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Abstract—Data analytics in the cloud has become an integral
part of enterprise businesses. Big data analytics systems, how-
ever, still lack the ability to take task objectives such as user
performance goals and budgetary constraints and automatically
configure an analytic job to achieve these objectives. This paper
presents UDAO, a Spark-based Unified Data Analytics Optimizer
that can automatically determine a cluster configuration with a
suitable number of cores as well as other system parameters that
best meet the task objectives. At a core of our work is a principled
multi-objective optimization (MOO) approach that computes a
Pareto optimal set of configurations to reveal tradeoffs between
different objectives, recommends a new Spark configuration that
best explores such tradeoffs, and employs novel optimizations to
enable such recommendations within a few seconds. Detailed
experiments using benchmark workloads show that our MOO
techniques provide a 2-50x speedup over existing MOO methods,
while offering good coverage of the Pareto frontier. Compared to
Ottertune, a state-of-the-art performance tuning system, UDAO
recommends Spark configurations that yield 26%-49% reduction
of running time of the TPCx-BB benchmark while adapting to
different user preferences on multiple objectives.

I. INTRODUCTION

As the volume of data generated by enterprises has con-
tinued to grow, big data analytics in the cloud has become
commonplace for obtaining business insights from this vo-
luminous data. Despite its wide adoption, current big data
analytics systems such as Spark remain best effort in nature
and typically lack the ability to take user objectives such as
performance goals or cost constraints into account.

Determining an optimal hardware and software configu-
ration for a big-data analytic task based on user-specified
objectives is a complex task and one that is largely performed
manually. Consider an enterprise user who wishes to run a mix
of Spark analytic tasks in the cloud. First, she needs to choose
the server hardware configuration from the set of available
choices, e.g., from over 190 hardware configurations offered
by Amazon’s EC2 [1]. These configurations differ in the
number of cores, RAM size, availability of solid state disks,
etc. After determining the hardware configuration, the user
also needs to determine the software configuration by choosing
various runtime parameters. For the Spark platform, these
runtime parameters include the number of executors, cores
per executor, memory per executor, parallelism (for reduce-
style transformations), Rdd compression (boolean), Memory
fraction (of heap space), to name a few.

The choice of a configuration is further complicated by the
need to optimize multiple, possibly conflicting, user objectives.

Consider the following real-world use cases at data analytics
companies and cloud providers (anonymized for confidential-
ity) that elaborate on these challenges and motivate our work:

Use Case 1 (Data-driven Business Users). A data-driven
security company that runs thousands of cloud analytic tasks
daily has two objectives: keep the latency low in order to
quickly detect fraudulent behaviors and also reduce cloud costs
that impose substantial operational expenses on the company.
For cloud analytics, task latency can often be reduced by
allocating more resources, but at the expense of higher cloud
costs. Thus, the engineers face the challenge of deciding the
cloud configuration and other runtime parameters that balance
latency and cost.

Use Case 2 (Serverless Analytics). Cloud providers now
offer databases and Spark for serverless computing [2], [23]. In
this case, a database or Spark instance is turned off during idle
periods, dynamically turned on when new queries arrive, and
scaled up or down as the load changes over time. For example,
a media company that uses a serverless offering to run a news
site sees peak loads in the morning or as news stories break,
and a lighter load at other times. The application specifies the
minimum and maximum number of computing units (CUs)
to service its workload across peak and off-peak periods; it
prefers to minimize cost when the load is light and expects
the cloud provider to dynamically scale CUs for the morning
peak or breaking news. In this case, the cloud provider needs
to balance between latency under different data loads and user
cost, which directly depends on the number of CUs used.

Overall, choosing a configuration that balances multiple
conflicting objectives is non-trivial—even expert engineers are
often unable to choose between two cluster options for a single
objective like latency [24], let alone choosing between dozens
of cluster options for multiple competing objectives.

In this paper, we introduce a Spark-based Unified Data
Analytics Optimizer (UDAO) that can automate the task of
determining an optimal configuration for each Spark task
based on multiple task objectives. Targeting cloud analytics,
UDAO is designed with the following features:

First, UDAO aims to support a broad set of analytic tasks
beyond SQL. Today, cloud analytics pipelines often mix SQL
queries, ETL tasks based on SQL and UDFs, and machine
learning (ML) tasks for deep analysis—this observation is
revealed in our discussions with cloud providers, and is
further supported by the recent development of the TPCx-BB
benchmark [32] that mixes SQL, UDF, and ML tasks in the



same benchmark. UDAO unifies all of them in the general
paradigm of dataflow programs and is implemented on top of
Spark, a well-known unified analytics engine with both on-
premise and serverless offerings in the cloud (e.g., [23]).

Second, UDAO takes as input an analytic task in the
form of a dataflow program and a set of objectives, and
produces as output a configuration with a suitable number
of cores as well as other runtime parameters that best meet
the task objectives. At the core of UDAO is a principled
multi-objective optimization (MOO) approach that takes
multiple, possibly conflicting, objectives, computes a Pareto-
optimal set of configurations (i.e., not dominated by any other
configuration in all objectives), and returns one from the set
that best suits the objectives.

While MOO under numerical parameters has been studied
in the optimization community [19], [8], we address the
MOO problem specifically for designing a cloud analytics
optimizer—our problem setting poses systems challenges such
as sufficient coverage of the Pareto set under stringent time
constraints. More specifically, these challenges include:

1. Infinite parameter space: Since Spark runtime parameters
mix numerical and categorial parameters, there are potentially
infinite configurations, only a small fraction of which belong
to the Pareto set—most configurations are dominated by some
Pareto optimal configuration for all objectives. Hence, we will
need to efficiently search through an infinite parameter space
to find those Pareto optimal configurations.

2. Sufficient, consistent coverage of the Pareto Frontier:
The Pareto set over the multi-objective space is also called
the Pareto frontier. Since we aim to use the Pareto fron-
tier to recommend a system configuration that best explores
tradeoffs between different objectives, the frontier should
provide sufficient coverage of the objective space. As we shall
show in the paper, existing MOO methods such as Weighted
Sum [19] often fail to provide sufficient coverage. Further, the
Pareto frontier must be consistent, i.e., the solutions computed
with more CPU time should subsume the previous solutions.
Randomized MOO solutions such as Evolutional methods [8]
cannot guarantee consistent Pareto frontiers and hence can lead
to contradicting recommendations, as we reveal in evaluation,
which is highly undesirable for a cloud optimizer.

3. Efficiency: Most notably, configurations must be recom-
mended under stringent time requirements, e.g., within a
few seconds, to minimize the delay of starting a recurring
task, or invoking or scaling a serverless task. Such systems
constraints fundamentally distinguish our MOO work from
the theoretical work in the optimization community [19],
[8]. Such time constraints are aggravated when the optimizer
needs to call complex performance models of the objectives,
e.g., to understand the (estimated) latency of a particular
configuration. Recent modeling work tends to use models
of high complexity, e.g., Gaussian Processes or Deep Neural
Networks [35], [38], and updates these models frequently as
new training data becomes available. In this case, the MOO
algorithm needs to recompute the Pareto frontier based on the
updated model in order to recommend a new configuration

that best suits the task objectives.
By way of designing our Spark-based optimizer, our paper

makes the following contributions:
(1) We address the infinite search space issue by present-

ing a new approach for incrementally transforming a MOO
problem to a set of constrained optimization (CO) problems,
where each CO problem can be solved individually to return
a Pareto optimal point.

(2) We address the coverage and efficiency challenges by
designing practical Progressive Frontier (PF) algorithms to
realize our approach. (i) Our first PF algorithm is designed
to be incremental, i.e., gradually expanding the Pareto frontier
as more computing time is invested, and uncertainty-aware,
i.e., returning more points in regions of the frontier that lack
sufficient information. (ii) To support complex learned models
in recent work [7], [35], [38], we further develop an approx-
imate PF algorithm that solves each CO problem efficiently
for subdifferentiable models. (iii) We finally devise a parallel,
approximate PF algorithm to further improve efficiency.

(3) We implement our algorithms into a Spark-based pro-
totype. Evaluation results using batch and stream analytics
benchmarks show that our approach produces a Pareto frontier
within 2.5 seconds, and outperforms MOO methods including
Weighted Sum [19], Normal Constraints [19], Evolutional
methods [8], and multi-objective Bayesian optimization [10],
[5] with 2-50x speedup, while offering better coverage over
the frontier and enabling exploration of tradeoffs such as
cost-latency or latency-throughput. When compared to Otter-
tune [35], a state-of-the-art performance tuning system, our
approach recommends configurations that yield 26%-49% re-
duction of total running time of the TPCx-BB benchmark [32]
while adapting to different application preferences on multiple
objectives and accommodating a broader set of models.

II. BACKGROUND AND SYSTEM DESIGN

In this section, we discuss requirements and constraints from
real-world use cases that motivate our system design.

A. Use Cases and Requirements

We model an analytic task as a dataflow program (a directed
graph of data collections flowing between operations), which
is used as the programming model in big data systems such
as Spark [37]. We assume that each Spark task has user- or
provider-specified objectives, referred to as task objectives,
that need to be optimized during execution. To execute the
task, the system needs to determine a cluster execution plan
with runtime parameters instantiated. As stated before, these
parameters control resource allocation (num. of cores, num.
of executors, memory per executor), the degree of parallelism
(for reduce-style transformations), granularity of scheduling,
compression options, shuffling strategies, etc. An executing
task using this plan is referred to as a job and the runtime
parameters are collectively referred as the job configuration.

The goal of our Spark-based optimizer is: given a data flow
program and a set of objectives, compute a job configuration



that optimizes these objectives and adapt the configuration
quickly if either the load or task objectives change.

To meet real world analytics needs, we present two con-
crete use cases with their requirements from our discussions
with analytic and cloud companies, and design our optimizer
(UDAO) accordingly to support these use cases.

1. Recurring user workloads. It is common for analytical
users to issue repeated jobs in the form of daily or hourly
batch jobs [38] . Sometimes stream jobs can be repeated as
well: under the lambda architecture, the batch layer runs to
provide perfectly accurate analytical results, while the speed
layer offers fast approximate analysis over live streams; the
results of these two layers are combined to serve a model. As
old data is periodically rolled into the batch job, the streaming
job is restarted over new data with a clean state.

UDAO is designed to work for recurring workloads: for each
scheduled job of a recurring task, once a user request is sent
to UDAO, it recommends a configuration under a few seconds
to improve job performance towards user-specified objectives.

2. Serverless analytics. As noted before, serverless analytics
using databases (DBs) or Spark are becoming common in
cloud computing. Each invocation of a serveless task by the
cloud platform requires a configuration that meets multiple
objectives—to provide low query latency to end-users while
using the least computing units (CUs) for the expected load.
Furthermore, auto scaling features imply that new configura-
tions need to be computed quickly to react to load changes.

UDAO is designed to also support serverless workloads:
whenever the cloud platform needs to launch a serverless
analytic task or scale it to adapt to the load, the cloud platform
sends a request to UDAO and within a few seconds receives a
recommended configuration balancing latency and cost.

B. System Overview

To meet stringent time constraints, we begin our system
design by separating model learning and MOO into two asyn-
chronous procedures: The time-consuming modeling process
is performed offline by a model server whenever new training
data becomes available. MOO runs online on-demand and
uses the most recent model to compute a new configuration,
with the delay of a few seconds. This approach distinguishes
UDAO from DBMS performance tuning systems [35], [39]
that couple modeling and optimization steps in an online
iterative tuning session, which takes 15-45 mins to run for
each query workload. The implications of this change are two-
fold: (i) It enables MOO to work with a range of models.
More specifically, UDAO’s MOO algorithm works with com-
plex learned models represented by Gaussian Processes (GPs)
or Deep Neural Networks (DNNs), besides simple closed-
form regression functions, whereas the optimization methods
in [35], [39] work only for the specific model (GP or DNN)
of choice. (ii) The model server can train a new model in
the background as new training data becomes available. When
MOO needs to be run for a given task, the model for this task
may have been updated. Hence, the speed to compute a Pareto
frontier based on the new model is a key performance goal.

Figure 1(a) shows the design of UDAO based on this
architectural change, with Spark as the underlying analytics
engine. It takes as input a sequence of user or provider initiated
requests, where each request specifies an analytic task and a
set of objectives, (F1, . . . , Fk). Currently, UDAO offers a set
of objectives for external requests to choose from, including:
1) average latency, for both batch and stream processing;
2) throughput for stream processing; 3) CPU utilization; 4)
IO load; 5) network load; 6) resource cost in CPU cores;
7) resource cost in CPU-hour (latency x CPU cores); and
8) resource cost as a weighted combination of CPU-hour
and IO cost (inspired by Severless DBs [2]), while more
options can be added in the future as application needs arise.
Besides the chosen objectives, requests can optionally specify
value constraints on these objectives, Fi ∈ [FL

i , F
U
i ], as

well as preferences on these objectives as a weight vector
(w1, . . . , wk), 0 ≤ wi ≤ 1 and

∑k
i=1 wi = 1.

Figure 1(b) shows an example request, including the
dataflow program of Q2 from the TPCx-BB [32] benchmark,
which mixes SQL with UDFs, and the application choice of
latency and resource cost (CPU cores) as objectives.

UDAO handles each request as follows: If a Spark task
runs for the first time or is specified with new objectives, no
predictive models are available for these objectives yet. Its job
will be to run with a default configuration x1. Our optimizer
assumes that a separate model server will collect traces during
job execution, including (i) system-level metrics, e.g., time
measurements of different steps, bytes read and written, and
fetch wait time from the Spark engine; (ii) observed values of
task objectives such as latency and cost. The model server uses
these traces offline asynchronously to compute task-specific
models (Ψ1, . . . ,Ψk), one for each chosen objective.

When the analytic task runs the next time, the multi ob-
jective optimization (MOO) module will contact the model
server and retrieve the task-specific predictive models. Then it
searches through the space of configurations and computes
a set of Pareto-optimal configurations. Based on insights
revealed in the Pareto frontier, the recommendation module
chooses a new configuration, x2, that meets all user constraints
and best explores the tradeoffs among different objectives.
Future runs of the task will use this new configuration.

If the application decides to adjust the constraints on the
objective (e.g., the service provider specifies a new bound
[FL

i , F
U
i ] to increase the throughput requirement when higher

data rates occur) or adjust the weight factor (e.g., favoring
latency more to cost in the coming hour), the optimizer can
quickly return a new configuration from the computed Pareto
frontier. As the model server continues to collect additional
samples from recurring executions of this task as well as
others, it may periodically update the task’s predictive models.
Upon the next run of the task, if updated models become
available, the Pareto frontier will be recomputed by re-running
the MOO and a new configuration will be recommended.

For the example task in Figure 1(b), Figure 1(c) shows the
effect of optimization using UDAO against OtterTune [35],
where the application first specified (0.5, 0.5) weights for
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Fig. 1. Overview of UDAO, an unified data analytics optimizer built on top of Spark

latency and cost and then later (0.9, 0.1) weights to favor
latency to cost. UDAO can achieve 43%-56% reduction in
latency compared to OtterTune while adapting to user pref-
erences (which will be detailed in our performance study).

Remarks on modeling choices. Since our focus in this
paper is on MOO rather than modeling, we briefly discuss
relevant modeling techniques here. As UDAO is designed
for Spark workloads, various modeling options can be used
to provide such models: (1) Handcrafted models: Domain
knowledge and workload profiling were used to develop
specific regression models for the Spark platform [36], where
different hardware profiles can be collected to customize these
models. Such models employ relatively simple function shapes
(linear or low-degree polynomial) on a small set of resource
parameters (e.g., the number of nodes). (2) Learned models:
Recent techniques can automatically learn predictive models,
including function shapes, coefficients, etc. from runtime
traces [7], [35], [38], [39]. These models tend to employ
complex functions built on larger numbers of parameters.
Section V discusses how UDAO incorporates these models
using the model server.

III. PROGRESSIVE FRONTIER APPROACH

We now present our Progressive Frontier framework for
solving the MOO problem. Since our focus is on systems as-
pects of MOO-driven cloud analytics, we present key concepts
in brief and refer the reader to [29] for details and proofs.

Problem III.1. Multi-Objective Optimization (MOO).

arg min
x

f(x) =

 F1(x) = Ψ1(x)
...
Fk(x) = Ψk(x)

 (1)

s.t.
x ∈ Σ ⊆ Rd

FL
i ≤ Fi(x) ≤ FU

i , i = 1, ..., k

where x is the job configuration with d parameters, Fi(x)
generally denotes each of the k objectives as a function of x,
and Ψi(x) refers particularly to the predictive model derived
for this objective. If an objective (e.g., throughput) favors
larger values, we add the minus sign to the objective function
to transform it to a minimization problem.

In general, multi-objective optimization (MOO) leads to a
set of solutions rather than a single optimal solution.

Definition III.1. Pareto Optimality: In the objective space
Φ ∈ Rk, a point f ′ Pareto-dominates another point f ′′ iff ∀i ∈
[1, k], f ′i ≤ f ′′i and ∃j ∈ [1, k], f ′j < f ′′j . A point f∗ is Pareto

Optimal iff there does not exist another point f ′ that Pareto-
dominates it. For an analytic task, the Pareto Set (Frontier)
F includes all the Pareto optimal points in the objective space
Φ, and is the solution to the MOO problem.

We further require the Pareto frontier to be computed
with good coverage, high efficiency, and consistency. Among
existing MOO methods, Weighted Sum (WS) [19] is known
to have poor coverage of the Pareto frontier [20]. Normalized
Constraints (NC) [21] suffers from efficiency issues: it uses a
pre-set parameter k to indicate the number of Pareto points
desired but often returns fewer points than k; if more points
are needed to cover the Pareto frontier, a large value k′ will be
tried, by starting the computation from scratch. Evolutionary
Methods (Evo) [8] are randomized methods to approximately
compute a frontier set, which suffer from the problem of
inconsistency: The Pareto frontier built with k′ points can be
inconsistent with that built with k points, as our evaluation
results show. Multi-objective Bayesian Optimization (MOBO)
extends the Bayesian approach to modeling an unknown
function with an acquisition function for choosing the next
point(s) to explore so that these new points are likely to be
Pareto points. It suffers from inefficiency, taking a long time
to return a decent Pareto set, as our evaluation results show.

To meet all the above requirements, we introduce a new
approach, called Progressive Frontier. It incrementally trans-
forms MOO to a series of constrained single-objective opti-
mization problems, which can be solved individually.

Definition III.2. Uncertain Space: A Pareto optimal point
is denoted as a reference point ri ∈ Φ if it achieves the
minimum for objective Fi (i = 1, ..., k). A point fU ∈ Φ
is a Utopia point iff for each j = 1, ..., k, fUj = mink

i=1{rij}.
A point fN ∈ Φ is a Nadir point iff for each j = 1, ..., k, fNj
= maxk

i=1{rij}. Given a hyperrectangle formed by the Utopia
Point fU and Nadir Point fN in the objective space, the Un-
certain Space is defined as the volume of this hyperrectangle.

Next we describe a method to find one Pareto point by
solving a single-objective constrained optimization problem.

Definition III.3. Middle Point Probe: Given a hyperrectangle
formed by fU = (fU1 , . . . , f

U
k ) and fN = (fN1 , . . . , f

N
k ), the

middle point fM bounded by fU and fN is defined as the
solution to Constrained Optimization (CO) of:

xC = arg min
x

Fi(x),

subject to fUj ≤ Fj(x) ≤
(fUj + fNj )

2
, j ∈ [1, k].

(2)
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Fig. 2. Uncertain space in 2D (latency, cost) space for TPCx-BB Q2.
fU and fN are the Utopia and Nadir points, respectively. In (a),
fM is the solution to the middle point probe. In (b), (f1, f2, f3)
represent the solutions of a series of middle point probes.

where we can choose any i to be the objective to minimize.
Fig. 2(a) illustrates a middle point probe for our running

example, TPCx-BB Q2 in Fig. 1(b). Here, the 2D space
is defined over F1 (latency) and F2 (cost in #cores), the
Utopia point fU= (100, 8) denotes the hypothetical best
performance (low latency using 8 cores), and the Nadir point
fN= (300, 24) denotes the worst (high latency using 24
cores). The middle point probe generates a CO problem,
CF1F2 : minF1 (lat.) such that F1 ∈ [100, 200] and F2 (cost)
in [8,16], and returns a Pareto point, fM = (150, 16).

After finding the middle point fM , the sub-hyperrectangle
enclosed by fM and fN , shaded in red, contains only points
dominated by fM ; hence no Pareto points can exist there.
The sub-hyperrectangle enclosed by fU and fM , shaded in
blue, must be empty; otherwise fM cannot be Pareto optimal.
This means that we can safely discard these two colored
sub-hyperrectangles. The uncertain space is then reduced to
two unshaded sub-hyperrectangles, enclosed by (U1, N1) and
(U2, N2), respectively, which can be added to a queue. If we
continue to take each sub-hyperrectangle from the queue and
apply the Middle Point Probe iteratively, we can further reduce
the uncertain space as shown in the unshaded region in Figure
2(b). Such an iterative procedure is called Iterative Middle
Point Probes. This procedure can be extended naturally to
hyperrectangles in k-dimensional objective space.

In general, we have the following result on the returned
solution set of the Iterative Middle Point Probes procedure.

Proposition III.1. If we start the Iterative Middle Point Probes
procedure from the initial Utopia and Nadir points, and let it
terminate until the uncertain space becomes empty, then in the
2D case, our procedure guarantees to find all the Pareto points
if they are finite. In high-dimensional cases, it is guaranteed
to find a subset of Pareto optimal points.

IV. PRACTICAL PF ALGORITHMS

In this section, we present practical algorithms to implement
our Progressive Frontier (PF) approach. Note that most MOO
algorithms suffer from exponential complexity in the number
of the objectives, k. This is because the number of non-
dominated points tends to grow quickly with k and the time
complexity of computing the volume of dominated space
grows super-polynomially with k [8]. For this reason, the
MOO literature refers to optimization with up to 3 objectives
as multi-objective optimization, whereas optimization with

more than 3 objectives is called many-objective optimiza-
tion and handled using different methods such as preference
modeling [8] or fairness among different objectives [31].

Since we aim to develop a practical cloud optimizer, most of
our use cases fall in the scope of multi-objective optimization.
However, a key systems challenge is to compute the Pareto
frontier in a few seconds, which hasn’t been considered
previously [8]. To achieve our performance goal, we present a
suite of techniques, including uncertainty-aware incremental
computation, fast approximation, and parallel computation.

A. A Deterministic Sequential Algorithm

We first present a deterministic, sequential algorithm that
implements the Progressive Frontier (PF) approach, referred
to as PF-S. This algorithm has two key features:

(1) Incremental: It first constructs a Pareto frontier F̃ with
a small number of points and then expands F̃ with more
points as more time is invested. This feature is crucial because
finding one Pareto point is already expensive due to being a
mixed-integer nonlinear programming problem [11]. Hence,
one cannot expect the optimizer to find all Pareto points at
once. Instead, it produces n1 points first (e.g., those that can
be computed within the first second), and then expands with
additional n2 points, afterwards n3 points, and so on.

(2) Uncertainty-aware: The algorithm returns more points
in the regions of the Pareto frontier that lack sufficient infor-
mation. If the Pareto frontier includes many points, under a
time constraint we can return only a subset of them. Further,
in high-dimensional objective space, our PF approach can
guarantee to find only a subset of Pareto points. In both cases,
the uncertainty aware property means that the subset returned
is likely to capture the major trend on the Pareto frontier.

To do so, we augment the Iterative Middle Point Probes
method (§III) by further deciding how to choose the best
sub-hyperrectangle to probe next. We do so by defining a
measure, the volume of uncertain space, to capture how much
the current frontier F̃ may deviate from the true yet unknown
frontier F . This measure can be calculated from a related
set of sub-hyperrectanges, which allows us to rank the sub-
hyperrectangles that have not been probed. Among those, the
sub-hyperrectangle with the largest volume will be chosen to
probe next, thus reducing the uncertain space as fast as we
can. Algorithm 1 shows the details, where the main steps are:

Init: Find the reference points by solving k single-objective
optimization problems. Form the initial Utopia and Nadir (U0

and N0) points, and construct the first hyperrectangle. Prepare
a priority queue in decreasing order of hyperrectangle volume,
initialized with the first hyperrectangle.

Iterate: Pop a hyperrectangle from the priority queue.
Apply the middle point probe to find a Pareto point, fM , in
the current hyperrectangle, which is formed by U i and N i and
has the largest volume among all the existing hyperrectangles.
Divide the current hyperrectangle into 2k sub-hyperrectangles,
discard those that are dominated by fM , and calculate the
volume of the others. Put them in to the priority queue.

Terminate: when we reach the desired number of solutions.



Algorithm 1 Progressive Frontier-Sequential (PF-S)
Require: k lower bounds(LOWER): lowerj ,

k upper bounds(UPPER): upperj ,
number of points: M

1: PQ← φ {PQ is a priority queue sorted by hyperrectangle volume}
2: plani ← optimizei(LOWER,UPPER) {Single Objective Opti-

mizer takes LOWER and UPPER as constraints and optimizes on ith
objective}

3: Utopia,Nadir ← computeBounds(plan1, . . . , plank)
4: volume← computeVolume(Utopia,Nadir)
5: seg ← (Utopia,Nadir, volume)
6: PQ.put(seg)
7: count← k
8: repeat
9: seg ← PQ.pop()

10: Utopia← seg.Utopia; Nadir ← seg.Nadir
11: Middle← (Utopia+Nadir)/2
12: Middlei ← optimizei(Utopia,Middle) {Constraint Optimization

on i-th objective}
13: {plan} ←Middlei
14: count+ = 1
15: {rectangle} = generateSubRectangles(Utopia,Middle,Nadir)

{return 2k - 1 rectangles, represented by each own Utopia and Nadir}
16: for each rectangle in {rectangle} do
17: Utopia← rectangle.Utopia; Nadir ← rectangle.Nadir
18: volume← computeVolume(Utopia,Nadir)
19: seg ← (Utopia,Nadir, volume)
20: PQ.put(seg)
21: end for
22: until count > M
23: output← filter({plan}){filter dominated points}

Filter: Check the result set, and remove any point domi-
nated by another one in the result set.

B. Multi-Objective Gradient Descent

We next consider the subroutine, optimize(), that solves
each constrained optimization problem (line 13 of Algo-
rithm 1). As our objective functions are given by the models,
Ψi(x), i = 1 . . . k, returned from the model server, they are
often non-linear and the variables in x can be integers and
real numbers. This problem reduces to mixed-integer nonlinear
programming (MINLP) and is NP-hard [11]. There are no
general solvers that work for every MINLP problem [22].
Most of the MINLP solvers [22] assume certain properties of
the objective function, e.g., twice continuously differentiable
(Bonmin [3]) or factorable into the sumproduct of univariate
functions (Couenne [4]), which do not suit learned models
such as Deep Neural Networks (DNNs). The most general
MINLP solver, Knitro [14], supports complex models but runs
very slowly, e.g., 42 (17) minutes for solving a single one-
objective optimization problem based on a DNN (GP) model.

Therefore, we develop a new solver that uses a customized
gradient descent (GD) approach to approximately solve con-
strained optimization (CO) problems for MOO (see Fig 3(a)).

In the first step, we transform variables to prepare for
optimization by following the common practice in machine
learning: Let x be the original set of parameters, which can
be categorical, integer, or continuous variables. If a variable
is categorical, we use one-hot encoding to create dummy
variables. For example, if xd takes values {a, b, c}, we create
three boolean variables, xad, xbd, and xcd, among which only one

takes the value ‘1’. Afterwards all the variables are normalized
to the range [0, 1], and boolean variables and (normalized)
integer variables are relaxed to continuous variables in [0, 1].
As such, the CO problem deals only with continuous variables
in [0,1], which we denote as x = x1, . . . , xD ∈ [0, 1]. After a
solution is returned for the CO problem, we set the value for
a categorical attribute based on the dummy variable with the
highest value, and round the solution returned for a normalized
integer variable to its closest integer.

Next, we focus on the CO problem. Our design of a Multi-
Objective Gradient Descent (MOGD) solver uses carefully-
crafted loss functions to guide gradient descent to find the
minimum of a target objective while satisfying a variety of
constraints, where both the target objective and constraints can
be specified on complex models, e.g., DNNs and GPs.

1. Single objective optimization. As a base case, we consider
single-objective optimization, minimize F1(x) = Ψ1(x). For
optimization, we set the loss function simply as, L(x) =
F1(x). Then starting from an initial configuration, x0, gradient
descent (GD) will iteratively adjust the configuration to a
sequence x1, . . . ,xn in order to minimize the loss, until it
converges to a local minimum or reaches a maximum of steps.

To increase the chance of hitting a better local minimum
(closer to the global minimum), we use a multi-start method
to try gradient descent from multiple initial points, and finally
choose x∗ that gives the smallest value among these trials.
Further, among GD variants (e.g, momentum, SGD) we use
Adaptive Moment Estimation (Adam) [25], recommended as
an overall best choice for achieving better local minima [25].
To cope with the constraint, 0 ≤ xd ≤ 1, we restrict GD such
that when it tries to push xd out of the range, we set xd to the
boundary value. In future iterations, it can still adjust other
variables, but not xd across its boundaries, to reduce the loss.

2. Constrained optimization. Next we consider a constrained
optimization (CO) problem, as shown in Figure 3(a). WLOG,
we treat F1 as the target objective, and Fj ∈ [FL

j , F
U
j ], j =

1, . . . , k, as constraints, which are set by our middle point
probe method (Eq. 2). To solve the CO problem, we seek to
design a new loss function, L(x), such that by minimizing this
loss, we can minimize F1(x) while at the same time satisfying
all the constraints. Our proposed loss function is as follows:

L(x) = 1{0 ≤ F̂1(x) ≤ 1} · F̂1(x)2+
k∑

j=1

1{F̂j(x) > 1 ∨ F̂j(x) < 0}[(F̂j(x)− 1

2
)2 + P ]

(3)

where F̂j(x) =
Fj(x)−FL

j

FU
j −FL

j
, j ∈ [1, k], denotes the normalized

value of each objective. Since the range of each objective
function Fj(x) varies, we normalize each objective according
to its upper and lower bounds, so that a valid objective value
F̂j(x) ∈ [0, 1]. Further, P is a constant for extra penalty.

Fig. 3(c)-3(f) illustrate the loss function for the CO problem,
CF1F2 : minF1 (lat.) such that F1 ∈ [100, 200] and F2 (cost)
in [8,16], shown in the previous section for TPCx-BB Q2.



current hyperrectangle, which is formed by U i and N i and
with largest volume among all the existing hyperrectangles.
Divide the current hyperrectangle into 2k sub-hyperrectangles,
discard two of them, and calculate the volume of the others.
Put them in to the priority queue.

Terminate: when the desired number of probes is reached.
Filter: Check the result set, and remove any point dom-

inated by another one in the result set.

Algorithm 1 Progressive Frontier-Sequential (PF-S)

Require: k lower bounds(LOWER): lowerj ,
k upper bounds(UPPER): upperj ,
number of points: M

1: PQ  � {PQ is a priority queue sorted by hyperrectangle
volume}

2: plani  optimizei(LOWER, UPPER) {Single Objective
Optimizer takes LOWER and UPPER as constraints and op-
timizes on ith objective}

3: Utopia, Nadir  computeBounds(plan1, . . . , plank)
4: volume computeVolume(Utopia, Nadir)
5: seg  (Utopia, Nadir, volume)
6: PQ.put(seg)
7: count k
8: repeat
9: seg  PQ.pop()
10: Utopia seg.Utopia
11: Nadir  seg.Nadir
12: Middle (Utopia + Nadir)/2
13: Middlei  optimizei(Utopia, Middle) {Constraint Opti-

mization on i-th objective}
14: {plan}  Middlei

15: count+ = 1
16: {rectangle} = generateSubRectangles(Utopia, Middle, Nadir)

{return 2k � 2 rectangles, represented by each own Utopia
and Nadir}

17: for each rectangle in {rectangle} do
18: Utopia rectangle.Utopia
19: Nadir  rectangle.Nadir
20: volume computeVolume(Utopia, Nadir)
21: seg  (Utopia, Nadir, volume)
22: PQ.put(seg)
23: end for
24: until count > M
25: output filter({plan}){remove plan dominated by another

plan in the same set}

4.2 Multi-Objective Gradient Descent
We next consider an important subroutine, optimize(),

that solves each constrained optimization problem (line 13 of
Algorithm 1). Recall that our objective functions are given
by learned models,  i(x), i = 1 . . . k, where each model is
likely to be non-linear and some variables among x can be in-
tegers. Even restricted to a single objective, this problem is
known as a mixed-integer nonlinear programming (MINLP)
problem and is NP-hard [6, 15]. There is not one general
MINLP solver that will work e↵ectively for every nonlin-
ear programming problem [30]. For example, many of the
MINLP solvers [31] fail to run because they assume cer-
tain properties of the objective function F , e.g., twice con-
tinuously di↵erentiable (Bonmin [5]) or factorable into the
sumproduct of univariate functions (Couenne [7]), which do
not suit our learned models, e.g., represented as Deep Neural
Networks (DNNs). The most general MINLP solver, Kni-
tro [?], runs for our learned models but very slowly, e.g., 42
minutes for solving a single-objective optimization problem
when the learned model is a DNN, or 17 minutes when the
model is a Gaussian Process (GP). Such a solution is too

slow for us to use even for single-objective optimization, let
alone the extension to multiple objectives.

In this work, we propose a novel solver that employs a cus-
tomized gradient descent approach to approximately solve
our constrained optimization problems involving multiple
objective functions. The problem is illustrated in Figure ??.
First, we follow the common practice in machine learning to
transform variables for optimization. Let x be the original
set of parameters, which can be categorical, integer, or con-
tinuous variables. If a variable is categorical , we use one-hot
encoding to create dummy variables. For example, xi takes
values {a, b, c}, we create three boolean variables, xa

i , xb
i ,

and xc
i , among which only one takes the value ‘1’. After-

wards all the variables are normalized to the range [0, 1],
and boolean variables and normalized integer variables are
relaxed to continuous variables in [0, 1]. As such, the con-
strained optimization (CO) problem deals with continuous
variables in [0,1], which we denote as x = x1, . . . , xD 2 [0, 1].
After a solution is returned for the CO problem, we set the
value for a categorical attribute based on the dummy vari-
able with the highest value, and round the solution for a
normalized integer variable to its closest integer.

x⇤ = arg min
x

F1(x) [1]

subject to F L
1  F1(x)  F U

1 [2]

. . .

F L
k  Fk(x)  F U

k

0  xi  1, i = 1, 2, . . . , D [3]

Multi-Objective Gradient Descent (MOGD) Solver.
Next, we focus on the CO problem depicted in Figure X(a).
Our design of a Multi-Objective Gradient Descent (MOGD)
solver uses carefully-crafted loss functions to guide gradient
descent to find the minimum of a target objective while sat-
isfying a variety of constraints, while both the target objec-
tive and constraints are specified over complex models, e.g.,
using DNNs, GPs, or other regression functions.

Single objective optimization. We begin our discussion
with a single objective optimization, minimize F1(x) =  1(x),
which is Part [1] in Figure X(a). To enable gradient descent,
we set the loss function simply as, L = F1(x). Let xn de-
note the configuration computed after iteration n. Initially
n = 0 and x0 is the default configuration. We can use
the model  1(x

n) to compute the predicted value of the
objective F1(x

n) under the current configuration xn. We
then use the loss L to estimate how well the configuration
xn optimizes (e.g., minimizes) the value of the objective.
We then compute the gradient of the loss function as rn

x

and use it to adjust the configuration for the next iteration
so that it minimizes L. That is, we iteratively choose the
(n + 1)th configuration as xn+1 = xn �↵rn

x. Currently, we
use the adaptive moment estimation SGD approach from
[18] to compute the gradient of the loss function rn

x. The
above process repeats iteratively until we find the optimal
configuration x⇤ that minimizes loss and yields the optimal
value of the target objective F1(x

⇤). [This is obvious.]
Constrained optimization. Then consider a constrained

optimization (CO) problem, where F1 as the target of op-
timization and constraints are Fi 2 [F L

j , F U
j ], i = 1, . . . , k,

which include Parts [1] and [2] of Figure X(a). We can use
the same process as above to address the CO problem, but
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Figure 1: Example of GP regression. (a) prior functions, (b) posterior
functions conditioning on training data

returns the covariance between the function values at two input
points, i.e., k(x, x0) = Cov(f(x), f(x0)).

A GP is a distribution over functions with a special property:
if we fix any vector of inputs (x1, . . . ,xn), the output vector f =
(f(x1), f(x2), . . . , f(xn)) has a multivariate Gaussian distribution.
Specifically, f ⇠ N (m, K), where m is the vector (m(x1) . . . m(xn))
containing the mean function evaluated at all the inputs and K is a
matrix of covariances Kij = k(xi,xj) between all the input pairs.

The covariance function has a vital role. Recall that the idea
was to approximate f by interpolating between its values at nearby
points. The covariance function helps determine which points are
“nearby”. If two points are far away, then their function values should
be only weakly related, i.e., their covariance should be near 0. On
the other hand, if two points are nearby, then their covariance should
be large in magnitude. We accomplish this by using a covariance
function that depends on the distance between the input points.

In this work, we use standard choices for the mean and covariance
functions. We choose the mean function m(x) = 0, which is a
standard choice when we have no prior information about the UDF.
For the covariance function, we use the squared exponential one,
which in its simplest form is k(x,x0) = �2

fe
� 1

2l2
kx�x0k2

, where
k·k is Euclidean distance, and �2

f and l are its parameters. The signal
variance �2

f primarily determines the variance of the function value
at individual points, i.e., x = x0. More important is the lengthscale
l, which determines how rapidly the covariance decays as x and x0

move farther apart. If l is small, the covariance decays rapidly, so
sample functions from the result GP will have many small bumps;
if l is large, then these functions will tend to be smoother.

The key assumption made by GP modeling is that at any point
x, the function value f(x) can be accurately predicted using the
function values at nearby points. GPs are flexible to model different
types of functions by using an appropriate covariance function [18].
For instance, for smooth functions, squared-exponential covariance
functions work well; for less smooth functions, Matern covariance
functions work well (where smoothness is defined by “mean-squared
differentiability”). In this paper, we focus on the common squared-
exponential functions, which are shown experimentally to work well
for the UDFs in our applications (see §6.4). In general, the user
can choose a suitable covariance function based on the well-defined
properties of UDFs, and plug it into our framework.

3.3 Inference for New Input Points
We next describe how to use a GP to predict the function outputs

at new inputs. Denote the training data by X⇤ = {x⇤
i |i = 1, . . . , n}

for the inputs and f⇤ = {f⇤
i |i = 1, . . . , n} for the function values.

In this section, we assume that we are told a fixed set of m test inputs
X = (x1, x2, ..., xm) at which we wish to predict the function
values. Denote the unknown function values at the test points by
f = (f1, f2, ..., fm). The vector (f⇤, f) is a random vector because
each fi:i=1...m is random, and by the definition of a GP, this vector
simply has a multivariate Gaussian distribution. This distribution is:


f⇤

f

�
⇠ N

 
0,


K(X⇤, X⇤) K(X⇤, X)
K(X, X⇤) K(X, X)

�!
, (1)

where we have written the covariances as matrix with four blocks.
The block K(X⇤, X) is an n⇥m matrix of the covariances between
all training and test points, i.e., K(X⇤, X)ij = k(x⇤

i ,xj). Similar
notions are for K(X⇤, X⇤), K(X, X), and K(X, X⇤).

Now that we have a joint distribution, we can predict the unknown
test outputs f by computing the conditional distribution of f given
the training data and test inputs. Applying the standard formula for
the conditional of a multivariate Gaussian yields:

f | X, X⇤, f⇤ ⇠ N (m,⌃), where (2)

m = K(X, X⇤)K(X⇤, X⇤)�1f⇤

⌃ = K(X, X) � K(X, X⇤)K(X⇤, X⇤)�1K(X⇤, X)

To interpret m intuitively, imagine that m = 1, i.e., we wish to
predict only one output. Then K(X, X⇤)K(X⇤, X⇤)�1 is an n-
dimensional vector, and the mean m(x) is the dot product of this
vector with the training values f⇤. So m(x) is simply a weighted
average of the function values at the training points. A similar
intuition holds when there is more than one test point, m > 1. Fig.
1(b) illustrates the resulting GP after conditioning on training data.
As observed, the posterior functions pass through the training points
marked by the black dots. The sampled functions also show that the
further a point is from the training points, the larger the variance is.

We now consider the complexity of this inference step. Note that
once the training data is collected, the inverse covariance matrix
K(X⇤, X⇤)�1 can be computed once, with a cost of O(n3). Then
given a test point x (or X has size 1), inference involves computing
K(X, X⇤) and multiplying matrices, which has a cost of O(n2).
The space complexity is also O(n2), for storing these matrices.

3.4 Learning the Hyperparameters
Typically, the covariance functions have some free parameters,

called hyperparameters, such as the lengthscale l of the squared-
exponential function. The hyperparameters determine how quickly
the confidence estimates expand as test points move further from the
training data. For example, in Fig. 1(b), if the lengthscale decreases,
the spread of the function will increase, meaning that there is less
confidence in the predictions.

We can learn the hyperparameters using the training data (see
Chapter 5, [18]). We adopt maximum likelihood estimation (MLE),
a standard technique for this problem. Let ✓ be the vector of hyperpa-
rameters. The log likelihood function is L(✓) := log p(f⇤|X⇤,✓) =
log N (X⇤;m,⌃); here we use N to refer to the density of the Gaus-
sian distribution, and m and ⌃ are defined in Eq. (2). MLE solves
for the value of ✓ that maximizes L(✓). We use gradient descent,
a standard method for this task. Its complexity is O(n3) due to
the cost of inverting the matrix K(X⇤, X⇤)�1. Gradient descent
requires many steps to compute the optimal ✓; thus, retraining often
has a high cost for large numbers of training points. Note that when
the training data X⇤ changes, ✓ that maximizes the log likelihood
L(✓) may also change. Thus, one would need to maximize the log
likelihood to update the hyperparameters. In §5.3, we will discuss
retraining strategies that aim to reduce this computation cost.

4. UNCERTAINTY IN QUERY RESULTS
So far in our discussions of GPs, we have assumed that all the

input values are known in advance. However, our work aims to
compute UDFs on uncertain input. In this section, we describe how
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current hyperrectangle, which is formed by U i and N i and
with largest volume among all the existing hyperrectangles.
Divide the current hyperrectangle into 2k sub-hyperrectangles,
discard two of them, and calculate the volume of the others.
Put them in to the priority queue.

Terminate: when the desired number of probes is reached.
Filter: Check the result set, and remove any point dom-

inated by another one in the result set.

Algorithm 1 Progressive Frontier-Sequential (PF-S)

Require: k lower bounds(LOWER): lowerj ,
k upper bounds(UPPER): upperj ,
number of points: M

1: PQ  � {PQ is a priority queue sorted by hyperrectangle
volume}

2: plani  optimizei(LOWER, UPPER) {Single Objective
Optimizer takes LOWER and UPPER as constraints and op-
timizes on ith objective}

3: Utopia, Nadir  computeBounds(plan1, . . . , plank)
4: volume computeVolume(Utopia, Nadir)
5: seg  (Utopia, Nadir, volume)
6: PQ.put(seg)
7: count k
8: repeat
9: seg  PQ.pop()
10: Utopia seg.Utopia
11: Nadir  seg.Nadir
12: Middle (Utopia + Nadir)/2
13: Middlei  optimizei(Utopia, Middle) {Constraint Opti-

mization on i-th objective}
14: {plan}  Middlei

15: count+ = 1
16: {rectangle} = generateSubRectangles(Utopia, Middle, Nadir)

{return 2k � 2 rectangles, represented by each own Utopia
and Nadir}

17: for each rectangle in {rectangle} do
18: Utopia rectangle.Utopia
19: Nadir  rectangle.Nadir
20: volume computeVolume(Utopia, Nadir)
21: seg  (Utopia, Nadir, volume)
22: PQ.put(seg)
23: end for
24: until count > M
25: output filter({plan}){remove plan dominated by another

plan in the same set}

4.2 Multi-Objective Gradient Descent
We next consider an important subroutine, optimize(),

that solves each constrained optimization problem (line 13 of
Algorithm 1). Recall that our objective functions are given
by learned models,  i(x), i = 1 . . . k, where each model is
likely to be non-linear and some variables among x can be in-
tegers. Even restricted to a single objective, this problem is
known as a mixed-integer nonlinear programming (MINLP)
problem and is NP-hard [6, 15]. There is not one general
MINLP solver that will work e↵ectively for every nonlin-
ear programming problem [30]. For example, many of the
MINLP solvers [31] fail to run because they assume cer-
tain properties of the objective function F , e.g., twice con-
tinuously di↵erentiable (Bonmin [5]) or factorable into the
sumproduct of univariate functions (Couenne [7]), which do
not suit our learned models, e.g., represented as Deep Neural
Networks (DNNs). The most general MINLP solver, Kni-
tro [?], runs for our learned models but very slowly, e.g., 42
minutes for solving a single-objective optimization problem
when the learned model is a DNN, or 17 minutes when the
model is a Gaussian Process (GP). Such a solution is too

slow for us to use even for single-objective optimization, let
alone the extension to multiple objectives.

In this work, we propose a novel solver that employs a cus-
tomized gradient descent approach to approximately solve
our constrained optimization problems involving multiple
objective functions. The problem is illustrated in Figure ??.
First, we follow the common practice in machine learning to
transform variables for optimization. Let x be the original
set of parameters, which can be categorical, integer, or con-
tinuous variables. If a variable is categorical , we use one-hot
encoding to create dummy variables. For example, xi takes
values {a, b, c}, we create three boolean variables, xa

i , xb
i ,

and xc
i , among which only one takes the value ‘1’. After-

wards all the variables are normalized to the range [0, 1],
and boolean variables and normalized integer variables are
relaxed to continuous variables in [0, 1]. As such, the con-
strained optimization (CO) problem deals with continuous
variables in [0,1], which we denote as x = x1, . . . , xD 2 [0, 1].
After a solution is returned for the CO problem, we set the
value for a categorical attribute based on the dummy vari-
able with the highest value, and round the solution for a
normalized integer variable to its closest integer.

x⇤ = arg min
x

F1(x) [1]

subject to F L
1  F1(x)  F U

1 [2]

F L
2  F2(x)  F U

2 [2]

. . .

F L
k  Fk(x)  F U

k

0  xi  1, i = 1, 2, . . . , D [3]

Multi-Objective Gradient Descent (MOGD) Solver.
Next, we focus on the CO problem depicted in Figure X(a).
Our design of a Multi-Objective Gradient Descent (MOGD)
solver uses carefully-crafted loss functions to guide gradient
descent to find the minimum of a target objective while sat-
isfying a variety of constraints, while both the target objec-
tive and constraints are specified over complex models, e.g.,
using DNNs, GPs, or other regression functions.

Single objective optimization. We begin our discussion
with a single objective optimization, minimize F1(x) =  1(x),
which is Part [1] in Figure X(a). To enable gradient descent,
we set the loss function simply as, L = F1(x). Let xn de-
note the configuration computed after iteration n. Initially
n = 0 and x0 is the default configuration. We can use
the model  1(x

n) to compute the predicted value of the
objective F1(x

n) under the current configuration xn. We
then use the loss L to estimate how well the configuration
xn optimizes (e.g., minimizes) the value of the objective.
We then compute the gradient of the loss function as rn

x

and use it to adjust the configuration for the next iteration
so that it minimizes L. That is, we iteratively choose the
(n + 1)th configuration as xn+1 = xn �↵rn

x. Currently, we
use the adaptive moment estimation SGD approach from
[18] to compute the gradient of the loss function rn

x. The
above process repeats iteratively until we find the optimal
configuration x⇤ that minimizes loss and yields the optimal
value of the target objective F1(x

⇤). [This is obvious.]
Constrained optimization. Then consider a constrained

optimization (CO) problem, where F1 as the target of op-
timization and constraints are Fi 2 [F L

j , F U
j ], i = 1, . . . , k,

which include Parts [1] and [2] of Figure X(a). We can use
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current hyperrectangle, which is formed by U i and N i and
with largest volume among all the existing hyperrectangles.
Divide the current hyperrectangle into 2k sub-hyperrectangles,
discard two of them, and calculate the volume of the others.
Put them in to the priority queue.

Terminate: when the desired number of probes is reached.
Filter: Check the result set, and remove any point dom-

inated by another one in the result set.

Algorithm 1 Progressive Frontier-Sequential (PF-S)

Require: k lower bounds(LOWER): lowerj ,
k upper bounds(UPPER): upperj ,
number of points: M

1: PQ  � {PQ is a priority queue sorted by hyperrectangle
volume}

2: plani  optimizei(LOWER, UPPER) {Single Objective
Optimizer takes LOWER and UPPER as constraints and op-
timizes on ith objective}

3: Utopia, Nadir  computeBounds(plan1, . . . , plank)
4: volume computeVolume(Utopia, Nadir)
5: seg  (Utopia, Nadir, volume)
6: PQ.put(seg)
7: count k
8: repeat
9: seg  PQ.pop()
10: Utopia seg.Utopia
11: Nadir  seg.Nadir
12: Middle (Utopia + Nadir)/2
13: Middlei  optimizei(Utopia, Middle) {Constraint Opti-

mization on i-th objective}
14: {plan}  Middlei

15: count+ = 1
16: {rectangle} = generateSubRectangles(Utopia, Middle, Nadir)
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4.2 Multi-Objective Gradient Descent
We next consider an important subroutine, optimize(),

that solves each constrained optimization problem (line 13 of
Algorithm 1). Recall that our objective functions are given
by learned models,  i(x), i = 1 . . . k, where each model is
likely to be non-linear and some variables among x can be in-
tegers. Even restricted to a single objective, this problem is
known as a mixed-integer nonlinear programming (MINLP)
problem and is NP-hard [6, 15]. There is not one general
MINLP solver that will work e↵ectively for every nonlin-
ear programming problem [30]. For example, many of the
MINLP solvers [31] fail to run because they assume cer-
tain properties of the objective function F , e.g., twice con-
tinuously di↵erentiable (Bonmin [5]) or factorable into the
sumproduct of univariate functions (Couenne [7]), which do
not suit our learned models, e.g., represented as Deep Neural
Networks (DNNs). The most general MINLP solver, Kni-
tro [?], runs for our learned models but very slowly, e.g., 42
minutes for solving a single-objective optimization problem
when the learned model is a DNN, or 17 minutes when the
model is a Gaussian Process (GP). Such a solution is too

slow for us to use even for single-objective optimization, let
alone the extension to multiple objectives.

In this work, we propose a novel solver that employs a cus-
tomized gradient descent approach to approximately solve
our constrained optimization problems involving multiple
objective functions. The problem is illustrated in Figure ??.
First, we follow the common practice in machine learning to
transform variables for optimization. Let x be the original
set of parameters, which can be categorical, integer, or con-
tinuous variables. If a variable is categorical , we use one-hot
encoding to create dummy variables. For example, xi takes
values {a, b, c}, we create three boolean variables, xa

i , xb
i ,

and xc
i , among which only one takes the value ‘1’. After-

wards all the variables are normalized to the range [0, 1],
and boolean variables and normalized integer variables are
relaxed to continuous variables in [0, 1]. As such, the con-
strained optimization (CO) problem deals with continuous
variables in [0,1], which we denote as x = x1, . . . , xD 2 [0, 1].
After a solution is returned for the CO problem, we set the
value for a categorical attribute based on the dummy vari-
able with the highest value, and round the solution for a
normalized integer variable to its closest integer.
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Multi-Objective Gradient Descent (MOGD) Solver.
Next, we focus on the CO problem depicted in Figure X(a).
Our design of a Multi-Objective Gradient Descent (MOGD)
solver uses carefully-crafted loss functions to guide gradient
descent to find the minimum of a target objective while sat-
isfying a variety of constraints, while both the target objec-
tive and constraints are specified over complex models, e.g.,
using DNNs, GPs, or other regression functions.

Single objective optimization. We begin our discussion
with a single objective optimization, minimize F1(x) =  1(x),
which is Part [1] in Figure X(a). To enable gradient descent,
we set the loss function simply as, L = F1(x). Let xn de-
note the configuration computed after iteration n. Initially
n = 0 and x0 is the default configuration. We can use
the model  1(x

n) to compute the predicted value of the
objective F1(x

n) under the current configuration xn. We
then use the loss L to estimate how well the configuration
xn optimizes (e.g., minimizes) the value of the objective.
We then compute the gradient of the loss function as rn

x

and use it to adjust the configuration for the next iteration
so that it minimizes L. That is, we iteratively choose the
(n + 1)th configuration as xn+1 = xn �↵rn

x. Currently, we
use the adaptive moment estimation SGD approach from
[18] to compute the gradient of the loss function rn

x. The
above process repeats iteratively until we find the optimal
configuration x⇤ that minimizes loss and yields the optimal
value of the target objective F1(x

⇤). [This is obvious.]
Constrained optimization. Then consider a constrained

optimization (CO) problem, where F1 as the target of op-
timization and constraints are Fi 2 [F L

j , F U
j ], i = 1, . . . , k,

which include Parts [1] and [2] of Figure X(a). We can use
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variables in [0,1], which we denote as x = x1, . . . , xD 2 [0, 1].
After a solution is returned for the CO problem, we set the
value for a categorical attribute based on the dummy vari-
able with the highest value, and round the solution for a
normalized integer variable to its closest integer.

x⇤ = arg min
x

F1(x) [1]

subject to F L
1  F1(x)  F U

1 [2]

F L
2  F2(x)  F U

2 [2]

. . .

F L
k  Fk(x)  F U

k

0  xi  1, i = 1, 2, . . . , D [3]

Multi-Objective Gradient Descent (MOGD) Solver.
Next, we focus on the CO problem depicted in Figure X(a).
Our design of a Multi-Objective Gradient Descent (MOGD)
solver uses carefully-crafted loss functions to guide gradient
descent to find the minimum of a target objective while sat-
isfying a variety of constraints, while both the target objec-
tive and constraints are specified over complex models, e.g.,
using DNNs, GPs, or other regression functions.

Single objective optimization. We begin our discussion
with a single objective optimization, minimize F1(x) =  1(x),
which is Part [1] in Figure X(a). To enable gradient descent,
we set the loss function simply as, L = F1(x). Let xn de-
note the configuration computed after iteration n. Initially
n = 0 and x0 is the default configuration. We can use
the model  1(x

n) to compute the predicted value of the
objective F1(x

n) under the current configuration xn. We
then use the loss L to estimate how well the configuration
xn optimizes (e.g., minimizes) the value of the objective.
We then compute the gradient of the loss function as rn

x

and use it to adjust the configuration for the next iteration
so that it minimizes L. That is, we iteratively choose the
(n + 1)th configuration as xn+1 = xn �↵rn

x. Currently, we
use the adaptive moment estimation SGD approach from
[18] to compute the gradient of the loss function rn

x. The
above process repeats iteratively until we find the optimal
configuration x⇤ that minimizes loss and yields the optimal
value of the target objective F1(x

⇤). [This is obvious.]
Constrained optimization. Then consider a constrained

optimization (CO) problem, where F1 as the target of op-
timization and constraints are Fi 2 [F L

j , F U
j ], i = 1, . . . , k,

which include Parts [1] and [2] of Figure X(a). We can use
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In this work, we propose a novel solver that employs a cus-
tomized gradient descent approach to approximately solve our con-
strained optimization problems involving multiple objective func-
tions. The problem is illustrated in Figure ??.
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subject to F L
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. . .
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0  xd  1, d = 1, 2, . . . , D [3]

In the first step, we transform variables for optimization by fol-
lowing the common practice in machine learning: Let x be the
original set of parameters, which can be categorical, integer, or
continuous variables. If a variable is categorical , we use one-
hot encoding to create dummy variables. For example, if xd takes
values {a, b, c}, we create three boolean variables, xa

d , xb
d, and

xc
d, among which only one takes the value ‘1’. Afterwards all the

variables are normalized to the range [0, 1], and boolean variables
and (normalized) integer variables are relaxed to continuous vari-
ables in [0, 1]. As such, the constrained optimization (CO) prob-
lem deals with continuous variables in [0,1], which we denote as
x = x1, . . . , xD 2 [0, 1]. After a solution is returned for the CO
problem, we set the value for a categorical attribute based on the
dummy variable with the highest value, and round the solution for
a normalized integer variable to its closest integer.

Next, we focus on the CO problem depicted in Figure X(a). Our
design of a Multi-Objective Gradient Descent (MOGD) solver
uses carefully-crafted loss functions to guide gradient descent to
find the minimum of a target objective while satisfying a variety
of constraints, where both the target objective and constraints can
be specified over complex models, e.g., using DNNs, GPs, or other
regression functions.

Single objective optimization. As a base case, we consider single-
objective optimization, minimize F1(x) =  1(x), which is Part
[1] in Figure X(a). For optimization, we set the loss function sim-
ply as, L(x) = F1(x). Then starting from an initial configuration,
x0, gradient descent will iteratively adjust the configuration to a
sequence x1, . . . , xn in order to minimize the loss, until it reaches
a local minimum or a maximum of steps allowed. To increase the
chance of hitting a global minimum, we use a standard multi-start
method to try gradient descent from multiple initial values of x,
and finally choose x⇤ that gives the smallest value among these
trials.

Let xn denote the configuration computed after iteration n. Ini-
tially n = 0 and x0 is the default configuration. We can use
the model  1(x

n) to compute the predicted value of the objec-
tive F1(x

n) under the current configuration xn. We then use the
loss L to estimate how well the configuration xn optimizes (e.g.,
minimizes) the value of the objective. We then compute the gradi-
ent of the loss function as rn

x and use it to adjust the configuration
for the next iteration so that it minimizes L. That is, we iteratively
choose the (n + 1)th configuration as xn+1 = xn � ↵rn

x. Cur-
rently, we use the adaptive moment estimation SGD approach from
[17] to compute the gradient of the loss function rn

x. The above
process repeats iteratively until we find the optimal configuration
x⇤ that minimizes loss and yields the optimal value of the target
objective F1(x

⇤). [This is obvious.]
Constrained optimization. Then consider a constrained optimiza-

tion (CO) problem, where F1 as the target of optimization and con-
straints are Fi 2 [F L

j , F U
j ], i = 1, . . . , k, which include Parts [1]

and [2] of Figure X(a). We can use the same process as above to

address the CO problem, but with a different loss function and a
scaled value of the objective as following:

loss(i) =
kX

j=1

[ {F̂j(x) > 1 _ F̂j(x) < 0}(F̂j(x) � 0.5)2

+ P ] + {0  F̂i(x)  1}F̂i(x)2

(4)

where F̂j(x) =
Fj(x)�F L

j

F U
j �F L

j
, for j 2 [1, k], and P is constant. Since

the range of each objective function Fj(x) varies, we first normal-
ize each objective according to its upper and lower bounds, so that
F̂ L

j = 0, F̂ U
j = 1, and a valid objective value F̂j(x) 2 [0, 1].

The loss function includes two part. One is to push objectives
into its constraints region. If an objective Fj(x) cannot satisfy
the constraints (F̂j(x) > 0 _ F̂j(x) < 1), it is going to con-
tribute a loss according to its distance to the constraints region. To
push objectives satisfying the constraints, we further assign an ex-
tra penalty P to stress their importances. The other part of loss is
for the optimization target Fi. Once Fi(x) laid in the constraints
region (0  F̂i(x)  1), we generate a loss according to its value.
Therefore, the iterative forward and backward paths can push the
objective values satisfying their constraints as well as minimize the
target objective.

Supporting additional constraints. Two additional constraints:
0  xi  1 and g(x)  0).

Handling model uncertainty. F̃i(x) = E[Fi(x)]+↵·std[Fi(x)]

4.3 Approximate and Parallel Algorithms
Approximate Sequential Algorithm (PF-AS): When we im-

plement single-objective optimization (Line 2 of Algorithm 1) and
constrained optimization (Line 13) using the above procedures, we
obtain a new algorithm called PF Approximate Sequential. Note
that this leads to an approximate Pareto set for the MOO problem
because each solution of a constrained optimization can be subop-
timal as backpropogation is stuck at a local minima. In practice,
if the objective function is complex with many local minima, it is
hard for any algorithm to guarantee to find global minima.

We finally present a parallel version of the approximate algo-
rithm, called PF-Approximate Parallel (PF-AP ). The main differ-
ence from the approximate sequential algorithm is that given any
hyperrecetange we aim to explore at the moment, we partition it
into a lk grid and for each grid cell, construct a constrained opti-
mization (CO) problem using the the Middle Point Probe (Eq. 4.2).
We send these lk CO problem to the DNN-based solver simulta-
neously. Internally, the DNN solver will solve these problems in
parallel (using a multi-threaded implementation). Some of the cells
will not return any Pareto point and hence will be omitted. For each
of those cells that returns a Pareto point, the Pareto point breaks the
cell into a set of sub-hyperrectangles that need to be further ex-
plored, and are added to a priority queue as before. Afterwards, the
sub-hyperrectangle with the largest volume is removed from the
queue. To explore it, we further partition it into lk cells and ask the
solver to solve their corresponding CO problems simultaneously.
This process terminates when the queue becomes empty.

5. AUTOMATIC SOLUTION SELECTION
Our optimizer implements three strategies to recommend new

job configurations from the computed Pareto frontier. First, the
Utopia Nearest (UN) strategy chooses the Pareto optimal point clos-
est to the Utopia point by computing the Euclidean distance of each
point in F̃ to fU , and returns the point that minimizes the distance.
A variant is the Weighted Utopia Nearest (WUN) strategy, which

8

…

0 1

0 1

0 1

In this work, we propose a novel solver that employs a cus-
tomized gradient descent approach to approximately solve our con-
strained optimization problems involving multiple objective func-
tions. The problem is illustrated in Figure ??.

x⇤ = arg min
x

F1(x) [1]x1

subject to F L
1  F1(x)  F U

1 [2]xd

. . .

F L
k  Fk(x)  F U

k

0  xd  1, d = 1, 2, . . . , D [3]xD

In the first step, we transform variables for optimization by fol-
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lem deals with continuous variables in [0,1], which we denote as
x = x1, . . . , xD 2 [0, 1]. After a solution is returned for the CO
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dummy variable with the highest value, and round the solution for
a normalized integer variable to its closest integer.
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design of a Multi-Objective Gradient Descent (MOGD) solver
uses carefully-crafted loss functions to guide gradient descent to
find the minimum of a target objective while satisfying a variety
of constraints, where both the target objective and constraints can
be specified over complex models, e.g., using DNNs, GPs, or other
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Single objective optimization. As a base case, we consider single-
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[1] in Figure X(a). For optimization, we set the loss function sim-
ply as, L(x) = F1(x). Then starting from an initial configuration,
x0, gradient descent will iteratively adjust the configuration to a
sequence x1, . . . , xn in order to minimize the loss, until it reaches
a local minimum or a maximum of steps allowed. To increase the
chance of hitting a global minimum, we use a standard multi-start
method to try gradient descent from multiple initial values of x,
and finally choose x⇤ that gives the smallest value among these
trials.

Let xn denote the configuration computed after iteration n. Ini-
tially n = 0 and x0 is the default configuration. We can use
the model  1(x

n) to compute the predicted value of the objec-
tive F1(x

n) under the current configuration xn. We then use the
loss L to estimate how well the configuration xn optimizes (e.g.,
minimizes) the value of the objective. We then compute the gradi-
ent of the loss function as rn
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for the next iteration so that it minimizes L. That is, we iteratively
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x. Cur-
rently, we use the adaptive moment estimation SGD approach from
[17] to compute the gradient of the loss function rn

x. The above
process repeats iteratively until we find the optimal configuration
x⇤ that minimizes loss and yields the optimal value of the target
objective F1(x
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Constrained optimization. Then consider a constrained optimiza-

tion (CO) problem, where F1 as the target of optimization and con-
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the range of each objective function Fj(x) varies, we first normal-
ize each objective according to its upper and lower bounds, so that
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j = 0, F̂ U
j = 1, and a valid objective value F̂j(x) 2 [0, 1].

The loss function includes two part. One is to push objectives
into its constraints region. If an objective Fj(x) cannot satisfy
the constraints (F̂j(x) > 0 _ F̂j(x) < 1), it is going to con-
tribute a loss according to its distance to the constraints region. To
push objectives satisfying the constraints, we further assign an ex-
tra penalty P to stress their importances. The other part of loss is
for the optimization target Fi. Once Fi(x) laid in the constraints
region (0  F̂i(x)  1), we generate a loss according to its value.
Therefore, the iterative forward and backward paths can push the
objective values satisfying their constraints as well as minimize the
target objective.

Supporting additional constraints. Two additional constraints:
0  xi  1 and g(x)  0).

Handling model uncertainty. F̃i(x) = E[Fi(x)]+↵·std[Fi(x)]

4.3 Approximate and Parallel Algorithms
Approximate Sequential Algorithm (PF-AS): When we im-

plement single-objective optimization (Line 2 of Algorithm 1) and
constrained optimization (Line 13) using the above procedures, we
obtain a new algorithm called PF Approximate Sequential. Note
that this leads to an approximate Pareto set for the MOO problem
because each solution of a constrained optimization can be subop-
timal as backpropogation is stuck at a local minima. In practice,
if the objective function is complex with many local minima, it is
hard for any algorithm to guarantee to find global minima.

We finally present a parallel version of the approximate algo-
rithm, called PF-Approximate Parallel (PF-AP ). The main differ-
ence from the approximate sequential algorithm is that given any
hyperrecetange we aim to explore at the moment, we partition it
into a lk grid and for each grid cell, construct a constrained opti-
mization (CO) problem using the the Middle Point Probe (Eq. 4.2).
We send these lk CO problem to the DNN-based solver simulta-
neously. Internally, the DNN solver will solve these problems in
parallel (using a multi-threaded implementation). Some of the cells
will not return any Pareto point and hence will be omitted. For each
of those cells that returns a Pareto point, the Pareto point breaks the
cell into a set of sub-hyperrectangles that need to be further ex-
plored, and are added to a priority queue as before. Afterwards, the
sub-hyperrectangle with the largest volume is removed from the
queue. To explore it, we further partition it into lk cells and ask the
solver to solve their corresponding CO problems simultaneously.
This process terminates when the queue becomes empty.

5. AUTOMATIC SOLUTION SELECTION
Our optimizer implements three strategies to recommend new

job configurations from the computed Pareto frontier. First, the
Utopia Nearest (UN) strategy chooses the Pareto optimal point clos-
est to the Utopia point by computing the Euclidean distance of each
point in F̃ to fU , and returns the point that minimizes the distance.
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In the first step, we transform variables for optimization by fol-
lowing the common practice in machine learning: Let x be the
original set of parameters, which can be categorical, integer, or
continuous variables. If a variable is categorical , we use one-
hot encoding to create dummy variables. For example, if xd takes
values {a, b, c}, we create three boolean variables, xa

d , xb
d, and
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d, among which only one takes the value ‘1’. Afterwards all the

variables are normalized to the range [0, 1], and boolean variables
and (normalized) integer variables are relaxed to continuous vari-
ables in [0, 1]. As such, the constrained optimization (CO) prob-
lem deals with continuous variables in [0,1], which we denote as
x = x1, . . . , xD 2 [0, 1]. After a solution is returned for the CO
problem, we set the value for a categorical attribute based on the
dummy variable with the highest value, and round the solution for
a normalized integer variable to its closest integer.

Next, we focus on the CO problem depicted in Figure X(a). Our
design of a Multi-Objective Gradient Descent (MOGD) solver
uses carefully-crafted loss functions to guide gradient descent to
find the minimum of a target objective while satisfying a variety
of constraints, where both the target objective and constraints can
be specified over complex models, e.g., using DNNs, GPs, or other
regression functions.

Single objective optimization. As a base case, we consider single-
objective optimization, minimize F1(x) =  1(x), which is Part
[1] in Figure X(a). For optimization, we set the loss function sim-
ply as, L(x) = F1(x). Then starting from an initial configuration,
x0, gradient descent will iteratively adjust the configuration to a
sequence x1, . . . , xn in order to minimize the loss, until it reaches
a local minimum or a maximum of steps allowed. To increase the
chance of hitting a global minimum, we use a standard multi-start
method to try gradient descent from multiple initial values of x,
and finally choose x⇤ that gives the smallest value among these
trials.

Let xn denote the configuration computed after iteration n. Ini-
tially n = 0 and x0 is the default configuration. We can use
the model  1(x

n) to compute the predicted value of the objec-
tive F1(x

n) under the current configuration xn. We then use the
loss L to estimate how well the configuration xn optimizes (e.g.,
minimizes) the value of the objective. We then compute the gradi-
ent of the loss function as rn

x and use it to adjust the configuration
for the next iteration so that it minimizes L. That is, we iteratively
choose the (n + 1)th configuration as xn+1 = xn � ↵rn

x. Cur-
rently, we use the adaptive moment estimation SGD approach from
[17] to compute the gradient of the loss function rn

x. The above
process repeats iteratively until we find the optimal configuration
x⇤ that minimizes loss and yields the optimal value of the target
objective F1(x

⇤). [This is obvious.]
Constrained optimization. Then consider a constrained optimiza-

tion (CO) problem, where F1 as the target of optimization and con-
straints are Fi 2 [F L

j , F U
j ], i = 1, . . . , k, which include Parts [1]
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address the CO problem, but with a different loss function and a
scaled value of the objective as following:
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the range of each objective function Fj(x) varies, we first normal-
ize each objective according to its upper and lower bounds, so that
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j = 0, F̂ U
j = 1, and a valid objective value F̂j(x) 2 [0, 1].

The loss function includes two part. One is to push objectives
into its constraints region. If an objective Fj(x) cannot satisfy
the constraints (F̂j(x) > 0 _ F̂j(x) < 1), it is going to con-
tribute a loss according to its distance to the constraints region. To
push objectives satisfying the constraints, we further assign an ex-
tra penalty P to stress their importances. The other part of loss is
for the optimization target Fi. Once Fi(x) laid in the constraints
region (0  F̂i(x)  1), we generate a loss according to its value.
Therefore, the iterative forward and backward paths can push the
objective values satisfying their constraints as well as minimize the
target objective.

Supporting additional constraints. Two additional constraints:
0  xi  1 and g(x)  0).

Handling model uncertainty. F̃i(x) = E[Fi(x)]+↵·std[Fi(x)]

4.3 Approximate and Parallel Algorithms
Approximate Sequential Algorithm (PF-AS): When we im-

plement single-objective optimization (Line 2 of Algorithm 1) and
constrained optimization (Line 13) using the above procedures, we
obtain a new algorithm called PF Approximate Sequential. Note
that this leads to an approximate Pareto set for the MOO problem
because each solution of a constrained optimization can be subop-
timal as backpropogation is stuck at a local minima. In practice,
if the objective function is complex with many local minima, it is
hard for any algorithm to guarantee to find global minima.

We finally present a parallel version of the approximate algo-
rithm, called PF-Approximate Parallel (PF-AP ). The main differ-
ence from the approximate sequential algorithm is that given any
hyperrecetange we aim to explore at the moment, we partition it
into a lk grid and for each grid cell, construct a constrained opti-
mization (CO) problem using the the Middle Point Probe (Eq. 4.2).
We send these lk CO problem to the DNN-based solver simulta-
neously. Internally, the DNN solver will solve these problems in
parallel (using a multi-threaded implementation). Some of the cells
will not return any Pareto point and hence will be omitted. For each
of those cells that returns a Pareto point, the Pareto point breaks the
cell into a set of sub-hyperrectangles that need to be further ex-
plored, and are added to a priority queue as before. Afterwards, the
sub-hyperrectangle with the largest volume is removed from the
queue. To explore it, we further partition it into lk cells and ask the
solver to solve their corresponding CO problems simultaneously.
This process terminates when the queue becomes empty.
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job configurations from the computed Pareto frontier. First, the
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In the first step, we transform variables for optimization by fol-
lowing the common practice in machine learning: Let x be the
original set of parameters, which can be categorical, integer, or
continuous variables. If a variable is categorical , we use one-
hot encoding to create dummy variables. For example, if xd takes
values {a, b, c}, we create three boolean variables, xa

d , xb
d, and
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d, among which only one takes the value ‘1’. Afterwards all the

variables are normalized to the range [0, 1], and boolean variables
and (normalized) integer variables are relaxed to continuous vari-
ables in [0, 1]. As such, the constrained optimization (CO) prob-
lem deals with continuous variables in [0,1], which we denote as
x = x1, . . . , xD 2 [0, 1]. After a solution is returned for the CO
problem, we set the value for a categorical attribute based on the
dummy variable with the highest value, and round the solution for
a normalized integer variable to its closest integer.

Next, we focus on the CO problem depicted in Figure X(a). Our
design of a Multi-Objective Gradient Descent (MOGD) solver
uses carefully-crafted loss functions to guide gradient descent to
find the minimum of a target objective while satisfying a variety
of constraints, where both the target objective and constraints can
be specified over complex models, e.g., using DNNs, GPs, or other
regression functions.

Single objective optimization. As a base case, we consider single-
objective optimization, minimize F1(x) =  1(x), which is Part
[1] in Figure X(a). For optimization, we set the loss function sim-
ply as, L(x) = F1(x). Then starting from an initial configuration,
x0, gradient descent will iteratively adjust the configuration to a
sequence x1, . . . , xn in order to minimize the loss, until it reaches
a local minimum or a maximum of steps allowed. To increase the
chance of hitting a global minimum, we use a standard multi-start
method to try gradient descent from multiple initial values of x,
and finally choose x⇤ that gives the smallest value among these
trials.

Let xn denote the configuration computed after iteration n. Ini-
tially n = 0 and x0 is the default configuration. We can use
the model  1(x

n) to compute the predicted value of the objec-
tive F1(x

n) under the current configuration xn. We then use the
loss L to estimate how well the configuration xn optimizes (e.g.,
minimizes) the value of the objective. We then compute the gradi-
ent of the loss function as rn
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for the next iteration so that it minimizes L. That is, we iteratively
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x. Cur-
rently, we use the adaptive moment estimation SGD approach from
[17] to compute the gradient of the loss function rn
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process repeats iteratively until we find the optimal configuration
x⇤ that minimizes loss and yields the optimal value of the target
objective F1(x
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Constrained optimization. Then consider a constrained optimiza-

tion (CO) problem, where F1 as the target of optimization and con-
straints are Fi 2 [F L

j , F U
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the range of each objective function Fj(x) varies, we first normal-
ize each objective according to its upper and lower bounds, so that
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j = 0, F̂ U
j = 1, and a valid objective value F̂j(x) 2 [0, 1].

The loss function includes two part. One is to push objectives
into its constraints region. If an objective Fj(x) cannot satisfy
the constraints (F̂j(x) > 0 _ F̂j(x) < 1), it is going to con-
tribute a loss according to its distance to the constraints region. To
push objectives satisfying the constraints, we further assign an ex-
tra penalty P to stress their importances. The other part of loss is
for the optimization target Fi. Once Fi(x) laid in the constraints
region (0  F̂i(x)  1), we generate a loss according to its value.
Therefore, the iterative forward and backward paths can push the
objective values satisfying their constraints as well as minimize the
target objective.

Supporting additional constraints. Two additional constraints:
0  xi  1 and g(x)  0).

Handling model uncertainty. F̃i(x) = E[Fi(x)]+↵·std[Fi(x)]

4.3 Approximate and Parallel Algorithms
Approximate Sequential Algorithm (PF-AS): When we im-

plement single-objective optimization (Line 2 of Algorithm 1) and
constrained optimization (Line 13) using the above procedures, we
obtain a new algorithm called PF Approximate Sequential. Note
that this leads to an approximate Pareto set for the MOO problem
because each solution of a constrained optimization can be subop-
timal as backpropogation is stuck at a local minima. In practice,
if the objective function is complex with many local minima, it is
hard for any algorithm to guarantee to find global minima.

We finally present a parallel version of the approximate algo-
rithm, called PF-Approximate Parallel (PF-AP ). The main differ-
ence from the approximate sequential algorithm is that given any
hyperrecetange we aim to explore at the moment, we partition it
into a lk grid and for each grid cell, construct a constrained opti-
mization (CO) problem using the the Middle Point Probe (Eq. 4.2).
We send these lk CO problem to the DNN-based solver simulta-
neously. Internally, the DNN solver will solve these problems in
parallel (using a multi-threaded implementation). Some of the cells
will not return any Pareto point and hence will be omitted. For each
of those cells that returns a Pareto point, the Pareto point breaks the
cell into a set of sub-hyperrectangles that need to be further ex-
plored, and are added to a priority queue as before. Afterwards, the
sub-hyperrectangle with the largest volume is removed from the
queue. To explore it, we further partition it into lk cells and ask the
solver to solve their corresponding CO problems simultaneously.
This process terminates when the queue becomes empty.

5. AUTOMATIC SOLUTION SELECTION
Our optimizer implements three strategies to recommend new

job configurations from the computed Pareto frontier. First, the
Utopia Nearest (UN) strategy chooses the Pareto optimal point clos-
est to the Utopia point by computing the Euclidean distance of each
point in F̃ to fU , and returns the point that minimizes the distance.
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(a) Constrained optimization with k objectives (F1 is modeled by a DNN and Fk by a GP) (b) A GP with the fn. mean (blue
line) and uncertainty (pink region)

(c) CF1F2: Loss term on F̂1 (nor-
malized lat.) minimizes it while
pushing it into [0,1] (normalized
range for F1 ∈ [100,200])

(d) CF1F2 : Loss term on F̂2

(normalized cost) pushes it
into [0,1] (normalized range
for cost ∈ [8,16])

(e) Loss L(x) on univariate
input x (#cores), where F1

(lat.) = max(100, 2400
x

), and
F2 (cost) = min(24, x)

(f) Loss L(x1, x2) on bivariate input x1

(#exec) and x2 (#cores/exec), where F1

(lat.) = max(100, 2400
min(24,x1x2)

), and
F2 (cost) = min(24, x1x2)

Fig. 3. Constrained optimization with k objectives, and an example CF1F2 “minF1 (lat.) such that F1 ∈ [100, 200] and F2 (cost) in [8,16]”

Fig. 3(c)-3(d) illustrate the breakdown of the loss terms for
F1 and F2. The loss for F1 has two terms. When F1 falls in the
constraint region [100,200] (or in the normalized form, 0 ≤
F̂1 ≤ 1), the first term of the loss penalizes a large value of F1,
and hence minimizing the loss helps reduce F1. The second
term of the loss aims to push the objective into its constraint
region. If F1 cannot meet the constraints (F̂j > 0 ∨ F̂j < 1),
it contributes a loss according to its distance from the valid
region. The extra penalty, P , ensures that the loss for F1 if it
falls outside its valid region is much higher than that if F1 lies
in the region. Fig. 3(c) shows the effect of these two terms on
F1. In comparison, the loss for F2 has only the second term,
pushing it to meet its constraint, as shown in Fig. 3(d).

Fig. 3(e)-3(f) further illustrate the loss, L(x), given that
F1(x) and F2(x) are both functions of system parameters x.
For simplicity, Fig. 3(e) shows the loss, L, over univariate
input x (#cores), assuming two simple models for F1(x) and
F2(x). In practice, #cores is not a system parameter, but
defined over two other parameters x1 (#executors) and x2
(#cores per executor). Fig. 3(f) shows the loss over x1 and x2.
Given complex models on multiple parameters, the surface of
L(x) quickly becomes complex. Nevertheless, the loss will
guide GD such that by minimizing L, it is likely to find the
x value that is an approximate solution to the CO problem.

Note that GD usually assumes the loss function L to
be differentiable, but our loss function is not at specific
points. However, we only require L to be subdifferentiable:
for a point x that is not differentiable, we can choose a
value between its left derivative and right derivative, called a
subgradient. Machine learning libraries allow subgradients to
be defined by the user program and can automatically handle
common cases including our loss functions for DNNs and GPs.

3. Handling model uncertainty. We have several extensions
of our MOGD solver. Most notably, we extend to support
model uncertainty: when our objective functions use learned

models, these models may not be accurate before sufficient
training data is available. Hence, our optimization procedure
takes into account model uncertainty when recommending
an optimal solution. We leverage recent machine learning
methods that support a regression task, F (x), with both ex-
pected value E[F (x)] and variance, Var[F (x)]; such methods
include Gaussian Processes [27], with an example shown in
Figure 3(b), and Bayesian approximation for DNNs [9]. Given
E[F (x)] and Var[F (x)], we only need to replace each objec-
tive function, Fj(x), with F̃j(x) = E[Fj(x)]+α ·std[Fj(x)],
where α is a small positive constant. Here, F̃j(x) offers a more
conservative estimate of Fj(x) for solving a minimization
problem, given the model uncertainty. Then we use F̃i(x) to
build the loss function in Eq. 3 to solve the CO problem.

C. Approximate and Parallel PF Algorithms

Approximate Sequential (PF-AS): The PF Approximate
Sequential algorithm (PF-AS) implements SO optimization
(Line 2 of Algorithm 1) and constrained optimization (Line
13) using our MOGD solver. It yields an approximate Pareto
set since the solution of each CO problem can be suboptimal.
In fact, the SOTA MINLP solver, Knitro [14], also returns
approximate solutions due to complex, non-convex properties
of our objective functions, despite long running time.

Approximate Parallel (PF-AP ): We further propose a
parallel algorithm (PF-AP ) that differs from the approximate
sequential algorithm in that to probe a given hyperrecetange,
we partition it into a lk grid and for each grid cell, construct a
CO problem using the the Middle Point Probe (Eq. 2). We send
these lk CO problems to our MOGD solver simultaneously.
Internally, our solver will solve these problems in parallel
(using multi-threading). Some of the cells will not return any
Pareto point and hence will be discarded. For each of those
cells that returns a Pareto point, the Pareto point breaks the
cell into a set of sub-hyperrectangles that will be added to



a priority queue for probing later. Inside the queue, the sub-
hyperrectangle with the largest volume is removed, as before.
We then further partition it into lk cells and ask the solver to
solve their corresponding CO problems simultaneously. This
process terminates when the queue becomes empty.

V. UDAO IMPLEMENTATION

UDAO is built on top of Spark with three key modules:
Model Server. UDAO’s model server can take handcrafted

subdifferentiable regression functions (e.g., [36]) to model
task objectives. In addition, it supports two automatic tools
to learn models from runtime traces: (i) GP models from
OtterTune [35]: we chose OtterTune [35] over other tools [7],
[39] because it outperforms iTuned [7], another GP-based
tool, due to the ability to map a new query against all
past queries in model building, while CDBTune [39] cannot
return a regression function explicitly for each objective as
required by our system. (2) Our custom DNN models [38]
can further extract workload encodings for blackbox programs
using advanced autoencoders [38] to improve prediction.

For the Spark platform, our model server takes a set of ∼40
parameters and a list of objectives such as latency, throughput,
IO load, cost in CPU cores, and cost in CPU-hour (the full
list was given in §II-B). The key steps in modeling include:

1) Training Data Collection: We distinguish online work-
loads, whose runs are invoked only by the user, from offline
workloads, which the model server can sample intensively,
e.g., an existing benchmark or some workloads offered by the
user for sampling. We sample 100’s configurations for each
offline workload using (a) heuristic sampling based on Spark
best practices and (b) Bayesian optimization [26] for exploring
configurations that are likely to minimize latency. In contrast,
we create a small sample of configurations (of size 6 to 30) for
each online workload to reflect the constraint that they usually
do not have many configurations. Our training set includes
runtime traces from both offline and online workloads.

2) Feature Engineering: We construct features from runtime
traces by following standard ML steps: filtering features with
a constant value; normalizing numerical features; one-hot en-
coding for categorical variables; and knob selection, for which
we follow OtterTune’s practice to select ∼10 most important
knobs (parameters) by mixing results from a LASSO-based
selection method and Spark recommendations.

3) Model Training: As we collect training data over months,
we train the model periodically and checkpoint the best model
weights. Inspired by industry practice [28], when receiving
a large trace update (e.g., 5000 new traces), we retrain the
model via hyper-parameter tuning; with a small trace update
(e.g., 1000 new traces), we train incrementally by fine-tuning
the model from the latest checkpoint. After training on our full
TPCx-BB dataset, the largest DNN model has 4 hidden layers,
each with 128 nodes and ReLU as activation function, with
backpropogation ran by Adam [25]. We observe the running
time of retraining (incremental training) to be up to 6 hours
using 5 servers (20 min. using one server), which are all
background processes and do not affect MOO for online jobs.

Our model sever is implemented using PyTorch. The trained
models interface with MOO through network sockets.

MOO. UDAO’s MOO module is implemented in Java
and invokes a solver for constrained optimization (CO). Our
system supports several solvers including our MO-GD solver
(§IV-B) and the Knitro [14] solver. To solve a single CO
problem, Knitro with 16 threads takes 17 and 42 minutes to run
on GP and DNN models, respectively. In contrast, MOGD with
16 threads takes 0.1-0.5 second while achieving the same or
lower value of the target objective. Therefore, we use MOGD
as the default solver in our sysyem.

Recommendation. Once a Pareto set is computed for a
workload, our optimizer employs a range of strategies to
recommend a new configuration from the set. We highlight
the most effective strategies below and describe other recom-
mendation strategies in our technical report [29].

First, the Utopia Nearest (UN) strategy chooses the Pareto
point closest to the Utopia point fU , by computing the
Euclidean distance of each point in the Pareto set F̃ to fU

and returning the point that minimizes the distance.
A variant is the Weighted Utopia Nearest (WUN) strategy,

which uses a weight vector, w = (w1, ...wk), to capture
the importance among different objectives and is usually set
based on the application preference. A further improvement
is workload-aware WUN, motivated by our observation that
expert knowledge about different objectives is available from
the literature. For example, between latency and cost, it is
known that it is beneficial to allocate more resources to large
queries (e.g. join queries) but less so for small queries (e.g.,
selection queries). In this case, we use historical data to divide
workloads into three categories, (low, medium, high), based on
the observed latency under the default configuration. For long
running workloads, we give more weight to latency than the
cost, hence encouraging more cores to be allocated; for short
running workloads, we give more weight to the cost, limiting
the cores to be used. We encode such expert knowledge
using internal weights, wI = (wI

1 , ..., w
I
k), and application

preference using external weights, wE= (wE
1 , ..., w

E
k ). The

final weights are w = (wI
1w

E
1 , ..., w

I
kw

E
k ).

VI. PERFORMANCE EVALUATION

In this section, we compare our MOO approach to popular
MOO techniques [5], [10], [19], [8] and perform an end-
to-end comparison to a STOA performance tuning system,
OtterTune [35]. We use DNN models as the default for the
MOO experiments as they are among the most time consuming
models, and use GP models in the comparison to OtterTune.

Workloads. We used two benchmarks for evaluation.
Batch Workloads: Our batch workloads use the TPCx-

BB benchmark [32] with a scale factor 100G. TPCx-BB
includes 30 templates, including 14 SQL queries, 11 SQL with
UDF, and 5 ML tasks, which we modified to run on Spark.
We parameterized the 30 templates to create 258 workloads,
with 58 reserved as offline workloads for intensive sampling
and 200 as online workloads. We ran them under different
configurations, totaling 24560 traces, each with 360 runtime
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(f) Uncertain space of all 258 jobs
Fig. 4. Comparative results on multi-objective optimization using 258 batch workloads

metrics. These traces were used to train workload-specific
models for latency, cost, etc. Feature selection resulted in
12 most important Spark parameters including the number of
executors, number of cores per executor, memory per executor,
shuffle compress, parallelism, etc. (see [29] for the full list).

Streaming Workloads: We also created a streaming bench-
mark by extending a prior study [15] on click stream analysis,
including 5 SQL templates with UDFs and 1 ML template.
We created 63 workloads from the templates via parameteri-
zation, and collected traces for training models for latency and
throughput. MOO was run on the most important 10 knobs.

Hardware. Our system was deployed on a cluster with 20
compute nodes. The compute nodes are CentOS based with
2xIntel Xeon Gold 6130 processors and 16 cores each, 768GB
of memory, and RAID disks.

A. Comparison to MOO Methods

We first compare our PF algorithms, PF-AS and PF-AP ,
to five MOO methods: Weighted Sum (WS) [19], Normalized
Constraints (NC) [21], NSGA-II [6] suggested as the most
relevant Evolutionary (Evo) method [8], PESM from the
Spearmint library [10], and qEHVI from BoTorch [5]. The
latter two are Multi-objective Bayesian Optimization (MOBO)
methods (see §III). For each algorithm, we request it to
generate increasingly more Pareto points (10, 20, 30, 40, 50,
100, 150, 200), which are called probes, as more computing
time is invested, except qEHVI that is shown to have best
runtime when calling for one point at a time.

Expt 1: Batch 2D. We start with the batch workloads where
the objectives are latency and cost (in number of cores). As
results across different jobs are consistent, we first show details
using job 9. To compare PF-AS and PF-AP to WS and NC,
Fig. 4(a) shows the uncertain space (percentage of the total
objective space that the algorithm is uncertain about) as more
Pareto points are requested. Initially at 100%, it starts to reduce
when the first Pareto set (up to 10 points) is produced. We
observe that WS and NC take long to run, e.g., ∼47 seconds
to produce the first Pareto set. In comparison, PF-AS and PF-
AP reduce uncertain space more quickly, with the first Pareto

set produced under 1 second by PF-AP . PF-AS does not work
as well as PF-AP because as a sequential algorithm, its Pareto
points found in the early stage have a severe impact on the
later procedure, andone low-quality approximate result in the
early stage may lead to overall low-quality Pareto frontier. In
contrast, PF-AP is a parallel algorithm and hence one low-
quality approximate result won’t have as much impact.

Fig. 4(b) shows the Pareto frontiers of WS and NC created
after 47 seconds. WS is shown to have poor coverage of the
Pareto frontier, e.g., returning only 3 points although 10 were
requested. NC generates 8 points, still less than PF-AP shown
in Fig. 4(c), which produces 12 points using only 3.2 seconds.

We next compare PF-AP to PESM, qEHVI, and Evo in
Fig. 4(d). qEHVI takes 48 seconds to generate the first Pareto
set, while PESM takes 362 seconds to do so. This is con-
sistent with common observations that Bayesian optimization
can take long to run, hence not suitable for making online
recommendations by a cloud optimizer. Although Evo runs
faster than other prior MOO methods, it still fails to generate
the first Pareto set until after 2.6 seconds. Fig. 4(e) shows
another issue of Evo: the Pareto frontiers generated over time
are inconsistent. For example, the frontier generated with 30
probes indicates that if one aims at latency of 6 seconds, the
cost is around 36 units. The frontier produced with 40 probes
shows the cost to be as low as 20, while the frontier with 50
probes changes the cost to 28. Recommending configurations
based on such inconsistent information is highly undesirable.

Fig. 4(f) summarizes the performance of 4 major methods
for all 258 workloads, where the x axis is the elapsed time,
and the y axis shows the uncertain space across all jobs, with
the median depicted by an orange bar. All methods start with
100% uncertain space, and we show when each method starts
to reduce until falling below 10% or reaching 100 seconds. PF-
AP can generate Pareto sets under 1 second for all jobs, with
a median of 8.8% uncertain space, and reduces the median to
5.9% after 2 seconds. Evo remains at 100% within 2 seconds
and then achieves a median of 4.2% after 5 seconds. qEHVI
can only generate Pareto sets for 54 jobs after 20s, and achieve
only 69.4% median after 100s. NC can generate Pareto set for
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Fig. 5. Comparative results on multi-objective optimization using 63 streaming workloads

30 jobs after 50s, and achieve 5.8% median after 100s.
Expt 2: Streaming 2D and 3D. We next use the stream-

ing workload under 2 objectives, average latency (of output
records) and throughput (the number of records per second),
as well as under 3 objectives, further adding cost as the 3rd
objective. As results for different jobs are similar, we illustrate
them using job 54, while additional results are available in
[29]. Fig. 5(a) and Fig. 5(b) show that WS and NC again
have poor coverage of the frontier (7 points only each), while
Fig. 5(c) shows that PF can better construct the frontier using
less time. Evo again returns inconsistent Pareto frontiers as
more probes are made, with plots shown in [29].

Regarding running time, Fig. 5(d) confirms that WS, NC,
and PESM take long, e.g., 42, 36, and 308 seconds, respec-
tively, to return the first Pareto set, while PF-AP , Evo, and
qEHVI are more efficient, taking 1.1s, 2.7s, 11.5s, respectively,
to produce the first Pareto set. Fig. 5(e) and 5(f) summarize
runtime across 63 workloads for 2D and 3D cases. For 2D
jobs, PF-AP is the first to generate Pareto sets, achieving
a median of 6.5% under 2 seconds. Evo takes 5 seconds to
generate first Pareto sets (which may change at a later time).
Both qEHVI and NC need 50 seconds to reduce the median
of uncertain space below 10%. The 3D results confirm the
same order of the methods in efficiency, with PF-AP taking
2.5 seconds to reduce to 1.3% uncertain space.

B. End-to-End Comparison
Next we perform an end-to-end comparison of the configu-

rations recommended by our MOO against Ottertune [35]. In
this study, since we consider the effect of models, we follow
standard ML practice to separate workloads into training and
test sets: For TPCx-BB, we created a random sample of 30
workloads, one from each template, as test workloads. We
use the traces of other workloads as historical data to train
predictive models for the test workloads. Similarly, for the
stream benchmark we created a sample of 15 test workloads.

For each test workload, UDAO runs the PF algorithm to
compute the Pareto set and then the Weighted Utopia Nearest

(WUN) strategy (§V) to recommend a configuration from
the set. As Ottertune supports only single-objective (SO)
optimization, we apply a weighted method [39] that combines
k objectives into a single objective,

∑k
i=1 wiΨi(x), with∑

i wi = 1, and then call Ottertune to solve a SO problem.
It is known from the theory of Weighted Sum (WS) [19] that
even if one tries many different values of w, the weighted
method cannot find many diverse Pareto points, which is
confirmed by the sparsity of the Pareto set in Fig. 5(a) where
WS tried different w values.

Expt 3: Accurate models. First, we assume learned models
to be accurate and treat model-predicted values of objectives as
true values, for any given configuration. For fair comparison,
we use the GP models from Ottertune in both systems.

Batch 2D. For 2D batch workloads, Fig. 6(a) shows the per-
formance of the recommended configurations by two systems
when w=(0.5, 0.5), i.e., the application wants balanced results
between latency and cost. Since TPCx-BB workloads have 2
orders of magnitude difference in latency, we normalize the
latency of each workload (x-axis) by treating the slower one
between PF-WUN and Ottertune as 100% and the faster as a
value less than 100%. The number of cores (y-axis) allowed
in this test is [4, 58]. For all 30 jobs, Ottertune recommends
the smallest number of cores (4), favoring cost to latency. PF-
WUN is adaptive to the application requirement of balanced
objectives, using 2-4 more cores for each job to enable up
to 26% reduction of latency. Fig. 6(b) shows the results for
w=(0.9, 0.1), indicating strong preference for low latency. For
19 out of 30 jobs, Ottertune still recommends 4 cores as it is
the solution returned even using the 0.9 weight for latency. In
contrast, PF-WUN is more adaptive, achieving lower latency
than Ottertune for all 30 jobs with up to 61% reduction.
Further, for 8 jobs, PF-WUN dominates Ottertune in both
objectives, saving up to 33% of latency while using fewer
cores—in this case, Ottertune’s solution is not Pareto optimal.

Streaming 2D. For 15 stream jobs, Fig. 6(c)-6(d) show that
for w=(0.5, 0.5) the two systems mainly show tradeoffs, while
for w=(0.9, 0.1), PF-WUN is more adaptive, achieving lower



(a) Batch (0.5,0.5), latency vs
cost, accurate models

(b) Batch (0.9,0.1), latency vs
cost, accurate models

(c) Stream (0.5,0.5), latency vs
throughput, accurate models

(d) Stream (0.9,0.1), latency vs
throughput, accurate models

(e) Batch (0.5,0.5), measured la-
tency, inaccurate models

(f) Batch (0.9,0.1), measured la-
tency, inaccurate models

(g) Performance improvement
rate, Ottertune against Manual

(h) Performance improvement
rate, UDAO against Manual

Fig. 6. Comparative results to Ottertune on single-objective and multi-objective optimization

latency for all jobs with up to 63% reduction of latency.
Expt 4: Inaccurate models. We next consider the case that

learned models are not accurate (before enough training data
are acquired). For a given objective, our MOGD solver uses the
model variance to obtain a more conservative estimate for use
in optimization. Further, for TPCx-BB our DNN model [38]
offers better latency estimates (20% error rate in Weighted
Mean Absolute Percentage Error, where the percentage error
is weighted by the objective value) than Ottertune’s GP model
(35% error rate). In this experiment we use our DNN model
to demonstrate the flexibility of our optimizer, while Ottertune
can only use its GP model. We consider two cost measures:
cost1 in #cores, which is certain; cost2 as a weighted sum of
CPU-hour and IO cost, which are both learned models. Thus,
cost2 is subject to 15% error using our DNN model and 34%
error using Ottertune’s GP model.

Next we consider 2D optimization over latency and cost1.
For w=(0.5, 0.5), we take recommendations from both systems
and measure actual latency and cost on our cluster. Fig. 6(e)
shows the latency of top 12 long-running jobs. Since both
systems use low numbers of cores, the cost plot is omitted
here. Notably, to run the full TPCx-BB benchmark, UDAO
outperforms Ottertune with 26% savings on running time and
3% less cost. For w=(0.9, 0.1), Ottertune’s recommendations
vary only slightly from (0.5, 0.5), with 6% reduction of
total running time, while our recommendations lead to 35%
reduction. As Fig. 6(f) shows, UDAO outperforms Ottertune
with 49% less total running time, and 48% increase of cost,
which matches application’s strong preference for latency. For
the two long-running jobs (2, 30), Ottertune reports better
performance in prediction, but its model is way off and hence
in actual running time it achieves much worse results. The
prediction and actual latency are more similar in UDAO,
enabling better optimization results. Results using latency and
cost2 confirm the above observations and are left to [29].

Expt 5: Inaccuracy vs. optimization performance. To
quantify the impact of model accuracy on optimization, we

collect 120 configurations, recommended by UDAO and Ot-
tertune each, from Expt 4 where optimization was ran using
w=(0.5,0.5) or w=(0.9,0.1), cost1 or cost2. We measure actual
latency of each configuration and report model accuracy using
absolute percentage error (APE) weighted by the latency value.
For optimization, we measure performance improvement rate
(PIR) by comparing the recommended configuration against a
manual configuration chosen by an expert engineer.

Fig. 6(g)-6(h) show PIR over weighted APE. 1) The DNN
model is more accurate than GP here, with the average error
rate shown by a vertical green line. 2) Empirically, we do not
observe DNN to be more susceptible to a long tail than GP,
since our DNN model is regularized by the L2 loss and also
considers variance when running MOGD. 3) When the model
accuracy decreases, PIR can degrade to poor values in some
cases (around -50%). Overall, Ottertune has more points (38
out of 120) that lead to PIR below 0%, performing worse than
the Spark expert, than UDAO (16/120). This is because UDAO
adapts better to user preferences for latency and recommends
configurations that are more likely to improve PIR.

VII. RELATED WORK

Most relevant work was already discussed in previous
sections. Below we survey a few broadly related areas.
Multi-objective optimization for SQL [13], [33], [34] enu-
merates a finite set of query plans built on relational algebra
to select Pareto-optimal ones, which stands in contrast to our
need for searching through an an infinite parameter space
to find Pareto-optimal configurations. MOO approaches for
workflow scheduling [13] differ from our MOO in both the
parameter space and the solution.
Resource management. TEMPO [31] addresses resource
management for DBMSs in the MOO setting: when Service-
Level Objectives (SLOs) cannot be all satisfied, it guarantees
max-min fairness over SLOs; otherwise, it uses WS for return-
ing a single solution. Morpheus [12] addresses the tradeoff be-
tween cluster utilization and job performance predictability by



codifying user expectations as SLOs and enforces them using
scheduling methods. WiseDB [17] manages cloud resources
based on a decision tree trained on performance and cost
features collected from minimum-cost schedules of sample
workloads, while such schedules are not available in our case.

Recent performance tuning systems are limited to single-
objective optimization and cannot support complex MOO
problems. First, platform-specific handcrafted models were
developed by leveraging domain knowledge and workload
profiling, and then used to solve a single-objective optimiza-
tion problem [15], [24], [36]. Among search-based methods,
BestConfig [40] searches for good configurations by dividing
high-dimensional configuration space into subspaces based on
samples, but it cold-starts each tuning request. ClassTune [41]
solves the optimization problem by classification, which can-
not be easily extended to the MOO setting. Among learning-
based methods, Ottertune [35] can learn flexible models from
data. It builds a predictive model for each query by lever-
aging similarities to past queries, and runs Gaussian Process
exploration to minimize a single objective. CDBTune [39]
recommends the best configuration for optimizing the reward
(fixed weighted sum of objectives) calculated by Deep RL. To
the best of our knowledge, our work is the first to tackle MOO-
based performance tuning for big data systems like Spark.
Learning-based query optimization. Recent work [18], [30]
uses neural networks to match the structure of optimizer-
selected query plans and predicts cardinality, cost, or latency.
Neo [16] is a DNN-based query optimizer that bootstraps its
optimization model from existing optimizers and then learns
from incoming queries. Recent work [28] integrates learned
models into a traditional cost-based query optimizer. None of
the above work considers MOO like in our work.

VIII. CONCLUSIONS

We presented UDAO, a multi-objective optimizer that con-
structs Pareto-optimal job configurations for multiple task
objectives, and recommends a new configuration to best meet
them. Using batch and streaming workloads, we showed that
UDAO outperforms existing MOO methods [19], [8], [5], [10]
in both speed and coverage of the Pareto set, and outperforms
Ottertune [35] by a 26%-49% reduction in running time of the
TPCx-BB benchmark, while adapting to different application
preferences on multiple objectives. In future work, we plan
to extend UDAO to support a pipeline of analytic tasks, and
incorporate more complex and robust models.
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