very close to
our metric’s (81%) in the same configuration (all heuristics
combined). 3% of the vulnerabilities have no relevant keyword
at all. For these vulnerabilities there is not a single common
word between the description and the CPE URIs of the
vulnerability, creating a plateau for the metric. We randomly
sampled 20 of these vulnerabilities to find out the reason for
the absence of keyword matching. In 18 cases the vulnerability
disclosure is about a software that has never been seen before
at the time. In the two other cases, the software was seen
only one day and four days before, a time period within the
metadata delay we analyzed in Section III-A. In all cases this
leads to the CPE index not being populated with the proper
software name, which is filtered out at the keyword extraction
stage. Examples of such vulnerabilities are CVE-2016-1132



Fig. 8: Number of keywords necessary for name reconstruction.

(first vulnerability disclosed for the Shoplat iOS application)
and CVE-2016-1198 (Photopt Android application). Regard-
ing individual heuristics, we can see that our capitalization
heuristic brings a substantial accuracy increase compared to
the base TF-IDF weighting. The number of vulnerabilities
with a relevant keyword at position 3 or below is increased
from 76% to 86%. The multiple-words heuristic decreases the
accuracy under this metric. The reason is that multiple-words
keywords are aggressively pushed to the beginning of the list
most of the time in front of single word keywords. When
the software and vendor names are only one word long, they
might lose one rank because of an irrelevant multiple-words
keyword. However the reconstruction metric sheds a different
light on this heuristic’s accuracy, as discussed in the next
section. The lib heuristic, while being strictly superior to the
base TF-IDF weighting, provides such insignificant gains that
it probably doesn’t justify its maintenance cost. All heuristics
combined provide a measurable improvement over the base
TF-IDF weighting without heuristics.

C. Number of Keywords Necessary for Software Name Recon-
struction

Our second metric is about measuring our ability to fully
reconstruct a software name using the smallest amount of key-
words. Formally, this means finding a permutation of a subset
of keywords equal to a full software name string from a CPE
URI of the vulnerability, then measuring the highest keyword
position in this group. As an intuitive example, if we want to
reconstruct the software name “linux kernel” and our keyword
list is, in order, “kernel”, “overflow”, “linux”, and “buffer”, we
can reconstruct the software name using the first 3 keywords
(disregarding “overflow”). This metric is strictly more difficult
than the previous one, as we now want to reconstruct full
strings instead of substrings, and we are focusing on the
software name only and not the software vendor. However it is
also more indicative of real world usefulness, as reconstructing
a complete software name provides more useful information
than finding a substring of it. The experimental results for this
metric are described in Figure 8. As expected reconstructing
a full software name is more difficult than finding a relevant
keyword. Using the base TF-IDF weighting, a software name
can be reconstructed using the first three keywords only
42% of the time. 27% of the vulnerabilities do not have
enough keywords in their description to reconstruct a software

Fig. 9: Distribution of keyword list lengths before and after truncation with
a target of preserving at least 95% of the norm.

name at all. This leads to a lower plateau for the metric
compared to first relevant keyword position. We sampled 20
of these vulnerabilities at random to investigate the cause
of reconstruction failure. In 14 cases the affected software
has never been seen before, leading to the same problem as
described in Section IV-B. In the six other cases the software
name is worded differently in the vulnerability description and
the associated CPE URIs. As an example, CVE-2017-3814’s
description describes a vulnerability affecting the software
Cisco Firepower System Software while the associated CPE
URIs are referencing Cisco Firepower Management Center.
One of these 6 cases, while technically a wording problem,
can be attributed to excessive strictness in our parsing logic.
Regarding individual heuristics, the multiple-words heuristic
now provides the biggest improvement. This makes sense,
as having multiple-words keywords provides opportunities to
drastically shorten reconstruction of multiple-words software
name. For instance, in a single word setup, the software
“linux kernel” takes at least two keywords to be reconstructed
(“linux” and “kernel”), while it can be fully reconstructed
in a single multiple-words keyword (“linux kernel”). The
capitalization heuristic again brings a substantial improvement
under this metric. This time again the lib heuristic brings
a very small improvement such that its maintenance cost is
probably not justified. All heuristics combined together yield
the best accuracy of all configurations. Using this setup we can
reconstruct the full name of an affected software in 9 keywords
or less for 71% of the vulnerabilities in the evaluation dataset.

D. Keyword List Truncation Evaluation

In this section we evaluate two effects of the truncation step:
the keyword list length reduction ratio and a possible accuracy
loss due to excessive truncation. All our evaluations were done
with a truncation target of preserving at least 95% of the
original norm. Figure 9 shows the distribution of keyword list
lengths before and after truncation. The median untruncated
keyword list length is between 23 and 24 words long, while
the median truncated keyword list length is between 8 and
9 words long. The average reduction ratio is 3.22. We can
conclude that keyword truncation has a substantial effect on
keyword list length and is particularly effective at bringing
keyword lists to sizes more easily readable by humans. Does



Fig. 10: Impact of keyword truncation on first relevant keyword position.
(Truncated norm target = 95%)

Fig. 11: Impact of keyword truncation on number of keywords necessary for
name reconstruction. (Truncated norm target = 95%)

this reduction have an impact on the keyword list accuracy?
Figure 10 and 11 show the impact of truncation on the two
accuracy metrics studied before. We can see that while the
effects of truncation are negligible on most vulnerabilities, the
relevant keywords of a few hard-to-analyze vulnerabilities are
lost during keyword truncation. 1446 vulnerabilities (4.64%)
went from having a low ranking first relevant keyword to
having no relevant keyword at all. 649 vulnerabilities (2.08%)
had a software name that could be reconstructed before the
truncation (albeit with difficulty) but not after. The proper
trade-off between truncation and accuracy probably depends
on the nature of the keyword consumers downstream. Humans
might prefer shortened keyword lists, as reading a 23 word
long keyword list is probably less convenient than reading
the actual vulnerability description. Meanwhile machine mon-
itoring systems might or might not prefer untruncated lists,
depending on their ability to properly handle keyword noise
and detect weak signals in low-ranked keywords. In either
case it is not straightforward to make good use of a relevant
keyword at rank #20 or #25 when all preceding keywords have
been irrelevant, which makes a good case for truncation.

E. Performance of the Analysis Pipeline

While performance was not a major concern for us at this
stage, analyzing a day worth of vulnerability historical data
takes under a second on a commodity laptop with 16 Gb of
RAM and an Intel Core i7-7600U CPU @ 2.80GHz, making
the pipeline suitable for near real-time analysis at disclosure.
Indexing ten years of historical data, which would be a one-
time operation on a production system, takes between 5 and

30 seconds on the same hardware, depending on the heuristics
used. The multiple-words heuristic creates more keywords to
index, increasing the time of indexing when this heuristic is
activated. This fast turnaround time enables a security expert to
easily formulate a new heuristic hypothesis, quickly reindex
the full historical dataset using the new heuristic and get a
prompt evaluation of how this heuristic increases or decreases
the accuracy of the analysis. All the code and data used for
our experiment are available at [22].

V. CONCLUSION

We introduced a method to automatically extract from a
CVE vulnerability the most relevant keywords with regard
to the affected software, relying only on its human readable
description. Our results are promising, as a simple technique
brings results that are accurate enough to be useful in the
real world. As discussed in Section I, our keyword extraction
technique is the first step toward automated reaction to new
vulnerabilities disclosures.

In future work we intend to use this keyword extraction
technique to build a complete threat analysis system at disclo-
sure. The goal is to assess automatically at disclosure time how
much a vulnerability is a threat for a given information system.
We can consider the final weighted keyword list (truncated or
not) as an euclidean vector, which makes euclidean distance
between two analyses an interesting similarity metric between
two vulnerabilities. This would help assessing the threat re-
sulting from a new vulnerability by comparing it to older,
annotated vulnerabilities, providing an immediate automated
risk analysis mechanism for one-day vulnerabilities.

The automated risk analysis and reaction mechanisms made
possible by our technique could become invaluable tools for
security engineers defending cloud infrastructure and informa-
tion systems against day-to-day threats.

ACKNOWLEDGMENT

Experiments presented in this paper were carried out us-
ing the Grid’5000 testbed, supported by a scientific inter-
est group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations (see
https://www.grid5000.fr).

REFERENCES

[1] L. Bilge and T. Dumitraş, “Before We Knew It: An Empirical Study
of Zero-day Attacks in the Real World,” in Proceedings of the 2012
ACM Conference on Computer and Communications Security (CCS’ 12).
New York, NY, USA: ACM, 2012, pp. 833–844.

[2] Common Vulnerabilities and Exposures (CVE). https://cve.mitre.org/.
[3] National Vulnerability Database. https://nvd.nist.gov/.
[4] Security Content Automation Protocol. https://csrc.nist.gov/projects/

security-content-automation-protocol.
[5] NVD - CPE. https://nvd.nist.gov/products/cpe.
[6] Common Vulnerability Scoring System. https://www.first.org/cvss/.
[7] CVE and NVD Relationship. https://cve.mitre.org/about/cve and nvd

relationship.html.
[8] Cloudflare - Inside Shellshock: How hackers are using it to exploit

systems. https://blog.cloudflare.com/inside-shellshock/.
[9] AWS WAF - Web Application Firewall. https://aws.amazon.com/waf/.

[10] Google Cloud Armor. https://cloud.google.com/armor/.
[11] Cloudflare Web Application Firewall. https://www.cloudflare.com/waf/.



[12] Cloudflare - Stopping SharePoint’s CVE-2019-0604. https://blog.
cloudflare.com/stopping-cve-2019-0604/.

[13] S. Frei, M. May, U. Fiedler, and B. Plattner, “Large-scale Vulnerability
Analysis,” in Proceedings of the 2006 SIGCOMM Workshop on Large-
scale Attack Defense (LSAD ’06). New York, NY, USA: ACM, 2006,
pp. 131–138.

[14] S. Clark, S. Frei, M. Blaze, and J. Smith, “Familiarity Breeds Contempt:
The Honeymoon Effect and the Role of Legacy Code in Zero-day
Vulnerabilities,” in Proceedings of the 26th Annual Computer Security
Applications Conference (ACSAC ’10). New York, NY, USA: ACM,
2010, pp. 251–260.

[15] L. Glanz, S. Schmidt, S. Wollny, and B. Hermann, “A Vulnerabil-
ity’s Lifetime: Enhancing Version Information in CVE Databases,”
in Proceedings of the 15th International Conference on Knowledge
Technologies and Data-driven Business (i-KNOW ’15). New York,
NY, USA: ACM, 2015.

[16] J. Jacobs, S. Romanosky, B. Edwards, M. Roytman, and I. Adjerid,
“Exploit Prediction Scoring System (EPSS),” in Black Hat 2019,
2019. [Online]. Available: http://i.blackhat.com/USA-19/Thursday/
us-19-Roytman-Predictive-Vulnerability-Scoring-System-wp.pdf

[17] A. Dulaunoy. (2016) The Myth of Software and Hardware Vulnerability
Management. https://www.foo.be/2016/05/The Myth of Vulnerability
Management/.

[18] L. A. B. Sanguino and R. Uetz, “Software Vulnerability Analysis Using
CPE and CVE,” CoRR, vol. abs/1705.05347, 2017.

[19] NIST IR 7695 — Common Platform Enumeration: Naming
Specification Version 2.3. http://csrc.nist.gov/publications/nistir/
ir7695/NISTIR-7695-CPE-Naming.pdf.

[20] K. S. Jones, “A statistical interpretation of term specificity and its
application in retrieval,” Journal of Documentation, vol. 28, pp. 11–21,
1972.

[21] Term Frequency - Inverse Document Frequency statistics. https://jmotif.
github.io/sax-vsm site/morea/algorithm/TFIDF.html.

[22] Firres. https://gitlab.inria.fr/celbaz/firres noms.


