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Abstract

A Polish space is not always homeomorphic to a computably presented Polish space. In this
article, we examine degrees of non-computability of presenting homeomorphic copies of compact
Polish spaces. We show that there exists a 0′-computable low3 compact Polish space which is not
homeomorphic to a computable one, and that, for any natural number n ≥ 2, there exists a Polish
space Xn such that exactly the highn-degrees are required to present the homeomorphism type of
Xn. Along the way we investigate the computable aspects of Čech homology groups. We also show
that no compact Polish space has a least presentation with respect to Turing reducibility.

The first version of this article appeared in April 2020. A major update was made in September
2023, with improved proofs and results. This is the final version from January 2024, with more results
on Čech homology groups.
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1 Introduction

How difficult is it to describe an explicit presentation of an abstract mathematical struc-
ture? For a particular structure S, what is the degree spectrum of its isomorphism type,
i.e. what are the Turing degrees that compute a presentation of a structure that is iso-
morphic to S? For a class of structures, what are the possible degree spectra of their
isomorphism types? These have long been the fundamental questions in computable
structure theory, and researchers in this area have obtained a huge number of interesting
results on Turing degrees of presentations of isomorphism types of groups, rings, fields,
linear orders, lattices, Boolean algebras, and so on [2, 23, 14, 20].

In this article we focus on presentations of compact Polish spaces. The notion of a
presentation plays a central role, not only in computable structure theory, but also in
computable analysis [4, 5, 46]. In this area, one of the most crucial problems was how to
present large mathematical objects (which possibly have the cardinality of the continuum)
such as metric spaces, topological spaces and so on, and then researchers have obtained a
number of answers to this question. In particular, the notion of a computable presentation
of a Polish space can be traced back to the 1960s; e.g. [36]. Computable Polish spaces
have been extensively studied in computable analysis [4, 40, 46] and descriptive set theory
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[37].

In recent years, several researchers have succeeded in obtaining various results on Turing
degrees of isometric isomorphism types of Polish spaces, separable Banach spaces, and
Polish groups; see [9, 32, 33, 31]. All these works are devoted to metric structures. Results
on Turing degrees of homeomorphism types of Polish spaces have been obtained only very
recently, and independently of the present article, in [18, 34, 31, 10]. Computable Polish
groups were investigated in [15, 35], and general topological spaces were studied in [42]
in analogy with the earlier investigation of degrees of isomorphism types of algebraic
structures. Some results were also obtained for domains.

In this article, a Polish presentation of a Polish space X is a dense sequence (si)i∈N
in X and a complete metric d inducing the topology; for a Turing degree d, such a
presentation is d-computable if the real numbers d(si, sj) are uniformly d-computable.
The Polish degree spectrum of X is then the set of Turing degrees that compute a Polish
presentation of X. We will also be interested in compact presentations of a compact
Polish space X, that carry a Polish presentation together with an enumeration of the
finite open covers of X. The compact degree spectrum of X is the set of Turing degrees
that compute a compact presentation of X.

One of the first questions to be asked about presentations of Polish spaces is:

Question 1. Does there exist a Polish space with a 0′-computable Polish presentation but
not computable one?

Observe that there are continuum many homeomorphism types of Polish spaces, but there
exist only countably many computable presentations of Polish spaces, so there is a Polish
space which is not homeomorphic to any computably presented Polish space.

Countable spaces cannot be used to solve this problem because of the “hyperarithmetic-
is-recursive” phenomenon, see [16]; see also Section 3. In this article we answer Question
1 in the affirmative. We note that Harrison-Trainor, Melnikov, and Ng [18] have recently
obtained an independent solution, and via a different proof. One possible approach to
solve this problem is using Stone duality between countable Boolean algebras and zero-
dimensional compact Polish spaces; see also Section 3.1. Combining this idea with classical
results on isomorphism types of Boolean algebras [29], one can conclude that every low4-
presented zero-dimensional compact Polish space is homeomorphic to a computable one.
This was also independently noticed by Harrison-Trainor, Melnikov, and Ng [18].

Our next step is to develop new techniques beyond Stone duality. More specifically, the
next question is whether there exists a Polish space whose Polish degree spectrum is
different from that of a zero-dimensional compact space. In particular, it is natural to
ask the following:

Question 2. Does there exist a Polish space with a low4 Polish presentation but no com-
putable one?

One of the main results of this article is that for every Turing degree d and every n ≥ 1,
there exists a compact Polish space Xd,n whose compact degree spectrum is {x : d ≤ x(n)}
and Polish degree spectrum is {x : d ≤ x(n+1)} (Corollaries 5.2 and 5.12). This result was
independently obtained by Melnikov [34], Lupini, Melnikov and Nies [31] and Downey and
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Melnikov [10] using different arguments, namely by proving that Čech cohomology groups
of a compact space are computable. For n = 1 the result presented here is obtained by
investigating the computable aspects of Čech homology groups. A part of the analysis of
homology groups is a direct adaptation of the analysis of cohomology groups from [31, 10],
then the arguments diverge: Čech homology groups are not computable in general, but
they are sufficiently effective for our purpose. More precisely, we show that the non-
triviality of Čech homology groups with coefficients in Z/2Z is Σ0

2; along the way, we also
show that it is Σ1

1-complete when taking coefficients in Z.
The result gives a solution to Questions 1 and 2: there is a space with a 0′-computable low3

Polish presentation but no computable Polish presentation, namely the space Xd′′,1 for
any d ≤ 0′ which is low3. It also implies the existence of a compact Polish space having a
computable Polish presentation but no computable compact presentation (Corollary 5.3).

Another consequence is that for n ≥ 2 there is a space whose Polish degree spectrum is
the set of highn degrees, namely Xd,n−1 where d = 0(n+1). This also clarifies substantial
differences between zero-dimensional compact Polish spaces and infinite dimensional ones
since the class of highn-degrees is never the degree spectrum of a Boolean algebra [26].

Another important question is whether a given Polish space has a least Turing degree
in its Polish degree spectrum. For instance, it is known that the isomorphism types of
linear orders, trees, abelian p-groups, etc. have no least presentation whenever they are
not computably presentable, see [14].

Question 3. Does there exist a compact Polish space with no computable Polish presen-
tation, but whose Polish degree spectrum contains a least Turing degree?

We answer Question 3 in the negative. More precisely, we show the cone-avoidance
theorem for compact Polish spaces, which states that, for any non-c.e. set A ⊆ N, every
compact Polish space has a Polish presentation that does not enumerate A (Theorem 6.1).

It contrasts with a result proved in [31] that for each set A ⊆ N, there exists a compact
Polish space whose compact degree spectrum is {x : A is x-c.e.}. If (pi)i∈N is the increasing

enumeration of the prime numbers, this space is defined as the Pontryagin dual Ĝ of the
subgroup G of Q generated by the elements 1

pi
with i ∈ A.

We finally prove a precise relationship between the Polish degree spectrum and the com-
pact degree spectrum of compact Polish spaces that are perfect (Corollary 7.2), and show
that it fails for some non-perfect space (Proposition 7.5).

The article is organized as follows. In Section 2 we present the necessary background and
develop the technical tools that will be used throughout the article. In Section 3 we briefly
discuss the effective aspects of the Cantor-Bendixson derivative and of Stone duality. In
Section 4 we investigate the computable aspects of the Čech homology groups, which will
be used in Section 5, where we show how to realize certain sets of Turing degrees as degree
spectra of compact Polish spaces. In Section 6 we show the cone-avoidance theorem. In
Section 7 we compare degree spectra and compact degree spectra.
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2 Preliminaries

Basic terminology and results of computability theory and computable structure theory
are summarized in [2]. For basics of computable analysis, we refer the reader to [3, 5, 4, 46].
For the basic definitions and facts of general topology and dimension theory, see [24, 44].

2.1 Presentations of Polish spaces

If X is a Polish space, then a Polish presentation (or simply a presentation) of X
is (X, d, S) where S = (sn)n∈N is a dense sequence in X and d is a complete metric
which is compatible with the topology. For a discussion of presentations of Polish spaces,
see also [17].

For a Turing degree d, a presentation (X, d, S) of X is d-computable if the real num-
bers d(si, sj) are uniformly d-computable. A d-computable Polish space is a Polish space
which has a d-computable presentation. For a Polish space X, its Polish degree spec-
trum Sp(X) is the set of all Turing degrees d such that X has a d-computable Polish
presentation.

Let (X, d, S) be a presentation of a Polish space X. A rational open ball is B(si, r) =
{x ∈ X : d(si, x) < r} where r > 0 is rational. A rational open set is a finite union of
rational open balls. A code of a finite rational open cover of X is a finite set E ⊆ N×Q>0

such that for any X =
⋃

(i,r)∈E B(si, r). If X is compact, then a compact presentation of
X is a presentation of X equipped with an enumeration of the codes of all finite rational
open covers of X. In particular, a compact presentation contains an information of total
boundedness; that is, a function ℓ : N → N such that for all n, {B(ai, 2

−n) : i < ℓ(n)}
covers the whole space X.

A compact Polish space X is d-computably compact if it has a d-computable compact
presentation. Its compact degree spectrum Spc(X) is the set of all Turing degrees d such
that X has a d-computable compact presentation.

We will often use the next elementary result.

Lemma 2.1. Let X be a compact Polish space. If X has a d-computable Polish presen-
tation, then X has a d′-computable compact presentation.

Proof. Assume that X has a d-computable Polish presentation (X, d, S). By compactness
of X, one can observe that E is a code of a finite rational open cover of X if and only
if there exists s ∈ N such that for all x ∈ X we have d(x, si) ≤ r − 2−s for some
(i, r) ∈ E. The latter is equivalent to the existence of s ∈ N such that for all j ∈ N we
have d(sj, si) ≤ r − 2−s for some (i, r) ∈ E. As E is finite, this is a Σ0

2 condition relative
to d, so it is d′-c.e. In other words, X has a d′-computable compact presentation.

In Section 7, we will present a sharp analysis of this relationship between Polish and
compact presentations.

Hyperspaces. Every Polish space embeds in the Hilbert cube, and this fact induces an
equivalent definition of Polish and compact presentations. The Hilbert cube Q = [0, 1]N
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is endowed with the complete metric dQ(x, y) =
∑

i 2
−i|xi − yi|. A point of Q is rational

if its coordinates are rational and only finitely many of them are non-zero. The rational
points of Q, enumerated in a canonical way, make Q a computable Polish space which is
computably compact.

Let V(Q) be the hyperspace of compact subsets of Q endowed with the lower Vietoris
topology. A subbasis is given by {K ⊆ Q : K ∩ B ̸= ∅}, where B is a rational ball in Q
(technically, we need to add {∅}, which is the singleton containing the empty compact
set, to make it a subbasis).

Let K(Q) be the hyperspace of compact subsets of Q endowed with the Vietoris topology.
A subbasis is given by a subbasis for the lower Vietoris topology, together with {K ⊆ Q :
K ⊆ U}, where U is a rational open set in Q. The Hausdorff metric dH is a complete
metric generating the Vietoris topology, and the dense sequence of finite sets of rational
points of Q makes K(Q) a computable Polish space which is computably compact.

We say that a compact set K ⊆ Q is d-computably overt if d computes an enumeration
of the basic neighborhoods of K in the lower Vietoris topology. Equivalently, K is d-
computably overt if it contains a dense computable sequence. We say that K is d-
computably compact if d computes an enumeration of the basic neighborhoods of K in
the Vietoris topology. Equivalently, K is d-computably compact if K is d-computably
overt and K ∈ Π0

1(d), or if d computes a sequence of finite sets Kn ⊆ Q of rationals
points such that dH(Kn, K) < 2−n.

The next result is folklore. The two parts appear in [1, Fact 2.11] and [10, Theorem 3.36]
respectively.

Proposition 2.2. A compact Polish space X has a d-computable Polish presentation if
and only if it has a d-computably overt copy in Q.

A compact Polish space X has a d-computable compact presentation if and only if it has
a d-computably compact copy in Q.

Proof. It is essentially an effective version of the fact that every Polish space embeds in Q.

Let (X, d, S) be a d-computable Polish presentation of X. Consider the function f : X →
Q mapping x ∈ X to (xi)i∈N ∈ Q defined by xi = d(x, si)/(1 + d(x, si)). It is computable
and one-to-one, so it is a homeomorphism as X is compact. Its image is d-computably
overt, because it contains the dense d-computable sequence (f(sn))n∈N.

If (X, d, S) is moreover d-computably compact, then so is f(X), because the image of
a d-computably compact set by a computable function is d-computably compact.

Conversely, if a compact set K ⊆ Q is d-computably overt, then it has a d-computable
Polish presentation, using the metric dQ and a dense d-computable sequence in K. If K
is moreover d-computably compact, then this presentation is d-computably compact.

2.2 Realizations

We recall usual operations on spaces, such as disjoint unions and wedge sum, and show
that they preserve computability notions.
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We will implicitly use the fact that [0, 1]n×Q and Q×Q are computably homeomorphic
to Q, so the results of the next constructions are subsets of Q.

• If X, Y ⊆ Q then their disjoint union is X ⨿ Y = ({0} ×X) ∪ ({1} × Y ),

• If X, Y ⊆ Q both contain 0, then their wedge sum is X ∨Y = (X×{0})∪ ({0}×Y ),

• If Xn ⊆ Q for all n ∈ N, then their disjoint union is
∐

nXn =
⋃

n{0}n×{1}×Xn, and
its one-point compactification is α0(

∐
nXn) = {0}∪

∐
nXn, where 0 = (0, 0, 0, . . .) ∈

Q.

When X, Y are Polish spaces, their disjoint union X⨿Y is implicitly defined as the Polish
space obtained by embedding X and Y in Q and applying the previous definition, and
similarly for the wedge sum and the one-point compactification of the disjoint union.

Proposition 2.3. If X, Y,Xn are uniformly d-computably overt (resp. compact), then X⨿
Y,X ∨ Y and α0(

∐
nXn) are d-computably overt (resp. compact).

Proof. The result is straightforward for finite disjoint unions and wedge sums, because the
sets {0} ×X, {1} × Y , X × {0} and {0} × Y easily inherit the computability properties
of X and Y , and so do their unions.

Let us consider the one-point compactification of the disjoint union. The function fn :
Q → Q sending x = (x0, x1, . . .) to (0, . . . , 0, 1, x0, x1, . . .), starting with n occurrences
of 0, is computable uniformly in n. Equivalently, the preimages of rational balls by fn are
effectively open, uniformly in n.

Assume that Xn are uniformly d-computably overt. A rational open ball B intersects the
set α0(

∐
nXn) iff f

−1
n (B) intersects Xn for some n, which is d-c.e.

Now assume that Xn are uniformly d-computably compact. A rational open set U con-
tains α0(

∐
nXn) iff there exists n such that {0}n×Q ⊆ U and Xi ⊆ f−1

i (U) for all i < n,
which is d-c.e.

The next result will be a building block for constructing spaces that encode information
about a set of natural numbers.

Proposition 2.4. Let X∞ and (Xn)n∈N be uniformly computably compact subsets of Q
satisfying the following conditions:

• For all n ∈ N, Xn ⊆ Xn+1 ⊆ X∞,

• dH(Xn, X∞) < 2−n.

To a set A ⊆ N we associate the compact set

XA =

{
XminA if A ̸= ∅,
X∞ if A = ∅.

The set XA is uniformly computably compact relative to A and uniformly computably overt
relative to any enumeration of N \ A.
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Proof. For s ∈ N let XA[s] = Xs if A ∩ [0, s] is empty, and XA[s] = Xn where n =
min(A ∩ [0, s]) otherwise. The sequence (XA[s])s∈N can be computed from A and satis-
fies dH(XA[s], XA) < 2−s+1, so XA is computably compact relative to A.

We show that a rational ball B intersects XA if and only if there exists n ∈ N such
that [0, n − 1] ∩ A = ∅ and B intersects Xn. This condition is c.e. relative to any
enumeration of N \ A. If [0, n − 1] ∩ A = ∅ and B intersects Xn, then XA contains Xn,
so B intersects XA. Conversely, if B intersects XA then either A = ∅ and any sufficiently
large n satisfies the conditions, or A ̸= ∅ and n = minA satisfies the conditions.

2.3 Good covers

We will often extract information about a compact Polish space from its finite open
covers. In order for this extraction to be computable, we need to decide which open sets
of such a cover intersect, which is made possible by considering good covers only. The
content of this section is essentially folklore. Closely related results have appeared in
[45, 7, 27, 25, 39, 10].

Let (X, d, S) be a Polish presentation of X. To a rational open ball B(si, r) we associate
the corresponding rational closed ball B(si, r) = {x ∈ X : d(si, x) ≤ r}, and to a rational
open set U we associate the corresponding union U of rational closed balls. The closed
ball always contains the closure of the open ball and is a Π0

1-subset of X, relative to the
presentation of X.

A good open cover of X is a family of rational open sets U = (Ui)i∈I where I ⊆ N is
finite, such that X =

⋃
i∈I Ui and for every J ⊆ I, if

⋂
i∈J Ui = ∅ then

⋂
i∈J U i = ∅. An

open cover (Ui)i∈I is a strong refinement of an open cover (Vj)j∈J if for every i ∈ I, there
exists j ∈ J such that U i ⊆ Vj.

The next result can be found in [10, Theorems 1.1 and 3.16].

Lemma 2.5. Given a compact presentation of X, one can compute a strong refining
sequence of good open covers, i.e. a sequence (Us)s∈N of good open covers such that Us+1

strongly refines Us.

Proof. The mesh of a finite open cover U = (Ui)i∈I is the maximal diameter of the Ui’s.
We first show that there are good open covers of arbitrarily small meshes, and that if U
is a finite open cover of X then there exists ϵ > 0 such that every finite cover of mesh < ϵ
strongly refines U .
Let ϵ > 0 and (B(s, ϵ))s∈I be a rational open cover of X, where I is finite. By com-
pactness, let δ < ϵ be such that (B(s, δ))s∈I is still a cover of X. There are only finitely
many values of r ∈ [δ, ϵ] such that (B(s, r))r∈I is not a good cover; indeed, these values
are minx∈X maxs∈J d(x, s), for J ⊆ I; indeed, when the cover is not good there exists J ⊆ I
and a point x at distance ≤ r from every s ∈ J , but no point y at distance < r from
every s ∈ J , so maxs∈J d(x, s) = r and x minimizes this quantity. Therefore, there exists
a rational number r ∈ [δ, ϵ] avoiding this finite set of values, providing a good open cover
of mesh < 2ϵ.

Let U be a finite open cover ofX. By compactness, U has a Lebesgue number δ > 0, which
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means that any set of diameter ≤ δ is contained in some member of U . If V = (Vi)i∈J is
a good cover of mesh ≤ δ, then each Vi has diameter ≤ δ, so V strongly refines U .
Now we are given a compact presentation of X as oracle. Whether a finite rational
cover is good is Σ0

1, and whether it strongly refines another rational cover is Σ0
1, and

whether its mesh is < q is Σ0
1. Therefore, we start with searching for some good open

cover U0 of mesh < 1 and inductively look for a good open cover Us+1 of mesh < 2−s

strongly refining Us. These objects exist as proved above, and can be effectively found by
exhaustive search.

2.4 Clopen subsets

We show that from a compact presentation of X, one can compute a presentation of the
boolean algebra of clopen subsets.

Proposition 2.6. Given a compact presentation of X, one can compute an enumera-
tion (Ci)i∈N of the clopen subsets of X, such that equality, inclusion and the finite boolean
operations are computable.

Proof. Assume that a compact presentation is given as oracle. One can compute an
enumeration (Ui, Vi)i∈N of all the pairs of rational open sets satisfying X = Ui ∪ Vi = X
and U i ∩ V i = ∅, because these conditions are c.e. relative to a compact presentation
of X. Let then Ci = Ui for each i. One can then easily compute the boolean operations:
given i, one can compute j such that (Uj, Vj) = (Vi, Ui) so Cj = X \Ci; given i, j, one can
compute k such that (Uk, Vk) = (Ui∩Uj, Vi∪Vj), so that Ck = Ci∩Cj, and symmetrically
for the union. The set {i ∈ N : Ci = ∅} can be computed, because Ci = ∅ ⇐⇒
X ⊆ Vi ⇐⇒ Ui = ∅, which is both c.e. and co-c.e. relative to a compact presentation.
Therefore, equality and inclusion are decidable because they reduce to emptiness of some
boolean combination.

In particular, whether X is connected is Π0
1 relative to a compact presentation of X.

2.5 Covering dimension

Let us briefly recall the covering dimension of a topological space X. If U ,V are two open
covers of X, we say that V is a refinement of U if every V ∈ V is contained in some U ∈ U .
An open cover U has order n if the intersection of any n elements of U is empty. The
covering dimension of X, written dim(X), is the least number n such that every open
cover U of X has a refinement V of order n+ 1, if it exists.

Proposition 2.7. Let n ∈ N. Given a compact presentation of X, the predicate dimX ≤
n is Π0

2, uniformly in n.

Proof. We are given a compact presentation of X as oracle. As X is compact, it is routine
to check that in the definition of dimension, one can assume that U and V are good covers
and that V strictly refines U . Therefore, dimX ≤ n iff for every good cover U , there
exists a good cover V that strongly refines U , and such that for all V0, . . . , Vn ∈ V , one
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has V 0 ∩ . . . ∩ V n = ∅. This is a Π0
2 predicate, because one can computable enumerate

the good covers of X, and the strong refinements of a given good cover.

Proposition 2.8. If dim(X) ≤ n, then given a compact presentation of X, one can
compute a strong refining sequence of good open covers (Us)s∈N of order n+ 1.

Proof. We proceed as in the proof of Lemma 2.5, but when searching for a good cover Us+1

that strongly refines Us, we additionally test whether Us+1 has order n+ 1, which is also
a Σ0

1 predicate. As dim(X) ≤ n, it always exists so it can be effectively found.

Corollary 2.9. If X is zero-dimensional, then from any compact presentation of X, one
can compute a pruned tree T ⊆ 2<ω such that X is homeomorphic to [T ].

Proof. As X is zero-dimensional, one can compute by Proposition 2.8 a strongly refining
sequence of good open covers (Us)s∈N of order 1. Each Us is therefore made of clopen sets.
All these clopen sets ordered by inclusion form a finitely-branching pruned tree, in which
the number of nodes at each level can be computed. By standard arguments, it can be
effectively converted into a binary tree.

3 Cantor-Bendixson derivative

Let X be a topological space. The Cantor-Bendixson derivative of X is the subspace X ′

of all non-isolated points of X. We discuss the computability of X ′ in comparison with
the computability of X. This problem has been investigated in the context of reverse
mathematics in [16].

In the next result, it is important to note that in order to produce a compact presentation
of X ′, we only use a Polish presentation of X.

Lemma 3.1. Let X be a compact Polish space.

If X ⊆ Q is d-computably overt then X ′ is Π0
1(d

′) and d′′-computably overt.

Therefore, if X has a d-computable Polish presentation, then its Cantor-Bendixon deriva-
tive X ′ has a d′′-computable compact presentation.

Proof. Assume that X ⊆ Q is d-computably overt, and let (xi)i∈N be a d-computable
dense sequence in X.

Let B = B(s, r) be a rational open ball in Q, and for k ∈ N let Bk = B(s, r − 2−k). We
claim that B intersects X ′ if and only if there is k such that Bk ∩ X contains infinitely
many points. For the forward direction, choose x ∈ B∩X ′. One has x ∈ Bk for sufficiently
large k. Since Bk is open and x is not isolated in X, Bk contains infinitely many points.
For the backward direction, if Bk ∩ X contains infinitely many points then its closure,
which is contained in B ∩X, contains a non-isolated point, therefore B intersects X ′. By
this claim, the property B ∩X ′ ̸= ∅ is equivalent to

∃k,∀n,∃xi1 , . . . , xin that are pairwise distinct and belong to Bk,

which is Σ0
3 relative to d, or equivalently Σ0

1 relative to d′′. This means that X ′ is d′′-
computably overt.

10



Next, let A = {(i, k) : ∀j, xj = xi or dQ(xi, xj) ≥ 2−k}. The set A is Π0
1 relative to d,

hence d′-computable. One can easily see that x is isolated inX if and only if x ∈ B(xi, 2
−k)

for some (i, k) ∈ A. Thus, the set of isolated points is a Σ0
1(d

′) subset of X; hence X ′ is
a Π0

1(d
′) subset of X, which is itself Π0

1(d
′), so X ′ is Π0

1(d
′).

Therefore, X ′ is d′′-computably compact.

3.1 Stone duality

Here we show that spectra of compact zero-dimensional spaces are closely related to
spectra of Boolean algebras. This follows from an effectivization of Stone duality in [38].

Let B be the category formed by the Boolean algebras as objects and the {∨,∧,̄ , 0, 1}-
homomorphisms as morphisms. Recall that a Stone space is a compact topological space
X such that for any distinct x, y ∈ X there is a clopen set U with x ∈ U ̸∋ y (i.e.,
zero-dimensional and T1). Let S be the category formed by the Stone spaces as objects
and the continuous mappings as morphisms.

The Stone duality states the dual equivalence between the categories B and S. More
explicitly, the Stone space s(B) corresponding to a given Boolean algebra B is formed by
the set of prime filters of B with the base of open (in fact, clopen) sets consisting of the
sets {F ∈ s(B) | a ∈ F}, a ∈ B. (Note that one could equivalently take ideals in place
of filters.) Conversely, the Boolean algebra b(X) corresponding to a given Stone space X
is formed by the set of clopen sets (with the usual set-theoretic operations). By Stone
duality, any Boolean algebra B is canonically isomorphic to the Boolean algebra b(s(B))
(the isomorphism f : B → b(s(B)) is defined by f(a) = {F ∈ s(B) | a ∈ F}), and any
Stone space X is canonically homeomorphic to the space s(b(X)).

Restricting the Stone duality to the countable Boolean algebras, we obtain their duality
with the class CP0 of compact zero-dimensional countably based spaces, and in fact with
the compact subspaces of the Cantor space 2ω. As the nonempty closed subsets of 2ω

coincide with the sets [T ] of infinite paths through a pruned tree T ⊆ 2ω, we obtain a
close relation between such subspaces and countable Boolean algebras.

Fact 3.2. (1) A Boolean algebra has a d-c.e. (resp. d-co-c.e., d-computable) copy if
and only if it is isomorphic to the Boolean algebra of clopen subsets of [T ] for some
d-co-c.e. (resp. d-c.e., d-computable) pruned tree T .

(2) Every d-co-c.e. Boolean algebra is isomorphic to a d-computable Boolean algebra.

(3) There is a d-c.e. Boolean algebra which is not isomorphic to a d-computable Boolean
algebra.

Proof. The first item follows from [38, Lemma 3]; see also [41]. The second item follows
from [38]. The third item follows from [13].

As already noticed by Harrison-Trainer, Melnikov, and Ng [18], one can use Stone duality
to show several results on degree spectra of zero-dimensional compacta. For instance,
Stone duality can be used to show the following:
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Fact 3.3 (see [18]). (1) There exists X ∈ CP0 which has a 0′-computable Polish pre-
sentation, but no computable Polish presentation,

(2) If X ∈ CP0 has a low4 Polish presentation, then it has a computable Polish presen-
tation.

For X ∈ CP0, Corollary 2.9 implies that X has a d-computable compact presentation if
and only if there exists a d-computable pruned tree T ⊆ 2<ω such thatX is homeomorphic
to [T ]. Therefore,

Corollary 3.4. The degree spectra of countable boolean algebras coincide with the compact
degree spectra of zero-dimensional compact Polish spaces.

The Stone dual of the Cantor-Bendixon derivative is known as the Fréchet derivative B′ of
a Boolean algebra B which is the quotient of B by the ideal generated by atoms (minimal
non-zero elements). Since the isolated points x of the space s(B) (realized as [F ] above)
are precisely the atoms [τ ] ∩ [F ] for suitable prefix τ ⊑ x, we obtain the following.

Proposition 3.5. For any countable Boolean algebra B, s(B′) is homeomorphic to s(B)′.

Precise complexity estimations for the Frechet derivative were obtained in [38]: for any
Turing degree d, a countable Boolean algebra C is d′′-computably presentable iff C is
isomorphic to B′ for some d-computable Boolean algebra B, and there is a d-computable
Boolean algebra B such that B′ is not d′-computably presentable. The iterated version is
also known for any n > 0: a countable Boolean algebra C is d(2n)-computably presentable
iff C is isomorphic to the nth derivative B(n) for some d-computable Boolean algebra B,
and there is a d-computable Boolean algebra B such that the nth derivative B(n) is not
d(2n−1)-computably presentable.

These results have an immediate consequence in terms of compact degree spectra of spaces
in CP0, by Corollary 3.4 and Proposition 3.5.

Theorem 3.6. Let d be any Turing degree. For any n ≥ 1, a space Y ∈ CP0 has a d(2n)-
computable compact presentation if and only if Y is homeomorphic to the nth derivative
X(n) for some d-computable compact X ∈ CP0, and there is a d-computable compact
X ∈ CP0 such that the nth derivative X(n) does not have a d(2n−1)-computable compact
presentation.

It implies in particular that Lemma 3.1 is almost optimal.

3.2 Countable spaces

We next note that countable topological spaces cannot be used to construct nontrivial
degree spectra inside the hyperarithmetical hierarchy.

Mazurkiewicz-Sierpiński’s theorem states that every countable compact Polish space is
homeomorphic to the ordinal space ωα · n+ 1 for some α < ω1 and n ∈ ω, endowed with
the order topology.

Let ωx
1 be the least ordinal which is not computable in x.
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Proposition 3.7. For any countable ordinal α, the compact and Polish degree spectrum
of the space ωα + 1 are both {x : α < ωx

1}.

Proof. We first show that if α is x-computable, then ωα+1 has an x-computable compact
presentation.

Given an x-computable well-ordering ⪯ of N of order type ωα + 1, we build a copy X
of ωα + 1 in [0, 1] as follows. We can assume w.l.o.g. that 0 is minimal and 1 is maximal
for ⪯. We embed (N,⪯) in ([0, 1],≤) by inductively defining a rational number xn ∈ [0, 1]
for each n ∈ N. We need some care to make sure that we will obtain a topological
embedding, and that the copy X will be x-computably compact. We start with x0 = 0
and x1 = 1. Let n ≥ 2 and assume that x0, . . . , xn−1 have been defined. Let i and j be
respectively the predecessor and the successor of n in ({0, . . . , n},⪯), and define xn =
2−nxi + (1− 2−n)xj. Note that xj − xn ≤ 2−n. Let X = {xn : n ∈ N} with the topology
inherited from R.
The function n 7→ xn is by construction an order embedding of (N,⪯) in ([0, 1],≤). We
need to show that it is a topological embedding, i.e. that it is continuous. It is sufficient to
check that if n = sup⪯{m : m ≺ n}, then xn = sup≤{xm : m ≺ n}. There exist infinitely
many m’s such that m ≥ n, m ≺ n and m is the predecessor of n in ({0, . . . ,m},⪯).
When defining xm for any such m, the successor of m is j = n so xn − xm ≤ 2−m, which
is arbitrarily small so xn = sup≤{m : m ≺ n} as wanted.
Therefore, the set X = {xn : n ∈ N} is a copy of ωα + 1. The sequence (xn)n∈N is
an x-computable sequence of rational numbers. Let Xn = {x0, . . . , xn} ⊆ X and observe
by construction that dH(Xn, Xn−1) ≤ 2−n, so dH(Xn, X) ≤ 2−n. As the compact sets Xn

are uniformly x-computable and converge fast to X, X is x-computable as well.

Conversely, if ωα + 1 has an x-computable Polish presentation, then by Lemma 2.1, it
has an x′-computable compact presentation. In particular, there is a countable Π0

1(x
′)

class P ⊆ 2ω which is homeomorphic to ωα + 1. Since the Cantor-Bendixson rank of
ωα + 1 is α, and the Cantor-Bendixson rank is a topological invariant, the rank of P is
also α. However, as noted by Kreisel, the Spector boundedness principle implies that the
rank of a countable Π0

1(x
′) class must be x′-computable; see also [8, Section 4]. As an

x-hyperarithmetic ordinal is always x-computable, this implies that α < ωx
1 .

The same arguments show that the compact and Polish degree spectra of ωα · n + 1 are
both {x : α < ωx

1}. Therefore, if a countable Polish space has an hyperarithmetical
compact (or even Polish) presentation, then it has a computable compact presentation.

For more details, see also [2, 16].

4 Computable aspects of Čech homology groups

4.1 Background on Čech homology groups

All the details about the definitions and results mentioned in this section can be found in
the textbook of Hurewicz and Wallman [24]. We will refer to the corresponding sections
in that reference.
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Simplicial complexes. We refer to [24, Section V.9]. Let V be a finite set, whose elements
are called the vertices. A simplicial complex K on V is a collection of subsets of V such
that if A ⊆ B ⊆ V and B ∈ K, then A ∈ K. An element A ∈ K is called a simplex, and
an n-simplex if the cardinality of A is n+ 1.

To a simplicial complexK corresponds a topological spaceXK , called its geometric realiza-
tion. Assuming that V = {0, . . . , k}, let ∆V = {(x0, . . . , xk) : ∀i, xi ∈ [0, 1] and

∑
i xi =

1}. For x = (x0, . . . , xk) ∈ ∆V , let supp(x) = {i : xi > 0}. The geometric realization
of K is the subset of ∆V defined by

XK := {x ∈ ∆V : supp(x) ∈ K}.

Let K,L be simplicial complexes on vertices VK and VL respectively. A simplicial map,
written f : K → L, is a map f : VK → VL such that if A ∈ K then f(A) = {f(v) : v ∈
A} ∈ L. In other words, a simplicial map sends each simplex of K to a simplex of L. Note
that if A is an n-simplex of K, then f(A) is a p-simplex of L for some p ≤ n, and f(A) is
an n-simplex if and only if the images of the vertices of A under f are pairwise distinct.

Simplicial homology groups. We refer to [24, Sections VIII.1, VIII.3]. To a simplicial
complex K are associated its homology groups Hn(K;G) where G is an abelian group,
called the coefficient group. Here we will only consider the coefficient group G = Z2 :=
Z/2Z.
Let K be a simplicial complex on a finite set V of vertices. An n-chain of K is a set
of n-simplices of K, or equivalently a formal sum of n-simplices with coefficients in Z2.
Let Cn(K) be the finite abelian group of n-chains, endowed with the sum operation.
The boundary operator is the group homomorphism ∂n : Cn(K) → Cn−1(K) that sends
an n-simplex ∆ = {v0, . . . , vn} to

∑n
i=0∆ \ {vi}.

An n-cycle is an n-chain whose boundary is 0, i.e. is an element of ker ∂n. An n-boundary
is an n-chain which is the boundary of some (n + 1)-chain, i.e. is an element of im ∂n+1.
One has ∂n◦∂n+1 = 0, in other words im ∂n+1 ⊆ ker ∂n, i.e. every n-boundary is an n-cycle.
The nth homology group of K is the finite abelian group Hn(K;Z2) = ker ∂n/ im ∂n+1.

Let K,L be simplicial complexes and f : K → L a simplicial map. For each n ∈ N, f
induces group homomorphisms f# : Cn(K) → Cn(L) defined as follows. If A ∈ K is
an n-simplex, then

f#(A) =

{
f(A) if f(A) is an n-simplex,

0 otherwise.

Said differently, f#(A) = f(A) if the images of the vertices of A are pairwise distinct.
The homomorphism f# commutes with ∂n+1, i.e. f# ◦ ∂n+1 = ∂n+1 ◦ f#, which implies
that f# induces a group homomorphism f∗ : Hn(K;Z2)→ Hn(L;Z2).

Čech homology groups. We refer to [24, Section VIII.4]. There are several ways to define
homology groups of more general topological spaces. We will use the Čech definition,
which approximates the space by simplicial complexes.
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Let X be a compact Polish space. To a finite open cover U = (U0, . . . , Uk) of X is asso-
ciated its nerve KU , which is a simplicial complex. Its set of vertices is VU = {0, . . . , k},
and a simplex A ⊆ VU belongs to KU if and only if

⋂
i∈A Ui ̸= ∅.

Let (Us)s∈N be a sequence of finite open covers of X such that Us+1 refines Us, i.e. each
open set of Us+1 is contained in some open set of Us, and such that the maximal diameter
of elements of Us tends to 0 as s grows.

Let Ks be the nerve of Us. As Us+1 refines Us, one can define a simplicial map fs :
Ks+1 → Ks by sending a vertex corresponding to U ∈ Us+1 to a vertex corresponding to
some V ∈ Us containing U . There are several possible choices for fs, but in the end they
will lead to the same result.

The nth Čech homology group Ȟn(X;Z2) of X is defined as the inverse limit of the
inverse system fs,∗ : Hn(Ks+1;Z2)→ Hn(Ks;Z2). In other words, Ȟn(X;Z2) is the set of
sequences (cs)s∈N with cs ∈ Hn(Ks;Z2) and cs = fs,∗(cs+1), with component-wise addition.
This group does not depend on the choice of open covers and simplicial maps.

If X is itself homeomorphic to the geometric realization of a simplicial complex, then the
Čech homology group Ȟn(X;Z2) is isomorphic to the simplicial homology groupHn(X;Z2)
[24, Theorem VIII.4.E].

4.2 Computable aspects

Lupini, Melnikov, Nies [31] and Downey, Melnikov [10] proved that the Čech cohomology
groups Ȟn(X) of a compact Polish space X are computable, i.e. can be presented as a
computable set of relations over a countable set of generators, relative to any compact
presentation of X. We will use part of their argument to investigate the computability
of the Čech homology groups Ȟn(X;Z2). However, these groups do not behave so well in
terms of computability. First, they are not countable in general, so they have no countable
set of generators and their computability does make immediate sense. Second, as we will
show, their non-triviality is Σ1

1-complete when taking coefficients in Z, which contrasts
with the non-triviality of the Čech cohomology groups with coefficients in Z, which is Σ0

2.
However, we now show that when taking coefficients in a finite group such as Z2, the
non-triviality of the Čech homology groups is Σ0

2.

Given a combinatorial description of a finite simplicial complex K, each group Hn(K;Z2)
can be fully computed: it is a finite group whose cardinality and operation can be com-
puted, for instance under the form of a Cayley table. Given a combinatorial descrip-
tion of K,L and of a simplicial map f : K → L, the group homomorphisms f ∗

n :
Hn(K;Z2) → Hn(L;Z2) can be computed, as functions between finite sets. It makes
the inverse limit Ȟn(X;Z2) a co-c.e. profinite group, in the sense of La Roche [30] and
Smith [43], i.e. the inverse limit of a computable inverse system of finite groups.

In the next statement, a finite group is represented in the strongest possible way by a
Cayley table, which encodes the cardinality of the group and the group operation. A
group homomorphism is also represented in the strongest possible way by arranging its
graph in a finite list.

Proposition 4.1. Given an inverse system of finite groups fn : Gn+1 → Gn, whether
their inverse limit is non-trivial is Σ0

2.

15



Proof. Let G be the inverse limit. We claim that G is non-trivial if and only if there
exist n ∈ N and g ∈ Gn such that g ̸= 0 and g ∈ im(fn◦. . .◦fp) for all p ≥ n. This predicate
is Σ0

2, because the groups are finite. In particular, the predicate g ∈ im(fn ◦ . . . ◦ fp) can
be decided in finite time, by testing fn ◦ . . . ◦ fp(g′) = g for each g′ in the finite set Gp+1.

If G is non-trivial, then let (gn)n∈N be a non-zero element of G. As it is non-zero, there
exists n such that gn ̸= 0. Moreover, for every p ≥ n, gn = fn ◦ . . . ◦ fp(gp+1) belongs
to im(fn ◦ . . . ◦ fp).
Conversely, assume the existence of n and g satisfying the conditions. As the groups
are finite, by König’s lemma, there exists a sequence (gp)p≥n such that gn = g and gp =
fp(gp+1) for all p ≥ n. For m < n, let gm = fm ◦ . . . ◦ fn−1(g). The sequence (gn)n∈N is an
element of G, and is non-zero as its nth coordinate is g ̸= 0.

We now have all the ingredients to show that the non-triviality of Čech homology groups
with coefficients in Z2 has limited complexity.

Corollary 4.2. Whether the nth Čech homology group Ȟn(X;Z2) of a compact Polish
space X is non-trivial is Σ0

2, uniformly in n and a compact presentation of X.

Proof. Given a compact presentation of X and a good open cover U = (U0, . . . , Uk)
of X, its nerve KU on the vertices V = {0, . . . , k} can be computed, in the sense that
one can decide whether a set J ⊆ V belongs to KU . Indeed, J ∈ KU iff

⋂
j∈J Uj ̸= ∅

iff
⋂

j∈J U j ̸= ∅. The first inequality is Σ0
1 and the second inequality is Π0

1, so it is
decidable.

If U = (U0, . . . , Uk) and V = (V0, . . . , Vl) are good open covers of X and U strongly
refines V , then one can compute a simplicial map f : KU → KV sending each vertex ui
for KU to a vertex vj of KV such that U i ⊆ Vj. Indeed, the latter inclusion is Σ0

1, so for
each i one can effectively find a suitable j.

Now, from a compact presentation of X, one can compute a strong refining sequence of
good open covers (Us)s∈N by Lemma 2.5. One can then compute the nerves Ks of Us
as well as simplicial maps fs : Ks+1 → Ks. One can compute the simplicial homology
groups Hn(Ks) and the homomorphisms fs,∗ : Hn(Ks+1;Z2)→ Hn(Ks;Z2). Their inverse
limit is Ȟn(X;Z2), and whether it is non-trivial is Σ0

2 by Proposition 4.1.

Comparison between Čech homology and Čech cohomology. Lupini, Melnikov and Nies
[31] and Downey and Melnikov [10] proved that the Čech cohomology groups Ȟn(X) of
a compact Polish space X can be computed from a compact presentation of X (we do
not write the coefficient group, which is Z). We will neither define nor use cohomology
groups, but let us mention the important fact that for each n, the simplicial cohomol-
ogy groups Hn(Ks) and the induced homomorphisms f ∗

s : Hn(Ks) → Hn(Ks+1) form a
direct system, which is essential to show that their direct limits, the Čech cohomology
groups Ȟn(X), are computable. As we saw, the simplicial homology groups Hn(Ks;Z2)
form an inverse system, which makes the computation of their inverse limits, the Čech
homology groups Ȟn(X;Z2), much more difficult.
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4.3 Influence of the coefficient group

Let us finally discuss the role of the coefficient group in Corollary 4.2. The same proof
holds for any finite coefficient group G. Moreover, the computability of the Čech coho-
mology groups proven in [31, 10] implies that Corollary 4.2 holds for the circle group G =
R/Z. Indeed, there is a duality between Čech cohomology groups and Čech homology
groups: Ȟn(X;R/Z) is the character group of Ȟn(X), i.e. is the group of homomorphisms
from Ȟn(X) to the circle group R/Z ([24, Theorem VIII.4.G, p. 137]). Therefore, the
non-triviality of Ȟn(X;R/Z) is equivalent to the non-triviality of Ȟn(X), which is Σ0

2

in X, as Ȟn(X) is computable in X.

We now show that Corollary 4.2 does not hold for G = Z, in which case the non-triviality
of Ȟn(X;Z) is Σ1

1-complete. The reason is that the groups of the inverse system are no
more finite, so the existence of a path in the inverse system is similar to the existence of
an infinite path in a tree.

Theorem 4.3. Let n ≥ 1. Given a compact presentation of a compact Polish space X,
the non-triviality of Ȟn(X;Z) is Σ1

1-complete.

Proof. The arguments in [34, 31, 10] imply the computability of the inverse system of
simplicial groups (Hn(Ks;Z), fs,∗): these groups are strongly completely decomposable
(strictly speaking, their results are about cohomology groups Hn(Ks) but apply equally to
the homology groups Hn(Ks;Z)). Therefore, their inverse limit is non-trivial if and only
if there exists a sequence (xs)s∈N with xs ∈ Hn(Ks;Z), xs = fs,∗(xs+1) for all s and xs ̸= 0
for some s. This condition is Σ1

1. We now show the completeness of the problem.

The set of trees T ⊆ 2<ω containing an infinite path with infinitely many 1’s is Σ1
1-complete

[28, Proposition 25.2]. We will reduce this problem to the non-triviliaty of Ȟ1(X;Z), and
explain the changes to be made for higher-dimensional homology groups. We will build
an inverse system of groups and then build an inverse limit of compact spaces whose Čech
homology group is the inverse limit of the groups. Note the similarity of this strategy
with [34] which builds an inverse limit of compact spaces whose first Čech cohomology
group is a given direct limit of groups.

We first define an inverse system of groups (Gn, fn), i.e. a sequence (Gn)n∈N of groups
together with homomorphisms fn : Gn+1 → Gn. We will then associate to each tree T a
subsystem (Ln, fn), i.e. a sequence of subgroups Ln ⊆ Gn satisfying fn(Ln+1) ⊆ Ln.

Let ϵ ∈ 2<ω be the empty string, S = {ϵ} ∪ {1w : w ∈ 2<ω} be the set of strings that do
not start with 0 and Sn = {w ∈ S : |w| = n}. For each w ∈ S, let k(w) = 2|w|1 where |w|1
is the number of occurrences of 1 in w. Note that k(ϵ) = 1.

For n ∈ N, we define

Gn =
⊕
w∈Sn

Zk(w).

Note that G0 = Z and G1 = Z2. We call each Zk(w) a component of Gn. If n ≥ 1
and w ∈ Sn, then |w|1 ≥ 1 so k(w) is even: we will implicitly split each component Zk(w)

into Zk(w)/2 ⊕ Zk(w)/2, expressing an element of Zk(w) as a pair.

We define fn : Gn+1 → Gn on each component of Gn+1. For each w ∈ Sn, one has k(w0) =
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k(w) and k(w1) = 2k(w) and we let

fn : Zk(w0) → Zk(w)

(x, y) 7→ (2x, 3y)

and

fn : Zk(w1) → Zk(w)

(x, y) 7→ x+ y.

An element x ∈ lim←−(Gn, fn) is described as a family (x(w))w∈S where x(w) ∈ Zk(w) for
each w ∈ S, such that x(w) = f|w|(x(w0)) + f|w|(x(w1)). We define the support of x
as supp(x) = {w ∈ S : x(w) ̸= 0}. Note that x = 0 if and only if supp(x) = S.

We relate the supports of non-zero elements with the infinite binary sequences containing
infinitely many 1’s. For an infinite sequence q ∈ 2ω, let q ↾n be the prefix of q of length n.

Claim 1. Let x ∈ lim←−(Gn, fn). One has x ̸= 0 iff there exists q ∈ 2ω starting with 1 and
containing infinitely many 1’s, and such that x(q ↾n) ̸= 0 for all sufficiently large n.

Proof. Of course if such a q exists, then x ̸= 0. Assume that x ̸= 0 and let w ∈ S be such
that x(w) ̸= 0. We build q extending w. Let n ≥ |w| and assume by induction that v :=
q ↾n has been already defined. As x(v) = fn(x(v0)) + fn(x(v1)), one has x(v0) ̸= 0
or x(v1) ̸= 0. We choose the next bit of q so that x(q ↾n+1) ̸= 0: let q(n) = 1 if x(v1) ̸= 0,
and q(n) = 0 otherwise. One has x(q ↾n) ̸= 0 for all n ≥ |w| by construction. Assume for a
contradiction that q contains only finitely many 1’s. Let v be a prefix of q extending w and
such that q = v0ω. Note that for n ≥ |v|, k(q ↾n) is constantly k(v) and x(q ↾n) ∈ Zk(v).
For such n, one must have x(q ↾n 1) = 0 because otherwise we would have chosen q(n) = 1
in the construction of q. As a result, one has x(q ↾n) = fn(x(q ↾n 0)) = fn(x(q ↾n+1))
for all n ≥ |v|. It means that each coordinate of x(q ↾v) ∈ Zk(v) is a multiple of all 2i

for all i ≥ 0, or a multiple of 3i for all i ≥ 0, which implies that x(q ↾v) = 0. It is a
contradiction because v extends w. Therefore, we have proved that q contains infinitely
many 1’s.

Conversely,

Claim 2. If q ∈ 2N starts with 1 and contains infinitely many 1’s, then there exists x ∈
lim←−(Gn, fn) such that supp(x) is the set of prefixes of q.

Proof. Let (ni)i∈N be the increasing enumeration of the positions n such that q(n) = 1, and
observe that n0 = 0. We build x = (x(w))w∈S. Let x(ϵ) = 1 ∈ Z. Let i ∈ N and assume

by induction that x(q ↾ni
) has been defined. The function fni

◦ . . . ◦ fni+1−1 : Zk(q ↾ni+1 ) →
Zk(q ↾ni ) maps (a, b) to 2ja+3jb, where j = ni+1− ni− 1. As 2j and 3j are coprime, there
exists (a, b) such that 2ja + 3jb = x(q ↾ni

), let x(q ↾ni+1
) = (a, b). For ni < n < ni+1,

naturally define x(q ↾n) = fn ◦ . . . fni+1−1(a, b). Finally, let x(w) = 0 if w is not a prefix
of q. By construction, x belongs to lim←−(Gn, fn) and supp(x) is the set of prefixes of q.

Let T ⊆ 2<ω be a tree. We can assume w.l.o.g. that T ⊆ S, replacing T with {ϵ} ∪ {1w :
x ∈ T} if necessary. We define an inverse subsystem (Ln, fn) of (Gn, fn). Let Tn = {w ∈
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T : |w| = n} and Ln =
⊕

w∈Tn
Zk(w). As T is a tree, one has fn(Ln+1) ⊆ Ln so (Ln, fn)

is an inverse system which is a subsystem of (Gn, fn). Its inverse limit consists of the
elements of the inverse limit of (Gn, fn) whose support is contained in T .

Therefore, lim←−(Ln, fn) contains a non-zero element iff lim←−(Gn, fn) contains a non-zero
element whose support is contained in T iff T contains an infinite path with infinitely
many 1’s by Claims 1 and 2.

We now define a compact space XT such that Ȟ1(XT ;Z) is isomorphic to lim←−(Ln, fn).
Let Tn = Sn

1 be the n-dimensional torus, which is the product of n circles.

Observe that Ln = Zln for some ln. We then define a space XT as the inverse limit
of Xn = Tln , with continuous surjective functions Fn : Xn+1 → Xn defined as follows.
Each homomorphism fn : Zln+1 → Zln can be decomposed as a direct sum of the homo-
morphisms

g2 : Z→ Z g3 : Z→ Z g+ : Z2 → Z
x 7→ 2x x 7→ 3x (x, y) 7→ x+ y.

We define Fn as the corresponding product of

G2 : S1 → S1 G3 : S1 → S1 G+ : S1 × S1 → S1

x 7→ 2x x 7→ 3x (x, y) 7→ x+ y,

where the circle S1 is seen as an additive group. Let then XT = lim←−(Xn, Fn).

The homology group of Xn = Tln is H1(Xn;Z) = Zln = Ln and the homomorphism Fn,∗ :
H1(Xn+1;Z) → H1(Xn;Z) induced by Fn is fn. It is a classical result that the construc-
tion of Čech homology groups of compact spaces with coefficients in Z is continuous,
i.e. commutes with inverse limits:

Ȟ1(lim←−(Xn, Fn);Z) = lim←−(H1(Xn;Z), fn) = lim←−(Ln, fn).

This result can be found in [11, Theorem X.3.1, p.261], where the statement holds for
coefficient groups in the class GR of modules over a ring R, and Z is indeed a module over
the ring Z. Therefore, Ȟ1(XT ;Z) = lim←−(Ln, fn) is non-trivial if and only if T contains a
path with infinitely many 1’s.

We finally need to check that the construction of XT is effective in T .

Claim 3. A compact presentation of the space XT can be uniformly computed from T .

Proof. It is essentially the same argument as [34, Remark 2.8]. For simplicity, we assume
that T is computable, the general case holds relative to and uniformly in T . First,
the spaces Xn = Tln have uniformly computable compact presentations, and so does
their product P =

∏
nXn. The functions Fn : Xn+1 → Xn are uniformly computable

so XT is a Π0
1-subspace of P . We need to show that XT is computably overt in P .

It is important to note that the functions Fn : Xn+1 → Xn are surjective. For n ≤ p,
let Fn,p = Fn◦Fn+1◦. . .◦Fp−1 : Xp → Xn, with Fp,p = id. Let B = B0×. . .×Bp×

∏
q>pXq

be a basic ball of P . The open set B intersects X iff the set
⋂

n≤p F
−1
n,p(Bn) is non-empty,

which is a c.e condition. Indeed, if that set contains an element xp, then let xn = Fn,p(xp)
for n < p and inductively choose for each q > p some xq ∈ Xq such that Fq−1(xq) = xq−1,
which is possible as each Fq−1 is surjective. The sequence (xn)n∈N belongs to X ∩B.
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Therefore, we have proved that the non-triviality of Ȟ1(X;Z) is Σ1
1-complete. We can

achieve the same result for Ȟk(X;Z) for any k ≥ 1. Given a binary tree T , we build
the same inverse system of groups (Ln, fn), with Ln = Zln . Let Sk be the k-dimensional
sphere and note that Hk(Sk;Z) ∼= Z. In the previous construction, we replace the circle
by Sk. However, the equality Hk(S

ln
k ;Z) ∼= Zln only holds for k = 1, so we need to

replace the product by the wedge sum (the previous argument would also work with the
wedge sum). Let s ∈ Sk be a distinguished point, making (Sk, s) a pointed space, and
let Xn =

∨
i<ln

(Sk, s). One has Hk(Xn;Z) = Zln [19, Corollary 2.25].

We define continuous surjective functions Fn : Xn+1 → Xn in a similar way, by com-
bining the following functions. Let G2, G3 : (Sk, s) → (Sk, s) be continuous functions
of degrees 2 and 3 respectively, i.e. inducing the maps g2, g3 : Hk(Sk;Z) → Hk(Sk;Z)
respectively. Let G+ : (Sk, s) ∨ (Sk, s) → (Sk, s) be defined as the identity on each copy
of Sk. One has Hk(Sk ∨ Sk) ∼= Hk(Sk) ⊕ Hk(Sk) ∼= Z2 and G+ induces g+ : Z2 → Z.
We finally define X = lim←−(Xn, Fn). Again by continuity of Čech homology groups, one

has Ȟk(X;Z) = lim←−(Hk(Xn;Z), fn) = lim←−(Ln, fn), which is non-trivial iff T contains a
path with infinitely many 1’s.

5 Degree spectra of compact Polish spaces

In this section, we realize certain sets of degrees as spectra of compact Polish spaces. We
encode a set of natural numbers into the dimensions of spheres of a space. For each n ∈ N,
the n-dimensional sphere can be realized as Sn = {(x0, . . . , xn) ∈ Rn+1 : x20+. . .+x

2
d = 1}.

To a set A ⊆ N we associate the space XA, which is the one-point compactification of the
locally compact space ∐

n∈A

Sn+1 ⨿ ω.

We then identify the compact and Polish degree spectra of XA as follows.

Theorem 5.1. For all A ⊆ N and Turing degree d,

A is Σ0
2 relative to d ⇐⇒ XA has a d-computable compact presentation,

A is Σ0
3 relative to d ⇐⇒ XA has a d-computable Polish presentation.

Before proving this result, let us give its main consequences.

Corollary 5.2. For every Turing degree d, there exists a space Xd whose compact degree
spectrum is {x : d ≤ x′} and Polish degree spectrum is {x : d ≤ x′′}.

Proof. Given the Turing degree d of a set D ⊆ N, let A = {2n : n ∈ D}∪{2n+1 : n /∈ D}
and Xd = XA.

Corollary 5.3. There is a compact perfect Polish space which has a computable Polish
presentation, but no computable compact presentation.

Proof. Let X = X0′′ from Corollary 5.2. Its Polish degree spectrum is {x : 0′′ ≤ x′′}
while its compact degree spectrum is {x : 0′′ ≤ x′}. The former contains 0 but not the
latter.
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We can solve Question 2 affirmatively.

Corollary 5.4. There is a perfect compact Polish space which is 0′-computably presentable
but not computably presentable. Its Polish degree spectrum is the set of high2 degrees.

Proof. Let X = X0′′′ from Corollary 5.2. Its Polish degree spectrum is {x : 0′′′ ≤ x′′},
i.e. the high2 degrees. It contains 0′ but not 0.

One can improve the degree of non-computably presentable spaces.

Corollary 5.5. For any non-low2 degree d, there exists a perfect Polish space which is
d-computably presentable, but not computably presentable.

Proof. The Polish degree spectrum of the space Xd′′ is {x : d′′ ≤ x′′}, so it contains d but
not 0 when d is not low2.

In particular, one can take d ≤ 0′ which is low3 but not low2.

We now give the proof of Theorem 5.1. We need to measure the complexity of finding
the dimension of the sphere. It turns out that the descriptive complexity of measuring
its covering dimension is too large, as will be made precise later; the way we detect an n-
dimensional sphere is by finding a homology cycle of dimension n. Although conceptually
more complicated, it results in an algorithm of lower complexity.

5.1 Learning the dimension of a sphere

Given a compact presentation of space X which is homeomorphic to the d-dimensional
sphere Sd for some d, how difficult is it to find d?

We are going to show that d can be computed in the limit, i.e. one can compute a
sequence (ds)s∈N such that d = lims ds.

The first idea would be to detect the covering dimension of X, but it only enables to
compute a sequence (ds)s∈N such that d = lim infs ds, because the predicate dim(X) ≤ n
is Π0

2 (Proposition 2.7). This strategy cannot work, because it can be proved that if X
is homeomorphic to the d-dimensional cube [0, 1]d, then one cannot compute d in the
limit. Therefore, we need to use a way of distinguishing between spheres other than the
dimension, and this is given by the homology of the spheres.

Lemma 5.6. There is an algorithm that, given a compact presentation of a sphere Sd, d ≥
1, computes d in the limit.

Proof. We show that relative to a compact presentation of X ∼= Sd, the predicate X ∼= Sn

is Σ0
2. It implies that it is ∆0

2, because X
∼= Sn ⇐⇒ ∀m ̸= n,X ≇ Sm is Π0

2, therefore {d}
is ∆0

2 and d can be computed in the limit.

The Čech homology groups of Sd are

Ȟn(S
d;Z2) =

{
Z2 if n = d or n = 0,

0 otherwise.
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Therefore, for n ≥ 1, X is homeomorphic to Sn iff Ȟn(X;Z2) is non-trivial, which is Σ0
2

by Corollary 4.2.

One could adapt the argument to include the case d = 0 in the previous lemma, but we
will not need it.

Let us explain more concretely how the algorithm works. It searches for an approximation
of X by a simplicial complex Ks that contains an n-cycle c which is not a boundary, and
which “survives” in each further approximation Kt, t ≥ s. The right way of expressing
that c survives in Kt is that there exists an n-cycle d in Kt which “refines” c, in the sense
that it is sent to c by the simplicial map f = ft−1◦ . . .◦fs : Kt → Ks, modulo a boundary:
c = f(d) + ∂e, for some n-chain e of Ks.

Note that whether a cycle c of Ks survives at stage t is decidable, because it is expressed
by quantification over objects d, e in a finite set, and the maps f and ∂ are computable.

At any stage t, there are finitely many pairs (n, s) with s ≤ t such that some n-cycle
in Ks’s survives in Kt. The algorithm outputs the number n for which the associated s is
minimal, i.e. n is the dimension the cycle that has survived for the longest period of time.

Remark 5.7. Lemma 5.6 can be alternatively proved by using the computability of Čech co-
homology groups proved in [31] and [10]. Indeed, Ȟn(Sm) is non-trivial exactly when m =
n (assuming m,n ≥ 1), and non-triviality of a Ȟ(Sm) is Σ0

2.

We can at last prove the main result of this section.

Proof of Theorem 5.1. Assume that d computes a compact presentation of XA. Relative
to d, we compute an enumeration (Ci)i∈N of the clopen subsets of XA, by Proposition
2.6. One has n ∈ A ⇐⇒ ∃i, Ci is connected, is not a singleton and is homeomorphic
to Sn+1. When Ci is connected and is not a singleton, Ci is a sphere so by Lemma 5.6
its dimension is limit-computable relative to d. Therefore, A is Σ0

2 relative to d. If d
computes a Polish presentation of XA, then d′ computes a compact presentation of XA,
so A is Σ0

2 relative to d′, hence Σ0
3 relative to d.

We now prove the other direction. If A is Σ0
2 relative to d, then there is a d-computable

set B ⊆ N3 such that n ∈ A ⇐⇒ ∃i∀j, (n, i, j) ∈ B, and such that when n ∈ A, there
exists a unique i satisfying (n, i, j) ∈ B for all j.

For each n, let Xn
∞ be a canonical (n + 1)-sphere in Q and Xn

j ⊆ Xn
∞ be an increasing

sequence of finite sets at Hausdorff distance < 2−j from Xn
∞. We can take all these sets

uniformly computably compact. Let

Y n
i =

{
Xn

∞ if ∀j, (n, i, j) ∈ B,

Xn
j if j is minimal such that (n, i, j) /∈ B.

We apply Proposition 2.4, implying that the sets Y n
i are uniformly d-computably compact.

Therefore, the set α0(
∐

n,i Y
n
i ⨿ω) is d-computably compact by Proposition 2.3. This set

is homeomorphic to XA, because all the finite sets Xn
j can be seen as subsets of ω.

If A is Σ0
3 relative to d, then A can be presented in the same way for some d-c.e. set B,

and we consider the same realization of XA. Again by Proposition 2.4, the sets Y n
i are

uniformly d-computably overt, and so is α0(
∐

n,i Y
n
i ⨿ ω).
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Remark 5.8 (Cycles vs dimension). This result cannot be proved by simply using the
dimension of the spheres, because detecting the dimension of a space is more complex in
general. Whether a space has dimension n is not ∆0

2; it is complete for the descriptive
complexity class consisting of differences of two Σ0

2 sets. In particular, given a compact
presentation of In, one cannot compute a sequence converging to n. However, one can
compute a sequence ni such that n = lim infi ni, and this is optimal. It implies that if the
space X ′

A := α0(
∐

n∈A In+1 ⨿ ω) has a computable compact presentation, then A is Σ0
3,

and it is possible to find a Σ0
3-complete set A such that X ′

A has a computable compact
presentation. However, it does not seem to be true that X ′

A has a computable compact
presentation for any Σ0

3 set A.

Remark 5.9. We do not know whether adding extra points outside the spheres is really
needed. One can show that if YA is the one-point compactfication of

∐
n∈A Sn+1, then Z

computes a compact presentation of YA if and only if A is Σ0
2 relative to Z. It implies

that if Z computes a Polish presentation of YA then A is Σ0
3 relative to Z, but we do not

know whether the other implication holds.

Remark 5.10. One can modify the proof of Theorem 5.1 to ensure that XA is perfect, by
using the one-point compactification of the following:∐

n∈A

Sn+1 ⨿
∐
n∈N

I

where I is the line segment. As I has trivial homology groups, the algorithm that de-
codes A from XA still works. In the construction of XA from A, one can replace the finite
set of isolated points Xn

j with a finite disjoint union of line segments contained in Sn+1,
and add countably many copies of I.

5.2 Iterations of the Turing jump

We now prove a result similar to Theorem 5.1 for higher levels of the arithmetical hierarchy.
This theorem also follows from the results independently obtained by Melnikov [34] and
Lupini, Melinov, Nies [31], although with a different proof.

Theorem 5.11. Let k ≥ 3. To a set A ⊆ N one can associate a compact Polish space XA,k

such that for any Turing degree d,

A is Σ0
k relative to d ⇐⇒ XA,k has a d-computable compact presentation,

A is Σ0
k+1 relative to d ⇐⇒ XA,k has a d-computable Polish presentation.

Corollary 5.12. For every Turing degree d and every k ≥ 2, there exists a space Xd,k

whose compact degree spectrum is {x : d ≤T x(k)} and Polish degree spectrum is {x :
d ≤T x(k+1)}.

Proof. Given the Turing degree d of a set D ⊆ N, let A = {2n : n ∈ D}∪{2n+1 : n /∈ D}
and Xd,k = XA,k+1, and note that for j ∈ {k, k+1}, A is Σ0

j+1 relative to x iff d ≤ x(j).

We recall that a degree x is highn iff 0(n+1) ≤ x(n). The class of highn degrees is the
compact degree spectrum of the computable Polish space X0(n+1),n and is the Polish degree
spectrum of the space X0(n+1),n−1.
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We now proceed with the proof of Theorem 5.11. We restrict our attention to compact
Polish spaces that have countably many connected components. For such spaces, the
dimension is the supremum of the dimensions of the connected components (sum theorem
1.5.3 in [12]).

Widgets. For k ∈ N, we inductively define spaces Sk and Pk.

For a space X, let α0(X) be the one-point compactification of the disjoint union of count-
ably many copies of X. It will be thought as a pointed space, with the point at infinity as
basepoint. For k ≥ 1 and a compact space X, let αk(X) be the wedge sum of the pointed
space (Ik, (0, . . . , 0)) with α0(X).

Let S0 = ∅ and P0 = {0}. For k ≥ 1, let

Sk = αk(Sk−1 ⨿ Pk−1),

Pk = αk(Sk−1).

In particular,

S1 = I ∨ (ω + 1),

P1 = I.

For k ≥ 1, these spaces have several properties:

• dim(Sk) = dim(Pk) = k,

• If C is a clopen subset of Sk (respectively Pk) of dimension k, then C contains a
clopen set that is homeomorphic to Sk (respectively Pk).

A family of topological invariants. For k ≥ 1, we define a topological invariant that
distinguishes Sk from Pk and whose complexity in the Vietoris topology is Σ0

k, in the
sense that the collection of compact subsets of Q satisfying this invariant is Σ0

k in the
hyperspace K(Q) endowed with the Vietoris topology. More generally, we define a Σ0

k

invariant Ja,k that distinguishes Ia × Sk from Ia × Pk.

Definition 5.13. For a ∈ N and k ≥ 1, we inductively define a topological invariant Ja,k

as follows:

(1) X ∈ Ja,1 ⇐⇒ X is disconnected,

(2) For k ≥ 2, X ∈ Ja,k ⇐⇒ X contains a clopen set of dimension ≥ a + k − 1 that
does not satisfy Ja,k−1.

Remark 5.14. Ja,k enjoys some form of heredity: X satisfies Ja,k iff X contains a clopen
set satisfying Ja,k.

Lemma 5.15. Let k ≥ 1. Ja,k is satisfied by Ia × Sk but not by Ia × Pk.

Proof. For k = 1, it is straightforward: Ia × S1 = Ia × (I ∨ (ω + 1)) is disconnected,
but Ia × P1 = Ia+1 is connected.
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Let k ≥ 2. We assume the result for k − 1, and prove it for k. Ia × Sk contains a clopen
set C which is a copy of Ia × Pk−1. One has dim(C) = a + k − 1 and by induction
hypothesis, this set does not satisfy Ja,k−1.

Let C be a clopen subset of Ia × Pk of dimension ≥ a + k − 1. We show that C satis-
fies Ja,k−1. We claim that C contains a clopen set D which is a copy of Ia × Sk−1, which
implies that C satisfies Ja,k−1 by heredity.

If dim(C) = a+ k then C contains a clopen set which is a copy of Ia×Pk, which in turns
contains a clopen copy of Ia×Sk−1. If dim(C) = a+ k− 1 then C is disjoint from Ia× Ik,
so it is a disjoint union of clopen subsets of Ia × Sk−1. One of them, call it E, must have
dimension a+k−1. Being a clopen subset of Ia×Sk−1 of dimension a+k−1, E contains
a clopen set D which is a copy of Ia × Sk−1. D is a clopen subset of C as wanted.

Therefore, we have proved that C satisfies Ja,k−1 for every clopen subset of Ia × Pk of
dimension ≥ a− k − 1, so Ia × Pk does not satisfy Ja,k.

Lemma 5.16. For k ≥ 1, Ja,k has complexity Σ0
k in the Vietoris topology.

Proof. We prove the result by induction. For k = 1, being disconnected is Σ0
1.

Let k ≥ 2 and assume that Ja,k−1 is Σ
0
k−1. Having dimension ≥ a+k−1 is Σ0

2 (Proposition
2.7) hence Σ0

k, the complement of Ja,k−1 is Π0
k−1 by induction hypothesis. Therefore,

containing a clopen set of dimension ≥ a+ k − 1 that does not satisfy Ja,k−1 is Σ0
k.

Encoding a set in a space. Let k ≥ 3 be fixed. We define an = (k + 1)n for all n ∈ N.
Let A ⊆ N. We define the space XA,k as the one-point compactification of the disjoint
union of the spaces Ian × Sk for n ∈ A and Ian × Pk for n /∈ A.
The role of an is to use the dimension to distinguish between the difference pieces. In
particular, if a clopen subset of XA,k has dimension < an, then C does not intersect Ian×Sk

or Ian × Pk.

Lemma 5.17. One has n ∈ A iff XA,k contains a clopen set of dimension ≤ an + k
satisfying Jan,k.

Proof. Let n ∈ N and a = an.

First assume that n ∈ A. XA,k contains Ia×Sk as a clopen set, which has dimension a+k
and satisfies Ja,k.

Now let n /∈ A and assume for a contradiction that XA,k contains a clopen set C of
dimension ≤ a+ k satisfying Ja,k. First, C is contained in the union of the sets Iam × Sk

or Iam×Pk form ≤ n. As C satisfies Ja,k, C contains a clopen setD of dimension≥ a+k−1
that does not satisfy Ja,k−1. Therefore, the intersection E = D ∩ (Ia × Pk) does not
satisfy Ja,k−1 by heredity. One has dim(E) ≥ a + k − 1, because the part of D which
is outside Ia × Pk has dimension < a. As a result, Ia × Pk satisfies Ia × Pk, which is a
contradiction.

Note that the property expressed in the lemma is Σ0
k in the Vietoris topology, when k ≥

3 (however it is not Σ0
2 when k = 2, so Theorem 5.1 cannot be proved in this way).
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Therefore, for any Turing degree d computing a compact presentation of XA,k, A is Σ0
k

relative to d; hence for any Turing degree d computing a Polish presentation of XA,k, d
′

computes a compact presentation of XA,k (Lemma 2.1) and therefore A is Σ0
k+1 relative

to d.

We now show that if A is Σ0
k relative to d, then d computes a compact presentation

of XA,k, and if A is Σ0
k+1 relative to d, then d computes a Polish presentation of XA,k.

Thanks to Proposition 2.4, the two results can be proved with a single argument. We
prove it by induction on k, the next result is the case k = 1.

Lemma 5.18. For a set A, let

Yn =

{
S1 if n ∈ A,
P1 if n /∈ A.

If A is Σ0
1 (resp. Σ0

2) relative to d, then there exist copies of Yn that are uniformly d-
computably compact (resp. overt).

Proof. For k ∈ N, let

Xk = [2−k, 1] ∪ {2−k − 2−n : n ≥ k},
X∞ = [0, 1].

Observe that Xk
∼= S1, X∞ ∼= P1, Xk ⊆ Xk+1 ⊆ . . . ⊆ X∞ and dH(Xk, X∞) < 2−k−1.

Let A be given by a predicate n ∈ A ⇐⇒ ∃k, (n, k) ∈ B. To n we associate Yn = Xk

if k is minimal such that (n, k) ∈ B, and Yn = X∞ if there is no such k, i.e. n /∈ A.
We apply Proposition 2.4. If B is computable relative to d, then Yn is unifomly d-
computably compact. If B is Π0

1 relative to d, then Yn is uniformly d-computably overt.

Lemma 5.19. Let k ≥ 1. For a set A, let

Yn =

{
Sk if n ∈ A,
Pk if n /∈ A.

If A is Σ0
k (resp. Σ0

k+1) relative to d, then there exist copies of Yn that are uniformly d-
computably compact (resp. overt).

Proof. The case k = 1 is Lemma 5.18. Let k ≥ 2 and assume the result for k − 1.

Let A be given by a predicate n ∈ A ⇐⇒ ∃i, (n, i) ∈ B where B is Π0
k−1 relative to d. We

can assume that if ∃i, (n, i) ∈ B, then there exist infinitely many i’s such that (n, i) ∈ B
and infinitely many i’s such that (n, i) /∈ B. Indeed, define B′ as follows: (n, 2i) ∈ B′ if
there exists j ≤ i such that (n, j) ∈ B, and (n, 2i + 1) /∈ B′. B′ is Π0

k−1 and n ∈ A ⇐⇒
∃i, (n, i) ∈ B′.

Let Xn,i = Sk−1 if (n, i) /∈ B and Xn,i = Pk−1 if (n, i) ∈ B. By induction hypothesis,
given (n, i) one can produce a copy of Xn,i which is uniformly d-computable compact.
Build the space Xn which is the wedge sum of Ik and the one-point compactification
of

∐
n,iXn,i. If n ∈ A then Xn = Sk; if n /∈ A then Xn = Pk.
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If B is Π0
k relative to d, then the very same argument gives uniformly d-computably overt

copies of Yn by induction.

Finally, a presentation of XA,k from A is then achieved by building products of Ian with
copies of Sk or Pk as above, using Proposition 2.3. The proof of Theorem 5.11 is complete.

6 Cone-avoidance

In this section, we solve Question 3 by showing the following:

Theorem 6.1. Let A ⊆ N be a non-c.e. set. Every compact Polish space has a Polish
presentation that does not enumerate A.

In particular,

Corollary 6.2. The degree spectrum of a compact Polish space cannot be the upper
cone {x : d ≤ x} for any non-computable degree d.

Actually the proof also shows that if for each i we choose a non-c.e. set Ai, then every
compact Polish space has a presentation that does not enumerate any Ai. It implies that
the degree spectrum of a compact Polish space cannot be a countable union of non-trivial
upper cones

⋃
i∈ω{x : di ≤ x}.

In order to prove the result, we need ideas from computability theory and ideas from
topology.

Overtness argument. Overtness captures a familiar argument in computably theory,
which we describe now.

We will apply the technique to the space X = V(Q), however it is easier to state the
result for an abstract space X.

Let X be a countably-based space with a fixed indexed basis (Bi)i∈N that is closed under
finite intersections. We say that A ⊆ N is reducible to x ∈ X, written A ≤e x, if A is
enumeration reducible to Nx = {i ∈ N : x ∈ Bi}. We write M(x) = A if M enumerates A
from any enumeration of Nx. We say that a set S ⊆ X is computably overt if the
set {i ∈ N : S ∩Bi ̸= ∅} is c.e.
For a Turing machine M and a set A ⊆ N, we say that M fails to enumerate A from x
if M outputs some n /∈ A on some enumeration of Nx. We denote by FM,A the set of x’s
on whichM fails to enumerate A. That set is open, because whenM outputs some n /∈ A,
it has only read a finite part of Nx, which can be extended to an enumeration of Ny for
any y in some neighborhood of x, so each such y also belongs to FM,A.

Lemma 6.3. Let X be a countably-based space. Let x ∈ X, A ⊆ N be a non-c.e. set
and M a Turing machine. If M(x) = A, then FM,A intersects every computably overt
subset of X containing x.
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Proof. Assume thatM(x) = A and let V be a computably overt set containing x. If FM,A

does not intersect V , then we describe an effective procedure that enumerates A, contra-
dicting the assumption that A is not c.e. The procedure is as follows: enumerate all the
prefixes of names of elements of V (which is possible because V is computably overt),
simulate M on them, and collect all the outputs. As FM,A does not intersect V , all the
outputs are correct, i.e. belong to A, and every element of A appears because M enumer-
ates A on each name of x ∈ V . As a result, this procedure enumerates A, which is then
c.e. The contradiction implies that FM,A intersects V .

Perturbations. We now come to the topological ingredient of the proof, based on the
notion of ϵ-perturbation. The proof is a Baire category argument: if A ⊆ N is not c.e.,
then one can perturb any compact set K ⊆ Q so that its perturbed copy K ′ does not
enumerate A, when seeing K ′ as an element of the space V(Q).

Definition 6.4. An ϵ-perturbation is a one-to-one continuous function f : Q→ Q such
that d(f(x), x) < ϵ for all x ∈ Q.

Lemma 6.5. Let S = {s0, . . . , sn} and T = {t0, . . . , tn} be finite subsets of Q such
that d(si, ti) < ϵ for i = 0, . . . , n. There exists an ϵ-perturbation f such that f(si) = ti
for i = 0, . . . , n.

Proof. It is a direct application of the homeomorphism extension theorem from [44]. It
relies on the notion of Z-set, which we recall for completeness; however, it is not important
to understand this notion, we will only use the fact that finite subsets of Q are Z-sets.

The following definition and results are taken from [44]. A closed set A ⊆ Q is a Z-set
if for every continuous function f : Q → Q and every ϵ > 0, there exists a continuous
function g : Q → Q such that d(f(x), g(x)) < ϵ for all x ∈ Q, and g(Q) ∩ A = ∅ (see
§5.1 in [44]). By Remark 5.1.4 in [44], every singleton is a Z-set. Lemma 5.1.2 (3) in [44]
states that any finite union of Z-sets is a Z-set, therefore every finite set is a Z-set.

The homeomorphism extension theorem (Theorem 5.3.7 in [44]) states that if S, T ⊆ Q
are Z-sets and f : S → T is a homemorphism satisfying d(f(x), x) < ϵ for all x ∈ S, then f
can be extended to a homeomorphism f : Q→ Q satisfying d(f(x), x) < ϵ for all x ∈ Q.
Therefore, the statement is just an application of the homeomorphism extension theorem
to finite sets.

We remind the reader that V(Q) is a countably-based topological space endowed with the
lower Vietoris topology. In the next statement, the notions of computable overtness and
closure are meant in that topology.

Lemma 6.6. Let K ⊆ Q be a compact set and ϵ > 0. There exists a computably overt
set A ⊆ V(Q) with K ∈ A, such that A is contained in the closure of the set of ϵ-
deformations of K.

Proof. Let F ⊆ V(Q) be the family of finite sets of rational points, which can be com-
putably indexed in an obvious way. We are going to define A in such a way that:

(1) F ∩A is dense in A (w.r.t. the lower Vietoris topology),
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(2) F ∩A is computably enumerable,

(3) Every element of F ∩A is contained in some ϵ-deformation of K.

The first two conditions imply that A is computably overt, because it is the closure of a
computable sequence listing the elements of F ∩A.
The first and third conditions imply that A is contained in the closure of the set of ϵ-
deformations of K: A is the closure of F ∩ A, and each element of F ∩ A is a subset of
an ϵ-deformation K ′ of K, so belongs to the closure of {K ′} (the lower Vietoris closed
open sets are upwards closed, equivalently the lower Vietoris closed sets are downwards
closed).

We now define A satisfying these conditions. If K was perfect then we could just take
some small rational ball in the Hausdorff metric containing K. However we need a bit
more work in the general case.

We first show that there exist open sets U0, . . . , Un ⊆ Q that cover K, such that for
every x ∈ U0, K ∩B(x, ϵ) is infinite and K ∩ Ui is a singleton for each i ≥ 1. Let KN be
the set of non-isolated points of K and let U0 = {x ∈ Q : d(x,KN) < ϵ}. The set K \ U0

is finite, because it is compact and all its points are isolated. Therefore, there exist basic
balls U1, . . . , Un isolating the points of K \U0. We can make sure that all the open sets Ui

are pairwise disjoint. By compactness of K, we can assume that U0 is a finite union of
basic balls. We can now define our computably overt subset of V(Q): let

A =

{
C ∈ V(Q) : C ⊆

⋃
0≤i≤n

Ui and |C ∩ Ui| = 1 for all i ≥ 1

}
.

We check condition 1. Let C ∈ A. C is a limit in the Vietoris topology of finite sets Ck of
rational points (note that here we use the Vietoris rather than the lower Vietoris topology).
As C ∈ A, for sufficiently large k, Ck is contained in

⋃
i Ui and intersects U1, . . . , Un.

For i ≥ 1, if Ck∩Ui contains more than one point, then keep only one of them. Let C ′
k ⊆ Ck

be obtained this way. One has C ′
k ∈ F ∩A by construction, and C ′

k converges to C in the
Vietoris (hence lower Vietoris) topology.

Condition 2. is easily checked: the conditions defining C ∈ A are c.e., when C is a finite
set of rational points.

We now prove condition 3. We show that for every finite set T ∈ A, there exists an ϵ-
deformation of K containing T .

Let T = {t0, . . . , tn} belong toA. We build a finite set S = {s0, . . . , sn} ⊆ K with d(si, ti) <
ϵ. For each i, if ti ∈ U0 then the intersection of B(ti, ϵ) with K is infinite, so we can choose
a point si in the intersection, so that si ̸= sj for i ̸= j. If ti ∈ Uk with k ≥ 1, then we
define si as the unique point of K in Uk. The points si are pairwise distinct, because
if i ̸= j then si and sj cannot both belong to a common Uk, k ≥ 1, as K ∈ A.
One has d(si, ti) < ϵ for each i, so we can apply Lemma 6.5 to obtain an ϵ-perturbation f
mapping each si to ti. One has T = f(S) ⊆ f(K) so the proof is complete.

We now have all the ingredients needed to prove the result.
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Proof of Theorem 6.1. Let X be a compact Polish space. We prove that some copy of X
in V(Q) does not enumerate A. It implies the result, because any name of a copy of X
in V(Q) computes a presentation of X.

The space I(Q) = {ϕ : Q→ Q continuous one-to-one}, with the topology induced by the
metric ρ(ϕ, ψ) = supx d(ϕ(x), ψ(x)) is Polish (Corollary 1.3.11 in [44]). For any compact
set K ⊆ Q and any non-c.e. set A ⊆ N, we prove that the set {ϕ ∈ I(Q) : A ≤e ϕ(K)}
is meager in I(Q), which implies the existence of a copy K ′ of K such that A ≰e K

′

(K ′ is seen as an element of the space V(Q)). It is done by showing that for each Turing
machine M , the set {ϕ ∈ I(Q) :M(ϕ(K)) = A} is nowhere dense in I(Q).
Let ϕ ∈ I(Q) be such thatM(ϕ(K)) = A. For ϵ > 0, we prove that there exists ψ ∈ I(Q)
such that ρ(ϕ, ψ) < ϵ and such that ψ(K) ∈ FM,A (the set FM,A was defined before
Lemma 6.3). It implies the result, because for every ψ′ sufficiently close to ψ, one also
has ψ′ ∈ FM,A as FM,A is open.

Lemma 6.6 provides a computably overt set A containing ϕ(K), in which the set of ϵ-
deformations of ϕ(K) is dense. By Lemma 6.3, FM,A intersects A. As FM,A is open, there
exists an ϵ-deformation of ϕ(K) in FM,A. Let f be the corresponding ϵ-perturbation,
and ψ = f ◦ ϕ. One has ρ(ψ, ϕ) < ϵ and ψ(K) ∈ FM,A.

7 Comparing compact and Polish presentations

Let X be a compact Polish space. In the proofs we frequently used the fact that the jump
of any Polish presentation of X computes a compact presentation of X, which is stated
precisely in Lemma 2.1. Here we investigate whether it can compute more. Of course, it
always computes 0′, and we show that if X is perfect, then it does not compute more in
general: every compact presentation of X, paired with 0′, computes the jump of a Polish
presentation of X. However, we will see after that it is no more true for non-perfect spaces
and we give a counter-example.

Theorem 7.1. Let X be a compact perfect Polish space. If X has a d-computable compact
presentation, then there exists e such that X has an e-computable Polish presentation
and e′ ≤ d⊕ 0′.

Corollary 7.2. Let X be a compact perfect Polish space. One has

{e′ : e ∈ Sp(X)} = {d⊕ 0′ : d ∈ Spc(X)}.

Proof. If e ∈ Sp(X), then let d = e′. One has d ∈ Spc(X) by Lemma 2.1, and e′ = d⊕0′.

If d ∈ Spc(X), then there exists e0 ∈ Sp(X) such that e′0 ≤ d ⊕ 0′ by Theorem 7.1.
Friedberg’s jump inversion theorem relative to e0 states that if a ≥ e′0, then there exists f
such that a = (e0⊕ f)′. We apply it to a = d⊕0′, and let e = e0⊕ f . One has d⊕0′ = e′

and e ∈ Sp(X) as e ≥ e0 ∈ Sp(X).

Reformulation. Again, we use an overtness argument to reformulate the problem.
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As we have already seen, the degrees of Polish presentations ofX coincide with the degrees
of copies of X as elements of V(Q). In the same way, we show that the jumps of these
degrees are exactly the jumps of the copies of X in V(Q).
Again, we abstract away from V(Q) to make the results easier to read. Let S be a
countably-based space with a fixed index basis (Bi)i∈N that is closed under finite intersec-
tions. Let (Ui)i∈N be the canonical enumeration of the effective open subsets of S defined
by Ui =

⋃
j∈Wi

Bj, where Wi is the ith c.e. subset of N. We will apply the next result

to S = V(Q).

Definition 7.3. The jump of x ∈ S is the set J(x) = {i ∈ N : x ∈ Ui}.

Lemma 7.4. If x is a point of an effective countably-based space S, the Turing degree
of J(x) is the least element of {d′ : d computes x}.

Proof. Let δS :⊆ NN → S be the standard representation of S, mapping p to x if {i :
∃n, p(n) = i + 1} = {i : x ∈ Bi}, in which case we say that p is a name of x. The
function δS is computable and effectively open: the image of an effective open set is an
effective open set, uniformly. Observe that d computes x if and only if d computes some
name of x.

As δS is computable, the preimages of effective open sets are effectively open, so if p is a
name of x then p′ computes J(x).

Conversely, we show that J(x) computes p′ for some name p of x. Let (Un)n∈N be the
canonical enumeration of the effective open subsets of NN. The set δ−1

S (x) is Π0
2 relative

to J(x): indeed, one has p ∈ δ−1
S (x) iff ∀i, [x ∈ Bi ⇐⇒ ∃n, p(n) = i + 1], which is

a Π0
2 formula relative to J(x). Let then Vn be uniformly J(x)-effective open sets such

that δ−1
S (x) =

⋂
n Vn. Moreover, if W ⊆ NN is an effective open set, given by a index,

then we can decide using J(x) whether W intersects δ−1
S (x), because it is equivalent

to x ∈ δS(W ), which is an effective open set for which we have an index.

At stage s, we have produced a finite prefix ps of p, such that [ps] is contained in Vs−1

and intersects δ−1
S (x). Using J(x), we can decide whether [ps]∩Us intersects δ

−1
S (x). If it

does, then we extend ps to ps+1 so that [ps+1] is contained in Us∩Vs and intersects δ−1
S (x),

and we declare that p ∈ Us. If it does not, then we simply extend ps to ps+1 so that [ps+1]
is contained in Vs and intersects δ−1

S (x), and we declare that p /∈ Us.

In the limit, we obtain some p ∈
⋂

s Vs so p is a name of x. For each s, we have decided
along the construction whether p ∈ Us, so we have computed p′.

Proof of Theorem 7.1. Let X ∈ K(Q) be d-computably compact and perfect. Using d
and 0′ as oracles, we progressively compute a copy K of X, together with its jump J(K),
seeing K as a point of V(Q). Let (Un)n∈N be an effective enumeration of the effective open
subsets of V(Q). For each n, we need to decide as long as we build K, whether K ∈ Un.
We start from some ϵ0 > 0 and some basic ϵ0/2-ball B0 in the Hausdorff metric, con-
taining X. B0 is a computably overt set in V(Q), so we can decide using 0′ whether it
intersects U0. There are two cases:

(1) Assume that B0 intersects U0. As in Lemma 6.6 there exists an ϵ0-perturbation f0
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mapping X to X0 ∈ U0 (as X is perfect, the computably overt set given by Lemma
6.6 can be replaced by the ϵ0/2-ball B0).
We now show that one can compute such an f0. The space Pϵ0 of ϵ0-perturbations
is a computable Polish space, the function Φ : Pϵ0 → V(Q) mapping f to f(X) is d-
computable, so Φ−1(U0) is a d-effective open set, therefore one can d-computably
find some f0 there.

We now pick a ball B1 of some radius ϵ1 (to be chosen, see below) around X0, whose
closure is contained in B0 ∩ U0 and in which we are going to stay forever, so that in
the limit, the copy K of X belongs to U0. We declare that K ∈ U0.

(2) Now assume that B0 does not intersect U0. We do nothing and proceed by picking a
ball B1 of some radius ϵ1 around X whose closure is contained in B0. In the sequel,
we stay forever in this ball so in the limit, K ∈ B0 hence K does not belong to U0.
We declare that K /∈ U0.

In both cases, we have decided whether the set K belongs to U0. We now iterate this
process with U1,U2, etc., choosing ϵ1, ϵ2, . . . smaller and smaller so that the composition
of the ϵi-perturbations converges to an injective function (the Inductive Convergence
Criterion [44, Theorem 1.6.2] tells us that we can always choose the next ϵi sufficiently
small to ensure that the limit is a injective, and moreover ϵi can be chosen in a computable
way), and taking the closure of Bn+1 contained in Bn. In the limit, we have built a copy K
of X and computed its jump, using d and 0′ as oracles.

The argument is uniform: there is a uniform procedure relative to 0′ that, given a compact
presentation of any compact perfect Polish space X , computes the jump of some Polish
presentation of X . We now observe that there cannot exist a uniform argument including
non-perfect Polish spaces. Indeed, whetherX is not perfect is Σ0

2 for a Polish presentation,
so it is Σ0

1 in its jump. If there was a uniform argument relative 0′, then being non-
perfect would be Σ0

1(0
′) for compact presentations, in particular it would be open in K(Q)

endowed with the Hausdorff metric. However, the set of non-perfect compact sets is not
open, as witnessed for instance by a sequence of segments shrinking to a singleton.

We actually show that Theorem 7.1 simply does not extend to non-perfect Polish spaces.
Observe that a consequence of Theorem 7.1 is that if X is a perfect Polish space with
a 0′-computable compact presentation, then it has a low Polish presentation. We show
that it fails for some non-perfect Polish space.

Proposition 7.5. There exists a (non-perfect) compact Polish space X with a 0′-computable
compact presentation, but no low Polish presentation.

Proof. By Theorem 3.6 applied to d = 0′, there is a space X having a 0′-computable
compact presentation, but such that its Cantor-Bendixson derivative X ′ does not have
a 0′′-computable compact presentation. If X had a low Polish presentation then by Lemma
3.1, X ′ would have a 0′′-computable compact presentation.

Therefore, for d = 0′, this space X has a d-computable compact presentation, but there
is no e such that X has an e-computable Polish presentation and e′ ≤ d⊕ 0′ = 0′.
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