C. , While indel-based models currently lag behind substitution-only models, their development holds the promise to dramatically change various molecular-evolution applications, such as sequence alignment algorithms, the characterization of indel evolutionary dynamics in various genes and lineages, 2005.

, With the increased availability of sequence data and the increased computational resources, the development of more sophisticated inference procedures of sequence evolution has undergone accelerated evolution in itself. A very partial list of influential directions in model development includes

Y. See, Such model include, for example, codon models that allow for positive selection only on a subset of tree branches, 2002.

, Chapter, 2001.

. Quang, 2. more sophisticated mixture models, which allow averaging over a set of empirical aminoacid matrices, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00755441

. Choi, 3. models that integrate protein structure information with sequence evolution, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01221914

L. Karin, 4. models that integrate trait information with sequence evolution (Lartillot and Poujol, 2011.

, the substitution rate continuously evolves, 2011.

. Nylander, models that allow different partitions of the datasets to evolve under different sets of parameters, 2004.

J. Adachi and M. Hasegawa, Model of amino acid substitution in proteins encoded by mitochondrial DNA, Journal of molecular evolution, vol.42, issue.4, pp.459-68, 1996.

J. Adachi, P. J. Waddell, W. Martin, and M. Hasegawa, Plastid genome phylogeny and a model of amino acid substitution for proteins encoded by chloroplast DNA, Journal of molecular evolution, vol.50, issue.4, pp.348-58, 2000.

M. Anisimova, D. A. Liberles, H. Philippe, J. Provan, T. Pupko et al., State-of the art methodologies dictate new standards for phylogenetic analysis, BMC evolutionary biology, vol.13, issue.1, p.161, 2013.

L. ;. Bromham, F. Delsuc, and N. Galtier, Substitution rate analysis and molecular evolution, Phylogenetics in the Genomic Era, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02536329

G. M. Cannarozzi and A. Schneider, Codon Evolution: Mechanisms and Models, 2012.

R. A. Cartwright, DNA assembly with gaps (Dawg): simulating sequence evolution, Bioinformatics, vol.21, issue.3, pp.31-39, 2005.

J. Q. Chen, Y. Wu, H. Yang, J. Bergelson, M. Kreitman et al., Variation in the ratio of nucleotide substitution and indel rates across genomes in mammals and bacteria, Molecular Biology and Evolution, vol.26, issue.7, pp.1523-1531, 2009.

S. C. Choi, A. Hobolth, D. M. Robinson, H. Kishino, and J. L. Thorne, Quantifying the impact of protein tertiary structure on molecular evolution, Molecular Biology and Evolution, vol.24, issue.8, pp.1769-1782, 2007.

O. Cohen and T. Pupko, Inference and characterization of horizontally transferred gene families using stochastic mapping, Molecular biology and evolution, vol.27, issue.3, pp.703-716, 2010.

O. Cohen, N. D. Rubinstein, A. Stern, U. Gophna, and T. Pupko, A likelihood framework to analyse phyletic patterns, Philosophical transactions of the Royal Society of London. Series B, Biological sciences, vol.363, pp.3903-3914, 1512.

M. Csurös, Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood, Bioinformatics, vol.26, issue.15, pp.1910-1912, 2010.

M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt, A model of evolutionary change in proteins, Dayhoff, editor, vol.5, pp.345-352, 1978.

R. Ekblom and J. Galindo, Applications of next generation sequencing in molecular ecology of non-model organisms, Heredity, vol.107, issue.1, pp.1-15, 2011.

J. Felsenstein, Evolutionary trees from DNA sequences: A maximum likelihood approach, J Mol Evol, vol.17, issue.6, pp.368-76, 1981.

J. Felsenstein, Phylogenies From Restriction Sites: A Maximum-Likelihood Approach, Evolution, vol.46, issue.1, pp.159-173, 1992.

J. Felsenstein, Taking variation of evolutionary rates between sites into account in inferring phylogenies, Journal of Molecular Evolution, vol.53, issue.4-5, pp.447-455, 2001.

W. Fletcher and Z. Yang, INDELible: A flexible simulator of biological sequence evolution, Molecular Biology and Evolution, vol.26, issue.8, pp.1879-1888, 2009.

N. Galtier, Maximum-likelihood phylogenetic analysis under a covarion-like model, Molecular Biology and Evolution, vol.18, issue.5, pp.866-873, 2001.

N. Galtier and J. Lobry, Relationships Between Genomic G+C Content, RNA Secondary Structures, and Optimal Growth Temperature in Prokaryotes, Journal of Molecular Evolution, vol.44, issue.6, pp.632-636, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00434982

N. Goldman and Z. Yang, A codon-based model of nucleotide substitution for protein-coding DNA sequences, Molecular Biology and Evolution, vol.11, issue.5, pp.725-736, 1994.

R. Grantham, Amino acid difference formula to help explain protein evolution, Science, issue.4154, pp.862-866, 1974.

X. Gu, Y. X. Fu, and W. H. Li, Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites, Molecular Biology and Evolution, vol.12, issue.4, pp.546-57, 1995.

M. V. Han, G. W. Thomas, J. Lugo-martinez, and M. W. Hahn, Estimating gene gain and loss rates in the presence of error in genome assembly and annotation using CAFE 3. Molecular biology and evolution, vol.30, pp.1987-97, 2013.

W. Hao and G. B. Golding, The fate of laterally transferred genes: Life in the fast lane to adaptation or death, Genome Research, vol.16, issue.5, pp.636-643, 2006.

M. Hasegawa, H. Kishino, and T. Yano, Dating of the human-ape splitting by a molecular clock of mitochondrial DNA, J Mol Evol, vol.22, issue.2, pp.160-174, 1985.

D. T. Jones, W. R. Taylor, and J. M. Thornton, The rapid generation of mutation data matrices from protein sequences, Computer applications in the biosciences, vol.8, issue.3, pp.275-82, 1992.

T. H. Jukes and C. R. Cantor, Evolution of protein molecules, pp.21-132, 1969.

G. P. Karev, Y. Y. Wolf, and E. E. Koonin, Simple stochastic birth and death models of genome evolution: was there enough time for us to evolve?, Bioinformatics, vol.19, issue.15, pp.1889-1900, 2003.

K. Katoh and D. M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Molecular Biology and Evolution, vol.30, issue.4, pp.772-780, 2013.

M. Kimura, A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences, Journal of molecular evolution, vol.16, issue.2, pp.111-131, 1980.

K. Pond, S. L. Frost, and S. D. , A simple hierarchical approach to modeling distributions of substitution rates, Mol Biol Evol, vol.22, issue.2, pp.223-234, 2005.

J. M. Koshi and R. A. Goldstein, Context-dependent optimal substitution matrices, Protein engineering, vol.8, issue.7, pp.641-646, 1995.

R. Lanfear, P. B. Frandsen, A. M. Wright, T. Senfeld, and B. Calcott, Partition-Finder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Molecular biology and evolution, p.260, 2016.

N. ;. Lartillot, F. Delsuc, and N. Galtier, The bayesian approach to molecular phylogeny, Phylogenetics in the Genomic Era, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02535330

N. Lartillot and H. Philippe, A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process, Molecular Biology and Evolution, vol.21, issue.6, pp.1095-1109, 2004.
URL : https://hal.archives-ouvertes.fr/lirmm-00108585

N. Lartillot and R. Poujol, A phylogenetic model for investigating correlated evolution of substitution rates and continuous phenotypic characters, Mol Biol Evol, vol.28, issue.1, pp.729-744, 2011.

S. Q. Le and O. Gascuel, An Improved General Amino Acid Replacement Matrix, Molecular Biology and Evolution, vol.25, issue.7, pp.1307-1320, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00324106

E. Levy-karin, H. Ashkenazy, J. Hein, and T. Pupko, A simulation-based approach to statistical alignment, Systematic Biology, 2018.

E. Levy-karin, D. Shkedy, H. Ashkenazy, R. A. Cartwright, and T. Pupko, Inferring rates and length-distributions of indels using approximate Bayesian computation, 2017.

, Genome Biology and Evolution, vol.9, issue.5, pp.1280-1294

E. Levy-karin, S. Wicke, T. Pupko, and I. Mayrose, An Integrated Model of Phenotypic Trait Changes and Site-Specific Sequence Evolution, Systematic Biology, issue.6, p.66, 2017.

P. Librado, F. G. Vieira, and J. Rozas, BadiRate: estimating family turnover rates by likelihood-based methods, Bioinformatics, vol.28, issue.2, pp.279-81, 2012.

C. Lowe and N. Rodrigue, Detecting adaptation from multi-species protein-coding dna sequence alignments alignments, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02536338

G. Lunter, Probabilistic whole-genome alignments reveal high indel rates in the human and mouse genomes, Bioinformatics, issue.13, p.23, 2007.

I. Mayrose, N. Friedman, and T. Pupko, A gamma mixture model better accounts for among site rate heterogeneity, Bioinformatics, vol.21, issue.2, pp.151-159, 2005.

I. Mayrose, D. Graur, N. Ben-tal, and T. Pupko, Comparison of site-specific rate-inference methods for protein sequences: empirical Bayesian methods are superior, Mol Biol Evol, vol.21, issue.9, pp.1781-1791, 2004.

I. Miklos, G. A. Lunter, and I. Holmes, A "Long Indel" Model for Evolutionary Sequence Alignment, Molecular Biology and Evolution, vol.21, issue.3, pp.529-540, 2004.

S. Muse and B. Gaut, A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome, Molecular Biology and Evolution, vol.11, issue.5, pp.715-724, 1994.

J. Nylander, F. Ronquist, J. Huelsenbeck, and J. Nieves-aldrey, Bayesian Phylogenetic Analysis of Combined Data, Systematic Biology, vol.53, issue.1, pp.47-67, 2004.

W. Pett and T. A. Heath, Inferring the timescale of phylogenetic trees from fossil data, Phylogenetics in the Genomic Era, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02536361

T. Pupko and I. Mayrose, Probabilistic Methods and Rate Heterogeneity, Elements of Computational Systems Biology, 2010.

L. S. Quang, O. Gascuel, and N. Lartillot, Empirical profile mixture models for phylogenetic reconstruction, Bioinformatics, vol.24, issue.20, pp.2317-2323, 2008.

C. Rabier, T. Ta, A. , and C. , Detecting and locating whole genome duplications on a phylogeny: a probabilistic approach, Molecular biology and evolution, vol.31, issue.3, pp.750-62, 2014.

V. Ranwez and N. Chantret, Strengths and limits of multiple sequence alignment and filtering methods, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02535389

B. D. Redelings and M. A. Suchard, Joint bayesian estimation of alignment and phylogeny, Systematic Biology, vol.54, issue.3, pp.401-418, 2005.

S. M. Ross, Stochastic Processes, 1996.

M. Spencer and A. Sangaralingam, A Phylogenetic Mixture Model for Gene Family Loss in Parasitic Bacteria, Molecular Biology and Evolution, vol.26, issue.8, pp.1901-1908, 2009.

M. Spencer, E. Susko, and A. J. Roger, Modelling prokaryote gene content, Evolutionary bioinformatics online, vol.2, pp.157-78, 2006.

A. Stamatakis and A. M. Kozlov, Efficient maximum likelihood tree building methods, Phylogenetics in the Genomic Era, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02535285

M. Steel and J. Hein, Applying the Thorne-Kishino-Felsenstein model to sequence evolution on a star-shaped tree, Applied Mathematics Letters, vol.14, issue.6, pp.679-684, 2001.

K. Tamura and M. Nei, Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Molecular Biology and Evolution, vol.10, issue.3, pp.512-538, 1993.

S. Tavaré, Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on mathematics in the life sciences, vol.17, pp.57-86, 1986.

J. L. Thorne, H. Kishino, and J. Felsenstein, An evolutionary model for maximum likelihood alignment of DNA sequences, Journal of molecular evolution, vol.33, issue.2, pp.114-138, 1991.

J. L. Thorne, H. Kishino, and J. Felsenstein, Inching toward reality: an improved likelihood model of sequence evolution, Journal of molecular evolution, vol.34, issue.1, pp.3-16, 1992.

S. Whelan and N. Goldman, A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach, Molecular Biology and Evolution, vol.18, issue.5, pp.691-699, 2001.

, REFERENCES 1, vol.1, p.21

Z. Yang, Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites, Molecular biology and evolution, vol.10, issue.6, pp.1396-401, 1993.

Z. Yang, Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods, J Mol Evol, vol.39, issue.3, pp.306-320, 1994.

Z. Yang, A space-time process model for the evolution of dna sequences, Genetics, vol.139, issue.2, pp.993-1005, 1995.

Z. Yang, Among-site rate variation and its impact on phylogenetic analyses, Trends in ecology & evolution, vol.11, issue.9, pp.367-72, 1996.

Z. Yang, Molecular evolution: a statistical approach, 2014.

Z. Yang, R. Nielsen, N. Goldman, and A. M. Pedersen, Codon-substitution models for heterogeneous selection pressure at amino acid sites, Genetics, vol.155, issue.1, pp.431-449, 2000.

Z. Yang, R. Nielsent, and R. Nielsen, Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages, Mol Biol Evol, vol.19, issue.6, pp.908-917, 2002.

H. Zhang and Y. Huang, Finite Mixture Models and Their Applications: A Review, Austin Biom and Biostat. Austin Biom and Biostat, vol.2, issue.2, pp.1013-1014, 2015.

A. Zharkikh, Estimation of evolutionary distances between nucleotide sequences, Journal of molecular evolution, vol.39, issue.3, pp.315-344, 1994.