T. Y. Chen, S. C. Chung, and S. M. Yiu, Metamorphic Testing -A New Approach for Generating Next Test Cases, 1998.

T. Y. Chen, F. Kuo, H. Liu, P. Poon, D. Towey et al., Metamorphic Testing: A Review of Challenges and Opportunities, vol.51, pp.1-27, 2018.

I. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Adv. NIPS, pp.2672-2680, 2014.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, 2016.

S. Haykin, Neural Networks and Learning Machines, 2016.

J. J. Heckman, Selection Bias as a Specification Error, Econometrica, vol.47, issue.1, pp.153-161, 1979.

S. Nakajima and H. N. Bui, Dataset Coverage for Testing Machine Learning Computer Programs, Proc. 23rd APSEC, pp.297-304, 2016.

S. Nakajima, Quality Assurance of Machine Learning Software, Proc. GCCE 2018, pp.601-604, 2018.

S. Nakajima, Dataset Diversity for Metamorphic Testing of Machine Learning Software, Proc. 8th SOFL+MSVL, pp.21-38, 2018.

K. Pei, Y. Cao, J. Yang, and S. Jana, DeepXplore: Automated Whitebox Testing of Deep Learning Systems, Proc. 26th SOSP, pp.1-18, 2017.

J. Quinonero-candela, M. Sugiyama, and A. , Dataset Shift in Machine Learning, 2009.

S. Segura, D. Towey, Z. Q. Zhou, and T. Y. Chen, Metamorphic Testing: Testing the Untestable, IEEE Software

C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan et al., Intriguing properties of neural networks, Proc. ICLR 2014, 2014.

D. Warde-farley and I. Goodfellow, Adversarial Perturbations of Deep Neural Networks, in Perturbation, Optimization and Statistics, pp.1-32, 2016.

X. Xie, J. W. Ho, C. Murphy, G. Kaiser, B. Xu et al., Testing and Validating Machine Learning Classifiers by Metamorphic Testing, J. Syst. Softw, vol.84, issue.4, pp.544-558, 2011.

M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid, DeepRoad: GAN-Based Metamorphic Testing and Input Validation Framework for Autonomous Driving Systems, Proc. 33rd ASE, pp.132-142, 2018.

Z. Q. Zhou and L. Sun, Metamorphic Testing of Driverless Cars, Comm. ACM, vol.62, issue.3, pp.61-67, 2019.

X. Zhu, Machine Teaching: An Inverse Problem to Machine Learning and an Approach Toward Optimal Education, Proc. 29th AAAI, pp.4083-4087, 2015.