A. Banerjee, U. Chitnis, S. Jadhav, J. Bhawalkar, and S. Chaudhury, Hypothesis testing, type i and type ii errors, Industrial psychiatry journal, vol.18, issue.2, p.127, 2009.

C. R. Bolen, M. D. Robek, L. Brodsky, V. Schulz, J. K. Lim et al., The blood transcriptional signature of chronic hepatitis c virus is consistent with an ongoing interferon-mediated antiviral response, Journal of Interferon & Cytokine Research, vol.33, issue.1, pp.15-23, 2013.

C. J. Burges, A tutorial on support vector machines for pattern recognition, Data Mining and Knowledge Discovery, vol.2, issue.2, pp.121-167, 1998.

G. Chandrashekar and F. Sahin, A survey on feature selection methods, Computers & Electrical Engineering, vol.40, issue.1, pp.16-28, 2014.

Y. Cun and H. Fröhlich, Biomarker gene signature discovery integrating network knowledge, Biology, vol.1, issue.1, pp.5-17, 2012.

P. Cunningham and S. J. Delany, k-nearest neighbour classifiers, Multiple Classifier Systems, vol.34, pp.1-17, 2007.

R. Díaz-uriarte and S. A. De-andres, Gene selection and classification of microarray data using random forest, BMC bioinformatics, vol.7, issue.1, 2006.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, Least angle regression, The Annals of statistics, vol.32, issue.2, pp.407-499, 2004.

I. Guyon and A. Elisseeff, An introduction to variable and feature selection, Journal of machine learning research, vol.3, pp.1157-1182, 2003.

I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene selection for cancer classification using support vector machines, Machine Learning, vol.46, issue.1, pp.389-422, 2002.

A. Holzinger, C. Biemann, C. S. Pattichis, and D. B. Kell, What do we need to build explainable ai systems for the medical domain?, 2017.

C. W. Hsu, C. C. Chang, and C. J. Lin, A practical guide to support vector classification, 2010.

M. Kanehisa and S. Goto, Kegg: kyoto encyclopedia of genes and genomes, Nucleic acids research, vol.28, issue.1, pp.27-30, 2000.

B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler et al., Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV), Proceedings of the 35th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol.80, pp.10-15, 2018.

Y. K. Kim, J. S. Shin, and M. H. Nahm, Nod-like receptors in infection, immunity, and diseases, Yonsei medical journal, vol.57, issue.1, pp.5-14, 2016.

R. Kohavi and G. H. John, Wrappers for feature subset selection, Artificial intelligence, vol.97, issue.1-2, pp.273-324, 1997.

O. Li, H. Liu, C. Chen, and C. Rudin, Deep learning for case-based reasoning through prototypes: A neural network that explains its predictions, Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

A. Liaw and M. Wiener, Classification and Regression by randomForest, R News, vol.2, issue.3, pp.18-22, 2002.

T. Y. Liu, T. Burke, L. P. Park, C. W. Woods, A. K. Zaas et al., An individualized predictor of health and disease using paired reference and target samples, BMC Bioinformatics, vol.17, issue.1, p.47, 2016.

C. Molnar, Interpretable machine learning: A guide for making black box models explainable, Christoph Molnar, Leanpub, 2018.

J. F. Mudge, L. F. Baker, C. B. Edge, and J. E. Houlahan, Setting an optimal ? that minimizes errors in null hypothesis significance tests, PloS one, vol.7, issue.2, p.32734, 2012.

. R-core-team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2013.

M. T. Ribeiro, S. Singh, and C. Guestrin, Why should i trust you?: Explaining the predictions of any classifier, Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, pp.1135-1144, 2016.

C. Rudin, Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, Nature Machine Intelligence, vol.1, pp.206-215, 2019.

B. Scholkopf, K. K. Sung, C. J. Burges, F. Girosi, P. Niyogi et al., Comparing support vector machines with Gaussian kernels to radial basis function classifiers, IEEE Trans. Signal Process, vol.45, issue.11, pp.2758-2765, 1997.

R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh et al., Gradcam: Visual explanations from deep networks via gradient-based localization, Proceedings of the IEEE International Conference on Computer Vision, pp.618-626, 2017.

L. B. Statistics and L. Breiman, Random forests, Machine Learning, pp.5-32, 2001.

E. Stork, R. Duda, P. Hart, and D. Stork, Pattern classification, 2006.

A. Subramanian, P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles, Proceedings of the National Academy of Sciences, vol.102, issue.43, pp.15545-15550, 2005.

G. Verma, A. Jha, D. Rebholz-schuhmann, and M. G. Madden, Using machine learning to distinguish infected from non-infected subjects at an early stage based on viral inoculation, International Conference on Data Integration in the Life Sciences, pp.105-121, 2018.

I. H. Witten, E. Frank, M. A. Hall, and C. J. Pal, Data Mining: Practical machine learning tools and techniques, 2016.

P. Zachariah, A. Posner, M. S. Stockwell, P. S. Dayan, F. M. Sonnett et al., Vaccination rates for measles, mumps, rubella, and influenza among children presenting to a pediatric emergency department in new york city, Journal of the Pediatric Infectious Diseases Society, vol.3, issue.4, pp.350-353, 2014.

Y. Zhai, L. M. Franco, R. L. Atmar, J. M. Quarles, N. Arden et al., Host transcriptional response to influenza and other acute respiratory viral infections-a prospective cohort study, PLoS pathogens, vol.11, issue.6, p.1004869, 2015.