S. R. Abdel-misih and M. Bloomston, Liver anatomy. Surgical Clinics, vol.90, issue.4, pp.643-653, 2010.

J. Allard, S. Cotin, F. Faure, P. J. Bensoussan, F. Poyer et al., SOFA -an open source framework for medical simulation, MMVR 15-Medicine Meets Virtual Reality, vol.125, pp.13-18, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00319416

P. Alvarez, M. Chabanas, S. Rouzã?, M. Castro, Y. Payan et al., Lung deformation between preoperative CT and intraoperative CBCT for thoracoscopic surgery: a case study, Medical Imaging, vol.10576, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-01853906

A. Amundarain, D. Borro, A. García-alonso, J. J. Gil, L. Matey et al., Virtual reality for aircraft engines maintainability, Mechanics and Industry, vol.5, issue.2, pp.121-127, 2004.

S. Cotin, H. Delingette, and N. Ayache, Real-time elastic deformations of soft tissues for surgery simulation, IEEE transactions on Visualization and Computer Graphics, vol.5, issue.1, pp.62-73, 1999.
URL : https://hal.archives-ouvertes.fr/inria-00073173

J. Barbic and D. L. James, Six-dof haptic rendering of contact between geometrically complex reduced deformable models, IEEE Transactions on Haptics, vol.1, issue.1, pp.39-52, 2008.

S. Bhattacharjee and K. Matous, A nonlinear manifold-based reduced order model for multiscale analysis of heterogeneous hyperelastic materials, Journal of Computational Physics, vol.313, pp.635-653, 2016.

S. E. Benzley, E. Perry, K. Merkley, B. Clark, and G. Sjaardema, A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic analysis, 4th IMR, pp.179-191, 1995.

J. Bosman, The role of ligaments: Patient-specific or scenario-specific ?, ISBMS 2014, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01068077

M. Bronielsen and S. Cotin, Realâ??time volumetric deformable models for surgery simulation using finite elements and condensation, Computer graphics forum, vol.15, pp.57-66, 1996.

J. N. Brunet, A. Mendizabal, A. Petit, N. Golse, E. Vibert et al., Physics-based Deep Neural Network for Augmented Reality during Liver Surgery, International Conference on Medical image computing and computer-assisted intervention, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02158862

P. Cignoni, M. Callieri, M. Corsini, M. Dellepiane, F. Ganovelli et al., MeshLab: an Open-Source Mesh Processing Tool, Eurographics Italian Chapter, 2008.

A. Cifuentes and A. Kalbag, A performance study of tetrahedral and hexahedral elements in 3-D finite element structural analysis. Finite Finite Elements in, Analysis and Design, vol.12, pp.313-318, 1992.

L. W. Clements, W. C. Chapman, B. M. Dawant, R. L. Galloway, and M. I. Miga, Robust surface registration using salient anatomical features for image-guided liver surgery: Algorithm and validation, Medical physics, vol.35, issue.6Part1, pp.2528-2540, 2008.

T. Collins, D. Pizarro, A. Bartoli, M. Canis, and N. Bourdel, Real-time wide-baseline registration of the uterus in monocular laparoscopic videos, 2013.

O. Comas, Z. A. Taylor, J. Allard, S. Ourselin, S. Cotin et al., Efficient nonlinear FEM for soft tissue modelling and its GPU implementation within the open source framework SOFA, International Symposium on Biomedical Simulation, pp.28-39, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00841568

H. Delingette, A. , and N. , Soft tissue modeling for surgery simulation, Handbook of Numerical Analysis, vol.12, pp.453-550, 2004.
URL : https://hal.archives-ouvertes.fr/inria-00615656

A. Düster, J. Parvizianb, Z. Yanga, and E. Ranka, The finite cell method for threedimensional problems of solid mechanics, Comput Methods Appl Mech Eng, vol.197, pp.3768-3782, 2008.

A. Fedorov, R. Beichel, J. Kalpathy-cramer, J. Finet, J. C. Fillion-robin et al., 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magnetic resonance imaging, vol.30, pp.1323-1341, 2012.

B. Fetene, N. Rajkumar, S. , U. S. , and D. , FEM-based neural network modeling of laser-assisted bending, Neural Computing and Applications, vol.29, pp.69-82, 2018.

M. W. Gee, C. Forster, and W. A. Wall, A computational strategy for prestressing patientspecificbiomechanical problems under finite deformation, International Journal for Numerical Methods inBiomedical Engineering, issue.26, pp.52-72, 2010.

O. Goury and C. Duriez, Fast, Generic, and Reliable Control and Simulation of Soft Robots Using Model Order Reduction, IEEE Transactions on Robotics, issue.99, pp.1-12, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01834483

R. Guo, G. Lu, B. Qin, and B. Fei, Ultrasound imaging technologies for breast cancer detection and management: A review, Ultrasound in medicine and biology, 2017.

R. Haferssas, P. Jolivet, and F. Nataf, An Additive Schwarz Method Type Theory for Lions's Algorithm and a Symmetrized Optimized Restricted Additive Schwarz Method, SIAM Journal on Scientific Computing, vol.39, issue.4, pp.1345-1365, 2017.

N. Haouchine, J. Dequidt, M. O. Berger, and S. Cotin, Deformation-based augmented reality for hepatic surgery, Studies in health technology and informatics, p.184, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00768372

N. Haouchine and J. Dequidt, Image-guided simulation of heterogeneous tissue deformation for augmented reality during hepatic surgery. ISMAR, pp.199-208, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00842855

J. S. Heiselman, L. W. Clements, J. A. Collins, J. A. Weis, A. L. Simpson et al., Characterization and correction of intraoperative soft tissue deformation in image-guided laparoscopic liver surgery, J Med Imag, vol.5, issue.2, 2017.

S. F. Johnsen, Z. A. Taylor, M. J. Clarkson, J. Hipwell, M. Modat et al., NiftySim: A GPU-based nonlinear finite element package for simulation of soft tissue biomechanics, International journal of computer assisted radiology and surgery, vol.10, issue.7, pp.1077-1095, 2015.

G. R. Joldes, A. Wittek, and K. Miller, Real-time nonlinear finite element computations on GPU-Application to neurosurgical simulation, Computer methods in applied mechanics and engineering, vol.199, pp.3305-3314, 2010.

S. J. Julier, J. K. Uhlmann, and H. F. Durrant-whyte, A new approach for filtering nonlinear systems, Proceedings of ACC', vol.95, issue.3, pp.1628-1632, 1995.

D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014.

D. Kourounis, A. Fuchs, and O. Schenk, Toward the next generation of multiperiod optimal power flow solvers, IEEE Transactions on Power Systems, vol.33, issue.4, pp.4005-4014, 2018.

J. Krücker, S. Xu, A. Venkatesan, J. K. Locklin, H. Amalou et al., Clinical utility of real-time fusion guidance for biopsy and ablation, J Vasc Interv Radiol, vol.22, issue.4, pp.515-524, 2011.

A. Lasso, T. Heffter, A. Rankin, C. Pinter, T. Ungi et al., PLUS: opensource toolkit for ultrasound-guided intervention systems, IEEE Transactions on Biomedical Engineering, issue.10, pp.2527-2537, 2014.

D. Lorente, F. Martínez-martínez, M. J. Rupérez, M. A. Lago, M. Martínez-sober et al., A framework for modelling the biomechanical behaviour of the human liver during breathing in real time using machine learning, Expert Systems with Applications, vol.71, pp.342-357, 2017.

J. Lu and X. F. Zhao, Pointwise Identification of Elastic Properties in Nonlinear Hyperelastic Membranes-Part I: Theoretical and Computational Developments, J Appl Mech-T Asme, 2009.

R. Luo, T. Shao, H. Wang, W. Xu, K. Zhou et al., DeepWarp: DNN-based Nonlinear Deformation, 2018.

S. Marchesseau, T. Heimann, S. Chatelin, R. Willinger, and H. Delingette, Multiplicative jacobian energy decomposition method for fast porous visco-hyperelastic soft tissue model. MICCAI, pp.235-242, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00593207

F. Martínez-martínez, M. J. Rupérez-moreno, M. Martínez-sober, J. A. Solves-llorens, D. Lorente et al., A finite element-based machine learning approach for modeling the mechanical behavior of the breast tissues under compression in real-time, Computers in biology and medicine, vol.90, pp.116-124, 2017.

U. Meier, O. López, C. U. Monserrat, and J. M. Alcañiz, Real-time deformable models for surgery simulation: a survey, Comput Methods Programs Biomed, vol.77, issue.3, pp.183-197, 2005.

F. Meister, T. Passerini, V. Mihalef, A. Tuysuzoglu, A. Maier et al., Towards Fast Biomechanical Modeling of Soft Tissue Using Neural Networks, 2018.

A. Mendizabal, P. Márquez-neila, and S. Cotin, Simulation of hyperelastic materials in real-time using deep learning, Medical Image Analyses, vol.59, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02097119

A. Mendizabal, E. Tagliabue, J. Brunet, D. Dall'alba, P. Fiorini et al., Physicsbased Deep Neural Network for Real-Time Lesion Tracking in Ultrasound-guided Breast Biopsy, Computational Biomechanics for Medicine Workshop, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02311277

A. Mendizabal, R. Sznitman, and S. Cotin, Force classification during robotic interventions through simulation-trained neural networks, International journal of computer assisted radiology and surgery, vol.14, issue.9, pp.1601-1610, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02268782

K. Miller, G. Joldes, D. Lance, and A. Wittek, Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation, Communications in numerical methods in engineering, vol.23, issue.2, pp.121-134, 2007.

K. Miller and J. Lu, On the prospect of patient-specific biomechanics without patientspecific properties of tissues, Journal of the mechanical behavior of biomedical materials, vol.27, pp.154-166, 2013.

R. Modrzejewski, T. Collins, A. Bartoli, A. Hostettler, and J. Marescaux, Soft-body registration of pre-operative 3d models to intra-operative RGBD partial body scans. MICCAI, pp.39-46, 2018.

P. Moireau and D. Chapelle, Reduced-order Unscented Kalman Filtering with application to parameter identification in large-dimensional systems. ESAIM: Control, Optimisation and Calculus of Variations, vol.17, pp.380-405, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00550104

K. I. Morooka, X. Chen, R. Kurazume, S. Uchida, K. Hara et al., Real-time nonlinear FEM with neural network for simulating soft organ model deformation, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.742-749, 2008.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca et al., Magnetic-resonance elastography by direct visualization of propagating acoustic strain waves, Science, vol.269, pp.1854-1857, 1995.

S. Nikolaev, I. Peterlík, and S. Cotin, Stochastic Correction of Boundary Conditions during Liver Surgery, Colour and Visual Computing Symposium (CVCS), pp.1-4, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01823810

S. Niroomandi, I. Alfaro, E. Cueto, and F. Chinesta, Real-time deformable models of nonlinear tissues by model reduction techniques. Computer methods and programs in biomedicine, vol.91, pp.223-231, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01008730

S. Niroomandi, D. Gonzalez, I. Alfaro, F. Bordeu, A. Leygue et al., Real-time simulation of biological soft tissues: a PGD approach, International journal for numerical methods in biomedical engineering, vol.29, issue.5, pp.586-600, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01007231

S. Niroomandi, I. Alfaro, E. Cueto, and F. Chinesta, Model order reduction for hyperelastic materials, International Journal for Numerical Methods in Engineering, vol.81, issue.9, pp.1180-1206, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01007059

E. A. O'flynn, A. R. Wilson, and M. J. Michell, Image-guided breast biopsy: state-ofthe-art, Clinical radiology, vol.65, issue.4, pp.259-270, 2010.

C. J. Paulus, R. Maier, D. Peterseim, and S. Cotin, An Immersed Boundary Method for Detail-Preserving Soft Tissue Simulation from Medical Images, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.55-67, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01578447

O. J. Pellicer-valero, M. J. Rupã?rez, S. Martã?nez-sanchis, and J. D. Martã?n-guerrero, Real-time biomechanical modeling of the liver using Machine Learning models trained on Finite Element Method simulations, Expert Systems with Applications, p.113083, 2019.

I. Peterlík, C. Duriez, and S. Cotin, Modeling and real-time simulation of a vascularized liver tissue. MICCAI, pp.50-57, 2012.

I. Peterlík, H. Courtecuisse, C. Duriez, and S. Cotin, Model-based identification of anatomical boundary conditions in living tissues. IPCAI, pp.196-205, 2014.

I. Peterlík, N. Haouchine, L. Ruä?ka, and S. Cotin, Image-driven stochastic identification of boundary conditions for predictive simulation, International Conference on Medical Image Computing and Computer-Assisted Intervention, pp.548-556, 2017.

A. Petit, V. Lippiello, and B. Siciliano, Real-time tracking of 3D elastic objects with an RGB-D sensor, IROS, pp.3914-3921, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01617309

A. Petit and S. Cotin, Environment-aware non-rigid registration in surgery using physicsbased simulation, ACCV -14th Asian Conference on Computer Vision, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01930366

M. Pfeiffer, C. Iediger, J. Weitz, and S. Speidel, Learning soft tissue behavior of organs for surgical navigation with convolutional neural networks, pp.1-9, 2019.

R. Plantefeve, I. Peterlík, N. Haouchine, and S. Cotin, Patient-specific biomechanical modeling for guidance during minimally-invasive hepatic surgery, Ann Biomed Eng, vol.44, issue.1, pp.139-153, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01205194

K. J. Rechowicz and F. D. Mckenzie, Development and validation methodology of the Nuss procedure surgical planner, Simulation, vol.89, issue.12, pp.1474-1488, 2013.

F. Roewer-despres, N. Khan, and I. Stavness, Towards finite element simulation using deep learning, 15th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering, 2018.

O. Ronneberger, P. Fischer, and T. Brox, U-net: Convolutional networks for biomedical image segmentation, International Conference on Medical image computing and computerassisted intervention, pp.234-241, 2015.

N. Ruiter, R. Stotzka, T. Muller, H. Gemmeke, J. Reichenbach et al., Modelbased registration of X-ray mammograms and MR images of the female breast, IEEE Transactions on Nuclear Science, issue.53, pp.204-211, 2006.

G. Runge, M. Wiese, and A. Raatz, FEM-based training of artificial neural networks for modular soft robots, IEEE International Conference on Robotics and Biomimetics (ROBIO), 2017.

D. Ryckelynck, A priori hyperreduction method: an adaptive approach, Journal of computational physics, vol.202, issue.1, pp.346-366, 2005.

A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, Shear wave elasticityimaging: A new ultrasonic technology of medical diagnostics, Ultrasound in Medicine andBiology, vol.24, pp.1419-1435, 1998.

J. F. Shepherd, J. , and C. R. , Hexahedral mesh generation constraints, Engineering with Computers, vol.24, issue.3, pp.195-213, 2008.

J. R. Shewchuk, An introduction to the conjugate gradient method without the agonizing pain, 1994.

R. Sinkus, J. L. Daire, B. E. Van-beers, and V. Vilgrain, Elasticity reconstruction: Beyond the assumption oflocal homogeneity, C. R. Mec, vol.338, pp.474-479, 2010.

, Authors Suppressed Due to Excessive Length

S. Suwelack, S. Röhl, S. Bodenstedt, D. Reichard, R. Dillmann et al., Physics-based shape matching for intraoperative image guidance, Med Phys, vol.41, issue.11, p.111901, 2014.

M. Tonutti, G. Gauthier, and Y. Guang-zhong, A machine learning approach for realtime modelling of tissue deformation in image-guided neurosurgery, Artificial intelligence in medicine, vol.80, pp.39-47, 2017.

F. Visentin, V. Groenhuis, B. Maris, D. Dall'alba, F. Siepel et al., Iterative simulations to estimate the elastic properties from a series of mri images followed by mri-us validation, Medical and biological engineering and computing, vol.194, pp.1-12, 2018.

E. Wang, T. Nelson, and R. Rauch, Back to elements-tetrahedra vs. hexahedra, Proceedings of the 2004 international ANSYS conference, 2004.

L. Xu, Y. Lin, J. C. Han, Z. N. Xi, H. Shen et al., Magnetic resonance elastography of brain tumors:Preliminary results, Acta Radiologica, vol.48, pp.327-330, 2007.

P. A. Yushkevich, J. Piven, H. C. Hazlett, R. G. Smith, S. Ho et al., User-Guided 3D Active Contour Segmentation of Anatomical Structures: Significantly Improved Efficiency and Reliability, Neuroimage, vol.31, issue.3, pp.1116-1128, 2006.

X. F. Zhao, X. L. Chen, and J. Lu, Pointwise Identification of Elastic Properties in Nonlinear HyperelasticMembranes-Part II: Experimental Validation, J Appl Mech-T Asme, 2009.

M. De-angelo, E. Barchiesi, I. Giorgio, and B. E. Abali, Numerical identification of constitutive parameters in reduced order bi-dimensional models for pantographic structures: Application to out-of-plane buckling, Archive of Applied Mechanics, vol.89, issue.7, pp.1333-1358, 2019.

C. Boutin, F. Dell'isola, I. Giorgio, and L. Placidi, Linear pantographic sheets: Asymptotic micro-macro models identification, Mathematics and Mechanics of Complex Systems, vol.5, issue.2, pp.127-162, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01770478