M. Ajtai, Generating hard instances of the short basis problem, ICALP, p.19, 1999.

E. Bach and J. O. Shallit, Algorithmic Number Theory: Ecient Algorithms, vol.1, 1996.

W. Banaszczyk, New bounds in some transference theorems in the geometry of numbers, Mathematische Annalen, vol.296, issue.4, p.625636, 1993.

J. Biasse, T. Espitau, P. Fouque, A. Gélin, and P. Kirchner, Computing generator in cyclotomic integer rings, Eurocrypt, p.6088, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01518438

J. Biasse and C. Fieker, Subexponential class group and unit group computation in large degree number elds, LMS Journal of Computation and Mathematics, vol.17, p.385403, 2014.

J. Biasse and F. Song, A polynomial time quantum algorithm for computing class groups and solving the principal ideal problem in arbitrary degree number elds, SODA, 2016.

K. Boer, L. Ducas, A. Pellet-mary, and B. Wesolowski, Random self-reducibility of ideal-SVP via Arakelov random walks, CRYPTO, p.243272, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02513308

K. Boer and C. Pagano, Calculating the power residue symbol and ibeta, ISSAC, vol.68, p.923934, 2017.

J. Buhler, C. Pomerance, and L. Robertson, Heuristics for class numbers of prime-power real cyclotomic elds

, High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, p.149157, 2004.

P. Campbell, M. Groves, and D. Shepherd, Soliloquy: A cautionary tale, ETSI 2nd Quantum-Safe Crypto Workshop, 2014.

R. Cramer, L. Ducas, C. Peikert, and O. Regev, Recovering short generators of principal ideals in cyclotomic rings, Eurocrypt, p.559585, 2016.

R. Cramer, L. Ducas, and B. Wesolowski, Short stickelberger class relations and application to ideal-svp, Eurocrypt, p.324348, 2017.

A. Deitmar and S. Echterho, Principles of Harmonic Analysis, 2016.

E. Dobrowolski, On a question of lehmer and the number of irreducible factors of a polynomial, Acta Arithmetica, vol.34, issue.4, p.391401, 1979.

L. Ducas, M. Plançon, and B. Wesolowski, On the shortness of vectors to be found by the ideal-svp quantum algorithm, CRYPTO, p.322351, 2019.

K. Eisenträger, S. Hallgren, A. Kitaev, and F. Song, A quantum algorithm for computing the unit group of an arbitrary degree number eld, STOC, p.293302, 2014.

C. Gentry, A fully homomorphic encryption scheme, 2009.

C. Gentry, Fully homomorphic encryption using ideal lattices, STOC, p.169178, 2009.

C. Gentry, Toward basing fully homomorphic encryption on worst-case hardness, CRYPTO, p.116137, 2010.

C. Gentry, C. Peikert, and V. Vaikuntanathan, Trapdoors for hard lattices and new cryptographic constructions, STOC, p.197206, 2008.

L. Grenié and G. Molteni, Explicit versions of the prime ideal theorem for dedekind zeta functions under grh, Mathematics of Computation, vol.85, issue.298, p.889906, 2015.

H. Iwaniec, E. Kowalski, and A. M. Society, Analytic Number Theory, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00180743

D. Jao, S. D. Miller, and R. Venkatesan, Expander graphs based on GRH with an application to elliptic curve cryptography, Journal of Number Theory, 2009.

D. Jetchev and B. Wesolowski, On graphs of isogenies of principally polarizable abelian surfaces and the discrete logarithm problem, 2015.

V. Kessler, On the minimum of the unit lattice, vol.3, p.377380, 1991.

P. N. Klein, Finding the closest lattice vector when it's unusually close, SODA, p.937941, 2000.

C. Lee, A. Pellet-mary, D. Stehlé, and A. Wallet, An lll algorithm for module lattices, Asiacrypt, p.5990
URL : https://hal.archives-ouvertes.fr/hal-02397335

. Springer, , 2019.

S. Louboutin, Explicit bounds for residues of dedekind zeta functions, values of l-functions at s=1, and relative class numbers, Journal of Number Theory, 2000.

V. Lyubashevsky and D. Micciancio, Generalized compact knapsacks are collision resistant, ICALP, p.144155, 2006.

V. Lyubashevsky, C. Peikert, and O. Regev, On ideal lattices and learning with errors over rings, Journal of the ACM, vol.60, issue.6, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00921792

D. Micciancio, Generalized compact knapsacks, cyclic lattices, and ecient one-way functions, Computational Complexity, vol.16, issue.4, p.365411, 2002.

D. Micciancio and O. Regev, Worst-case to average-case reductions based on gaussian measures, SIAM J. Comput, vol.37, issue.1, p.267302, 2007.

J. C. Miller, Real cyclotomic elds of prime conductor and their class numbers, Math. Comp, vol.84, issue.295, p.24592469, 2015.

S. D. Miller and N. Stephens-davidowitz, Generalizations of Banaszczyk's transference theorems and tail bound, 2018.

H. Minkowski, Gesammelte Abhandlungen, 1967.

T. Miyake and Y. Maeda, Modular Forms. Springer Monographs in Mathematics, 2006.

J. Neukirch, Algebraic number theory, vol.322, 2013.

J. Neukirch and N. Schappacher, Algebraic Number Theory. Grundlehren der mathematischen Wissenschaften, 2013.

C. Peikert and A. Rosen, Ecient collision-resistant hashing from worst-case assumptions on cyclic lattices, TCC, p.145166, 2006.

A. Pellet-mary, G. Hanrot, and D. Stehlé, Approx-svp in ideal lattices with pre-processing, Eurocrypt, p.685716, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02139939

O. Regev, On lattices, learning with errors, random linear codes, and cryptography, J. ACM, vol.56, issue.6, p.140, 2005.

R. Schoof, Computing arakelov class groups, Algorithmic Number Theory: Lattices, Number Fields, Curves and Cryptography, p.447495, 2008.

V. Shoup, A new polynomial factorization algorithm and its implementation, Journal of Symbolic Computation, vol.20, issue.4, pp.363-397, 1995.

D. Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa, Ecient public key encryption based on ideal lattices, ASIACRYPT, p.617635, 2009.

J. Zur-gathen and D. Panario, Factoring polynomials over nite elds: A survey, Journal of Symbolic Computation, vol.31, issue.1, pp.3-17, 2001.

L. C. Washington, Introduction to cyclotomic elds, vol.83, 2012.

B. P. Wesolowski, Arithmetic and geometric structures in cryptography, vol.11, 2018.