A. , Generalized Transmuted Family of Distributions: Properties and Applications, Hacet J. Math. Stat, vol.46, pp.645-667, 2017.

A. , A new method for generating families of continuous distributions, Metron, vol.71, pp.63-79, 2013.

[. Bhaumik, Testing Parameters of a Gamma Distribution for Small Samples, Technometrics, vol.51, pp.326-334, 2009.

S. ;. Birnbaum, Z. W. Birnbaum, and S. C. Saunders, A Statistical Model for Life-Length of Materials, J. Am. Stat. Assoc, vol.53, pp.151-160, 1958.

S. ;. Birnbaum, Z. W. Birnbaum, and S. C. Saunders, Estimation for a Family of Life Distributions with Applications to Fatigue, J. Appl. Probab, vol.6, pp.328-347, 1969.

T. Bjerkedal, Acquisition of resistance in guinea pigs infected with different doses of virulent tubercle bacilli, Am. J. Epidemiol, vol.72, pp.130-148, 1960.

. Blasing, Monthly Estimates of C-13/C-12 (per mil) in Fossil-Fuel Carbon Dioxide Emissions from the U.S.A.. Data file accessed at cdiac, Clinical Laboratory Science, vol.11, pp.223-227, 1998.

E. Dana, Salience of the self and salience of standards: Attempt to match self to a standard, 1990.

D. J. Davis-;-davis, An Analysis of Some Failure Data, J. Am. Stat. Assoc, vol.47, pp.113-150, 1952.

A. Dumonceaux, R. Dumonceaux, and C. E. Antle, Discrimination between the Log-Normal and the Weibull Distributions, Technometrics, vol.15, pp.923-926, 1973.

A. J. Duncan and . Elinder, Histopathological changes in relation to cadmium concentration in horse kidneys, Environ. Res, vol.26, pp.1-21, 1981.

Z. Feigl, P. Feigl, and M. Zelen, Estimation of Exponential Survival Probabilities with Concomitant Information, Biometrics, vol.21, pp.826-838, 1965.

S. Hanley, J. A. Hanley, and S. H. Shapiro, Sexual Activity and the Lifespan of Male Fruitflies: A Dataset That Gets Attention, J. Stat. Educ, vol.2, pp.1-4, 1994.

[. Hastie, The Elements of Statistical Learning, 2008.

W. Lee, E. T. Lee, J. L. Wang, and . Mackowiak, A Critical Appraisal of 98.6 F, the Upper Limit of the Normal Body Temperature, and Other Legacies of Carl Reinhold August Wunderlich, JAMA, vol.268, pp.1578-1580, 1992.

. Mudholkar, G. S. Huston-;-mudholkar, and A. D. Huston, The exponentiated Weibull family: Some properties and a flood data application, Commun. Stat.-Theor. M, vol.23, pp.1149-1171, 1996.

M. ;. Nelder, J. A. Nelder, and R. Mead, A Simplex Method for Function Minimization, Comput. J, vol.7, pp.308-313, 1965.

P. Nichols, M. D. Nichols, and W. J. Padgett, A Bootstrap Control Chart for Weibull Percentiles, Qual. Reliab. Eng. Int, vol.22, pp.141-151, 2006.

K. Pearson and A. Lee, On the Laws of Inheritance in Man: I. Inheritance of Physical Characters, Biometrika, vol.2, pp.357-462, 1903.

M. J. Powell, An efficient method for finding the minimum of a function of several variables without calculating derivatives, Comput. J, vol.7, pp.155-162, 1964.

. Press, Effects of environmental pollutants upon animals other than man, Numerical Recipes: The Art of Scientific Computing, vol.6, pp.443-463, 1972.

[. Shao, Models for extremes using the extended three parameter Burr XII system with application to flood frequency analysis, Hydrolog. Sci. J, vol.49, pp.685-702, 2004.

. Shkedy, The Weight of Euro Coins: Its Distribution Might Not Be As Normal As You Would Expect, J. Stat. Educ, vol.14, pp.1-14, 2006.

R. L. Smith and J. C. Naylor, A Comparison of Maximum Likelihood and Bayesian Estimators for the Three-Parameter Weibull Distribution, J. R. Stat. Soc. C-Appl, vol.36, pp.358-369, 1987.

S. Su, Numerical maximum log likelihood estimation for generalized lambda distributions, Comput. Stat. Data An, vol.51, pp.3983-3998, 2007.