J. Magyar, K. Kistamás, K. Váczi, B. Hegyi, B. Horváth et al., Concept of relative variability of cardiac action potential duration and its test under various experimental conditions, Gen. Physiol. Biophys, vol.35, issue.1, pp.55-62, 2016.

D. M. Johnson, J. Heijman, E. F. Bode, D. J. Greensmith, H. Van-der-linde et al., Diastolic spontaneous calcium release from the sarcoplasmic reticulum increases beat-to-beat variability of repolarization in canine ventricular myocytes after ?-adrenergic stimulation, Circ. Res, vol.112, issue.2, pp.246-256, 2013.

M. Zaniboni, F. Cacciani, and N. Salvarani, Temporal variability of repolarization in rat ventricular myocytes paced with time-varying frequencies, Exp. Physiol, vol.92, issue.5, pp.859-869, 2007.

E. Pueyo, C. Dangerfield, O. Britton, L. Virág, K. Kistamás et al., Experimentally-based computational investigation into beat-to-beat variability in ventricular repolarization and its response to ionic current inhibition, PloS One, vol.11, issue.3, p.151461, 2016.

C. Antzelevitch, S. Sicouri, S. H. Litovsky, A. Lukas, S. C. Krishnan et al., Heterogeneity within the ventricular wall. Electrophysiology and pharmacology of epicardial, endocardial, and M cells, Circ. Res, vol.69, issue.6, pp.1427-1449, 1991.

J. Ramírez, M. Orini, A. Mincholé, V. Monasterio, I. Cygankiewicz et al., T-wave morphology restitution predicts sudden cardiac death in patients with chronic heart failure, J. Am. Heart Assoc, vol.6, issue.5, 2017.

M. Baumert, A. Porta, M. A. Vos, M. Malik, J. Couderc et al., QT interval variability in body surface ECG: measurement, physiological basis, and clinical value: position statement and consensus guidance endorsed by the European Heart Rhythm Association jointly with the ESC Working Group on Cardiac Cellular Electrophysiology, Europace, vol.18, issue.6, pp.925-944, 2016.

R. L. Verrier, T. Klingenheben, M. Malik, N. El-sherif, D. V. Exner et al., Microvolt T-wave alternans: physiological basis, methods of measurement, and clinical utility consensus guideline by International Society for Holter and Noninvasive Electrocardiology, J. Am. Coll. Cardiol, vol.58, issue.13, pp.1309-1324, 2011.

E. Pueyo, A. Corrias, L. Virág, N. Jost, T. Szél et al., A multiscale investigation of repolarization variability and its role in cardiac arrhythmogenesis, Biophys. J, vol.101, issue.12, pp.2892-2902, 2011.

N. Szentandrássy, K. Kistamás, B. Hegyi, B. Horváth, F. Ruzsnavszky et al., Contribution of ion currents to beat-to-beat variability of action potential duration in canine ventricular myocytes, Pfluegers Arch.-Eur. J. Physiol, vol.467, issue.7, pp.1431-1443, 2015.

C. Lerma, T. Krogh-madsen, M. Guevara, and L. Glass, Stochastic aspects of cardiac arrhythmias, J. Stat. Phys, vol.128, issue.1-2, pp.347-374, 2007.

G. Li, J. Feng, L. Yue, and M. Carrier, Transmural heterogeneity of action potentials and Ito1 in myocytes isolated from the human right ventricle, Am. J. Physiol.: Heart Circ. Physiol, vol.275, issue.2, pp.369-377, 1998.

C. Sánchez, A. Bueno-orovio, E. Wettwer, S. Loose, J. Simon et al., Inter-subject variability in human atrial action potential in sinus rhythm versus chronic atrial fibrillation, PLoS ONE, vol.9, issue.8, 2014.

G. Antoons, D. M. Johnson, E. Dries, D. J. Santiago, S. Ozdemir et al., Calcium release near L-type calcium channels promotes beat-tobeat variability in ventricular myocytes from the chronic AV block dog, J. Mol. Cell. Cardiol, vol.89, pp.326-334, 2015.

K. Kistamas, N. Szentandrassy, B. Hegyi, K. Vaczi, F. Ruzsnavszky et al., Changes in intracellular calcium concentration influence beat-to-beat variability of action potential duration in canine ventricular myocytes, J. Physiol. Pharmacol, vol.66, issue.1, pp.73-81, 2015.

M. Lemay, E. De-lange, and J. P. Kucera, Effects of stochastic channel gating and distribution on the cardiac action potential, J. Theor. Biol, vol.281, issue.1, pp.84-96, 2011.

A. J. Tanskanen, J. L. Greenstein, B. Orourke, and R. L. Winslow, The role of stochastic and modal gating of cardiac L-type Ca 2+ channels on early after-depolarizations, Biophys. J, vol.88, issue.1, pp.85-95, 2005.

M. Hinterseer, B. Beckmann, M. B. Thomsen, A. Pfeufer, M. Ulbrich et al., Usefulness of short-term variability of QT intervals as a predictor for electrical remodeling and proarrhythmia in patients with nonischemic heart failure, Am. J. Cardiol, vol.106, issue.2, pp.216-220, 2010.

R. Varkevisser, S. C. Wijers, M. A. Van-der-heyden, J. D. Beekman, M. Meine et al., Beat-to-beat variability of repolarization as a new biomarker for proarrhythmia in vivo, Heart Rhythm, vol.9, issue.10, pp.1718-1726, 2012.

Y. Sobue, E. Watanabe, M. Yamamoto, K. Sano, H. Harigaya et al., Beat-to-beat variability of T-wave amplitude for the risk assessment of ventricular tachyarrhythmia in patients without structural heart disease, Europace, vol.13, issue.11, pp.1612-1618, 2011.

J. W. Waks, E. Z. Soliman, C. A. Henrikson, N. Sotoodehnia, L. Han et al., Beat-tobeat spatiotemporal variability in the T-vector is associated with sudden cardiac death in participants without left ventricular hypertrophy: the atherosclerosis risk in communities (ARIC) Study, J. Am. Heart Assoc, vol.4, issue.1, p.1357, 2015.

D. A. Sampedro-puente, J. Fernandez-bes, N. Szentandrássy, P. Nánási, P. Taggart et al., Time course of low-frequency oscillatory behavior in human ventricular repolarization following enhanced sympathetic activity and relation to arrhythmogenesis, Front. Physiol, vol.10, p.1547, 2019.

D. M. Johnson, J. Heijman, C. E. Pollard, J. Valentin, H. J. Crijns et al., Iks restricts excessive beat-to-beat variability of repolarization during beta-adrenergic receptor stimulation, J. Mol. Cel. Cardiol, vol.48, issue.1, pp.122-130, 2010.

D. J. Gallacher, A. Van-de-water, H. Van-der-linde, A. N. Hermans, H. R. Lu et al., In vivo mechanisms precipitating Torsades de Pointes in a canine model of drug-induced long-QT1 syndrome, Cardiovas. Res, vol.76, issue.2, pp.247-256, 2007.

B. Hegyi, T. Bányász, L. T. Izu, L. Belardinelli, D. M. Bers et al., ?-adrenergic regulation of late Na + current during cardiac action potential is mediated by both PKA and CaMKII, J. Mol. Cell. Cardiol, vol.123, pp.168-179, 2018.

J. Heijman, A. Zaza, D. M. Johnson, Y. Rudy, R. L. Peeters et al., Determinants of beat-to-beat variability of repolarization duration in the canine ventricular myocyte: a computational analysis, PLoS Comput. Biol, vol.9, issue.8, p.1003202, 2013.

E. Pueyo, M. Orini, J. F. Rodríguez, and P. Taggart, Interactive effect of beta-adrenergic stimulation and mechanical stretch on low-frequency oscillations of ventricular action potential duration in humans, J. Mol. Cell. Cardiol, vol.97, pp.93-105, 2016.

D. A. Sampedro-puente, J. Fernandez-bes, B. Porter, S. Van-duijvenboden, P. Taggart et al., Mechanisms underlying interactions between low-frequency oscillations and beat-to-beat variability of cellular ventricular repolarization in response to sympathetic stimulation: Implications for arrhythmogenesis, Front. Physiol, vol.10, p.916, 2019.

B. A. Lawson, C. C. Drovandi, N. Cusimano, P. Burrage, B. Rodriguez et al., Unlocking data sets by calibrating populations of models to data density: A study in atrial electrophysiology, Sci. Adv, vol.4, issue.1, p.1701676, 2018.

E. Tixier, D. Lombardi, B. Rodriguez, and J. Gerbeau, Modelling variability in cardiac electrophysiology: a moment-matching approach, J. R. Soc., Interface, vol.14, issue.133, p.20170238, 2017.

E. T. Chang, M. Strong, and R. H. Clayton, Bayesian sensitivity analysis of a cardiac cell model using a Gaussian Process emulator, PLoS One, vol.10, issue.6, 2015.

R. H. Johnstone, E. T. Chang, R. Bardenet, T. P. De-boer, D. J. Gavaghan et al., Uncertainty and variability in models of the cardiac action potential: Can we build trustworthy models, J. Mol. Cell. Cardiol, vol.96, pp.49-62, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01245316

R. H. Johnstone, R. Bardenet, D. J. Gavaghan, L. Polonchuk, M. R. Davies et al., Hierarchical Bayesian modeling of variability and uncertainty in synthetic action potential traces, Comput. in Cardiology, vol.43, pp.1089-1092, 2017.

D. A. Sampedro-puente, J. Fernandez-bes, and E. Pueyo, Data-driven Identification of Stochastic Model Parameters and State Variables: Application to the Study of Cardiac Beat-to-beat Variability, IEEE J. Biomed. Health Inform, issue.5, pp.1697-1722, 2019.

S. Särkkä, Bayesian filtering and smoothing, vol.3, 2013.

S. Julier and J. Uhlmann, Unscented filtering and nonlinear estimation, Proc. IEEE, vol.92, pp.401-422, 2004.

R. E. Bellman, Adaptive control processes: a guided tour, vol.2045, 2015.

D. Lombardi and F. Raphel, A greedy dimension reduction method for classification problems, vol.502, p.280, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02280502

D. M. Hawkins, The problem of overfitting, J. Chem. Inf. Comput. Sci, vol.44, issue.1, pp.1-12, 2004.

T. O'hara, L. Virág, A. Varró, and Y. Rudy, Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation, PLoS Comput. Biol, vol.7, issue.5, p.1002061, 2011.

Y. Xie, E. Grandi, J. L. Puglisi, D. Sato, and D. M. Bers, ?-adrenergic stimulation activates early afterdepolarizations transiently via kinetic mismatch of PKA targets, J. Mol. Cell. Cardiol, vol.58, pp.153-161, 2013.

A. R. Soltis and J. J. Saucerman, Synergy between CaMKII substrates and ?-adrenergic signaling in regulation of cardiac myocyte Ca2+ handling, Biophys. J, vol.99, issue.7, pp.2038-2047, 2010.

D. Guo, Q. Liu, T. Liu, G. Elliott, M. Gingras et al., Electrophysiological Properties of HBI-3000: A New Antiarrhythmic Agent With Multiple-channel Blocking Properties in Human Ventricular Myocytes, J. Cardiovasc. Pharmacol, vol.57, issue.1, pp.79-85, 2011.

O. J. Britton, A. Bueno-orovio, L. Virág, A. Varró, and B. Rodriguez, The electrogenic Na+/K+ pump is a key determinant of repolarization abnormality susceptibility in human ventricular cardiomyocytes: A population-based simulation study, Front. Physiol, vol.8, 2017.

E. Grandi, F. S. Pasqualini, and D. M. Bers, A novel computational model of the human ventricular action potential and Ca transient, J. Mol. Cell. Cardiol, vol.48, issue.1, pp.112-121, 2010.

N. Jost, A. Varro, V. Szuts, P. P. Kovacs, G. Seprényi et al., Molecular basis of repolarization reserve differences between dogs and man, Circulation, vol.118, issue.18, 2008.

B. Pieske, L. S. Maier, V. Piacentino, J. Weisser, G. Hasenfuss et al., Rate Dependence of [N a + i ] and Contractility in Nonfailing and Failing Human Myocardium, Circulation, vol.106, issue.4, pp.447-453, 2002.

U. Schmidt, R. J. Hajjar, P. A. Helm, C. S. Kim, A. A. Doye et al., Contribution of Abnormal Sarcoplasmic Reticulum ATPase Activity to Systolic and Diastolic Dysfunction in Human Heart Failure, J. Mol. Cell. Cardiol, vol.30, pp.1929-1937, 1998.

T. Furukawa, S. Kimura, N. Furukawa, A. L. Bassett, and R. J. Myerburg, Potassium rectifier currents differ in myocytes of endocardial and epicardial origin, Circ. Res, vol.70, pp.91-103, 1992.

J. A. Negroni, S. Morotti, E. C. Lascano, A. V. Gomes, E. Grandi et al., ?-adrenergic effects on cardiac myofilaments and contraction in an integrated rabbit ventricular myocyte model, J. Mol. Cell. Cardiol, vol.81, pp.162-175, 2015.

J. Heijman, P. G. Volders, R. L. Westra, and Y. Rudy, Local control of ?-adrenergic stimulation: effects on ventricular myocyte electrophysiology and Ca 2+ -transient, J. Mol. Cell. Cardiol, vol.50, issue.5, pp.863-871, 2011.

E. A. Wan and R. Van-der-merwe, The Unscented Kalman Filter, Kalman Filtering and Neural Networks, pp.221-280, 2001.

C. Bertoglio, P. Moireau, and J. Gerbeau, Sequential parameter estimation for fluid-structure problems: Application to hemodynamics, Int. J. Numer. Meth. Biomed. Engng, vol.28, issue.4, pp.434-455, 2012.
URL : https://hal.archives-ouvertes.fr/inria-00603399

A. X. Sarkar, D. J. Christini, and E. A. Sobie, Exploiting mathematical models to illuminate electrophysiological variability between individuals, J. Physiol, vol.590, issue.11, pp.2555-2567, 2012.

N. Jost, L. Virág, M. Bitay, J. Takács, C. Lengyel et al., Restricting excessive cardiac action potential and QT prolongation: a vital role for I Ks in human ventricular muscle, Circulation, vol.112, issue.10, pp.1392-1399, 2005.

T. O'hara and Y. Rudy, Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species, Am. J. Physiol.: Heart Circ. Physiol, vol.302, issue.5, pp.1023-1053, 2012.