C. Akinwale, S. Olatunde, E. Olusayo, and J. Babalola, Performance evaluation of simulated annealing and genetic algorithm in solving examination timetabling problem, Scientic Research and Essays, vol.7, issue.17, p.17271733, 2012.

J. T. Alander, T. Mantere, and P. Turunen, Genetic algorithm based software testing, Articial Neural Nets and Genetic Algorithms, p.325328, 1998.

, AVL List GmbH: Model.connect

R. Ben-abdessalem, S. Nejati, L. C. Briand, and T. Stifter, Testing advanced driver assistance systems using multi-objective search and neural networks, Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering, 2016.

O. Buehler and J. Wegener, Evolutionary functional testing of a vehicle brake assistant system, 6th Metaheuristics International Conference, 2005.

P. Erdogmus, A. Ozturk, and S. Tosun, Continuous optimization problem solution with simulated annealing and genetic algorithms, Journal of Engineering Research and Applied Science, vol.2, issue.1, p.116121, 2013.

F. A. Fortin, F. M. De-rainville, M. A. Gardner, M. Parizeau, and C. Gagné, DEAP: Evolutionary algorithms made easy, Journal of Machine Learning Research, vol.13, p.21712175, 2012.

R. Fredrikson and J. Dahl, A comparative study between a simulated annealing and a genetic algorithm for solving a university timetabling problem, 2016.

D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1989.

F. Gross, G. Fraser, and A. Zeller, Search-based system testing: High coverage, no false alarms, Proceedings of the 2012 International Symposium on Software Testing and Analysis. pp. 6777. ISSTA 2012, 2012.

J. Haddock and J. Mittenthal, Simulation optimization using simulated annealing, Computers & Industrial Engineering, vol.22, issue.4, p.395, 1992.

,

K. Kircher, A comparison of headway and time to collision as safety indicators. Accident; analysis and prevention, vol.35, p.42733, 2003.

, , pp.22-24

F. Klück, M. Zimmermann, F. Wotawa, and M. Nica, Genetic algorithm-based test parameter optimization for adas system testing, Proceedings of the 19th International Conference on Software Quality, Reliability and Security, 2019.

F. Klueck, Y. Li, M. Nica, J. Tao, and F. Wotawa, Using ontologies for test suites generation for automated and autonomous driving functions, 2018 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW), p.118123, 2018.

R. Lattarulo, J. Pã-c-rez, and M. Dendaluce, A complete framework for developing and testing automated driving controllers, IFAC-PapersOnLine, vol.50, issue.1, p.263, 2017.

M. Locatelli, Simulated annealing algorithms for continuous global optimization: Convergence conditions, Journal of Optimization Theory and Applications, vol.104, issue.1, p.121133, 2000.

T. W. Manikas and J. T. Cain, Genetic algorithms vs. simulated annealing: A comparison of approaches for solving the circuit partitioning problem, Computer Science and Engineering Research. 1, 1996.

M. Perry, simanneal: Python module for simulated annealing, 20132019.

L. Raaelli, F. Vallée, G. Fayolle, P. De-souza, X. Rouah et al., Facing ADAS validation complexity with usage oriented testing, ERTS 2016, p.13, 2016.

M. Semrau and J. Erdmann, Simulation framework for testing adas in chinese trac situations. SUMO 2016Trac, Mobility, and Logistics, vol.30, p.103115, 2016.

G. Vires-simulationstechnologie, Vtd virtual test drive

Q. Wang, Using genetic algorithms to optimise model parameters, Environmental Modelling & Software, vol.12, issue.1, p.34, 1997.

F. Wotawa, B. Peischl, F. Klück, and M. Nica, Quality assurance methodologies for automated driving, & i Elektrotechnik und Informationstechnik, vol.135, issue.4, p.322327, 2018.

A. H. Wright, Genetic algorithms for real parameter optimization, Foundations of Genetic Algorithms, vol.1, pp.205-218, 1991.

,

J. Zhou, R. Schmied, A. Sandalek, H. Kokal, and L. Del-re, A framework for virtual testing of adas, 2016.

M. R. Zofka, S. Klemm, F. Kuhnt, T. Schamm, and J. M. Zöllner, Testing and validating high level components for automated driving: simulation framework for trac scenarios, 2016 IEEE Intelligent Vehicles Symposium (IV), p.144150, 2016.