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Abstract

Transiently-powered systems featuring non-volatile mem-

ory as well as external peripherals enable the development

of new low-power sensor applications. However, as program-

mers, we are ill-equipped to reason about systems where

power failures are the norm rather than the exception. A first

challenge consists in being able to capture all the volatile
state of the application – external peripherals included –

to ensure progress. A second, more fundamental, challenge

consists in specifying how power failures may interact with

peripheral operations. In this paper, we propose a formal

specification of intermittent computing with peripherals, an

axiomatic model of interrupt-based checkpointing as well as

its proof of correctness, machine-checked in the Coq proof

assistant. We also illustrate our model with several systems

proposed in the literature.

CCS Concepts: • Computer systems organization →
Embedded systems; • General and reference→ Reliability;
• Software and its engineering → Checkpoint / restart;
• Theory of computation → Program specifications; Pro-
gram semantics.
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1 Introduction

Transiently-powered systems are tiny, battery-less devices

that harvest energy from their environment. The energy thus
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retrieved flows into short-term storage facilities, such as ca-

pacitors, leading to computation times on the order of thou-

sands of cycles per run. A run denotes a continuous period of
time without power failure. To ensure progress of computa-

tion across runs, system integrators often pair such devices

with non-volatile memory (NVM), such as non-volatile RAM

technology (FRAM, MRAM, etc.). This combination of fea-

tures gave birth to intermittent computing. However, the
interaction of volatile (registers, caches) and non-volatile

states together with unpredictable power failures is itself a

poisonous mix, dubbed the “broken time machine” [30].

One way to circumvent this issue consists in adding a

sensor monitoring the remaining energy level [15]. Before

the power runs out, a hardware interrupt is triggered, which

is then handled in software, leading the system to check-

point its volatile state to NVM. Checkpoints are necessarily

consistent as they result from a snapshot of the application

taken at a single point in time. This offers the simplicity

of static checkpointing [25] – where explicit checkpointing

instructions are spread throughout the code – without much

overhead – snapshots are acquired only when necessary.

This solution leaves a critical blind spot: external periph-

eral devices also contain volatile state, inaccessible from the

CPU – efficiently or at all. Besides, interacting with an ex-

ternal device changes our expectations about the system.

Consider for instance a radio transceiver peripheral. The

radio device requires calibration before packet emission or

reception. This takes about 100𝜇s on the device, duringwhich

the driver is busy-waiting. If a power-loss were to occur af-

ter, say, 75𝜇s, it would be functionally incorrect to resume

the transceiver in calibration mode and only wait for the

remaining 25𝜇s. To be correct, the calibration code sequence

must execute within a single run.

Following earlier work on supporting peripherals in in-

termittent computation [2, 6, 9, 17, 29], we identify two key

challenges:

(C1) Peripherals add volatile and opaque state to the overall

system;

(C2) Peripherals have a concrete, observable impact on the

environment of the system.

The present work aims at providing a conceptual frame-

work for (1) formally expressing these two requirements;

and (2) proving that a general interrupt-based checkpointing
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scheme meets its specification. To this end, we make the

following assumptions throughout the paper:

(A1) NVM is solely used to store snapshots of the application.
Conversely, application code cannot access the NVM;

(A2) Checkpointing volatile state (registers, RAM, etc.) from
the micro-controller (MCU) is a solved problem (e.g.,
Ahmed et al. [1]) whereas the peripheral internal state

is completely opaque to the application;

(A3) Peripherals act upon an environment that is idempo-

tent. A transiently-powered system may, for exam-

ple, send a network packet multiple times: we expect

the network protocol to gracefully handle such situa-

tions. This touches upon a fundamental assumption

of transiently-powered systems in general [35];

(A4) Liveness of the application is secured by a suitably cali-

brated power sensor. Checkpointing needs not always
succeed but it is assumed to eventually succeed.

Assumption (A1) excludes some existing systems [18, 20,

25, 27, 29, 37] from the scope of this work. Since Challenges

(C1) and (C2) are orthogonal to an application’s ability to

access NVM, we chose to exclude it for pedagogical clarity.

We propose a general model of interrupt-based check-

pointing based on these assumptions. Dealing with an exter-

nal communication bus (e.g., I2C or SPI), we may for example

suffer from a power failure right after having configured the

bus to address a specific component but before actually in-

teracting with the component. In the next run, the bus will

be resumed in its default state: if we resume the application

where it lost power, it will fail to proceed as desired. Instead,

one resolves to log the interaction with the peripherals and

replay the log upon reboot [2, 6, 9]. Some operations must

execute under continuous power to produce a meaningful

outcome, as witnessed by our earlier radio device example.

Applications must be able to specify power-continuous sec-
tions1, asserting that a given sequence of instructions must

be executed within a single run. Fig. 1 (PLF) illustrates our
proposal. Peripheral devices (DEV) are accessed through a

specific API. NVM (CHKPT) enables double-buffering [31],
ensuring progress. A logging mechanism (LOG) is key to

restore peripherals in a consistent state.

Now, this begs the question: what does it mean for our

scheme to be “correct”? The application is specified (SPEC
in Fig. 1) as if it was run in a continuously-powered environ-

ment. Our correctness result states that the checkpointed

application behaves as prescribed by SPEC: the trace of op-
erations emitted by peripherals is also observable in the

continuous-power specification (modulo re-executions), and

power-continuous sections are executed within a single run.

Our contributions are the following:

• We specify intermittent computing with peripherals

(Section 2) with a labeled transition system. We strive

1
Our notion of “power-continuous section” corresponds to “atomicity” from

Maeng and Lucia [29], an overloaded terminology from concurrent systems.
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Figure 1. The checkpointing model (PLF) implements its

continuous-power specification (SPEC)

for generality, making no assumption about the actual

behavior of peripherals and allowing non-determinism,

including preemptive and concurrent systems.

• We give an axiomatic model of interrupt-based check-

pointing (Section 3). This includes an equational spec-

ification of a logging mechanism and a persistent stor-

age interface, thus simplifying the task of checking

the validity of one’s implementation to a handful of

conditions. The model consists of a state machine with

five states that captures the essence of checkpointing.

• We state the correctness of our model with respect to

its specification (Section 4). We show that peripheral

operations are preserved despite power failures and

that power-continuous sections are complied with.

• We relate our model to existing systems (Section 5).

Overall, the present work aims at consolidating our for-

mal understanding of transiently-powered systems and their

interaction with external peripherals. This is first and fore-

most a conceptual work. In particular, this paper does not

provide a verification tool nor does it prove the correctness

of a particular implementation: our objective is to provide

system designers with a solid, actionable mental model.

All the formal definitions and results presented in this

paper have been machine-checked [4] in the Coq proof assis-

tant [36]. For readability, we have typeset our Coq definitions

using set-theoretic notations. We nonetheless keep a distinct

namespace per conceptual object, which follows the nam-

ing scheme NAMESPACE.object. We write NAMESPACE.t
to denote abstract components whose implementation is left

unspecified.



2 Intermittent Computing & Peripherals

In the following, we aim to distill the essence of intermit-

tent computing with peripherals. We focus our attention

solely on the challenges raised by the combination of power

failure and peripheral devices. To this end, we introduce

an axiomatic programming model. To the practitioner, it

may seem far removed from the assembly code that actu-

ally drives intermittent computations. This is in fact a virtue

of this work: we aim at providing a conceptual framework

with which to reason about intermittent computations and

their interaction with peripherals. By freeing ourselves from

a particular implementation, we remain non-prescriptive

about orthogonal design choices, such as the treatment of

concurrency, interrupts, etc.We thus offer a very liberal spec-

ification that can be readily and effectively used to check the

design of a concrete implementation.

In this section, we layout our specification of intermittent

computations, which ought to be met by our checkpointing

model. We encourage readers to check that the behaviors

they care about in their applications can be captured by our

specification.

Modeling the MCU. We specify the MCU as an overarch-

ing abstraction of the CPU registers and relevant fragments

of volatile memory (RAM). It encompasses all the volatile

states that can efficiently be checkpointed to NVM through

standard techniques [3]. It does not include peripheral de-

vices – whose treatment comes next – and non-volatile mem-

ory – which is outside the scope of our specifications, as per

Assumption (A1). In the following, we letMCU.t be the set
of possible MCU states. We use the variablemcu ∈ MCU.t to
denote an arbitrary MCU state. We callMCU.init ∈ MCU.t
the initial MCU state, just before executing the first instruc-

tion of a given application.

Modeling peripheral devices. Handling Challenge (C1)
calls for a careful distinction between the physical peripher-

als – whose internal state cannot be accessed by the program

– and the interface it exposes to the program. We therefore

introduce both an abstract description of the peripheral, rep-

resenting the state of the physical device, and an interface

driving the evolution of the abstract device state.

We let DEV.t be the set of possible physical peripheral

states, and use the variable dev ∈ DEV.t to denote an arbi-

trary peripheral state. We call DEV.init ∈ DEV.t the initial
peripheral state, on power-up.

The idea that peripherals are manipulated through a well-

defined interface is a natural one [9]. It may involve the

low-level application binary interface (ABI) documented

by a datasheet or the application program interface (API)

provided by a high-level library. We accommodate either

style by assuming that there exists a set DEV.ops of opera-
tions supported by the peripheral. Conventionally, we write

op ∈ DEV.ops to denote an arbitrary operation. Given a par-

ticular device state, performing an operation has the effect of

producing a new device state. The behavior of a peripheral

can thus be specified through a relation

− −
{
DEV

− ⊆ DEV.t × DEV.ops × DEV.t

where dev
op
{
DEV

dev ′ denotes the execution of operation op in

device state dev and resulting in device state dev ′.
This relation plays an essential role in our formalization.

It turns DEV.ops, over which the software has control, into

operations over the physical device DEV.t, over which the

software has no control. Our simple modeling of peripheral

devices accounts for systems featuring multiple physically-

decoupled peripherals. We can simply consider the set of

all available devices as a single one whose interface is the

disjoint sum of their respective interfaces.

Specification. Wenow introduce, under the SPEC names-

pace, our axiomatic specification of an intermittent computa-

tion. We ask for just enough structure to address Challenge

(C2). In doing so, we expose only the properties we care

about, namely the expected observable behavior of programs

under continuous power execution. The remaining imple-

mentation details, which are orthogonal to the correctness

statement, are abstracted away.

To account for power-continuous code sections, we distin-

guish two execution modes in an intermittent computation:

a program can either run in “user mode” (U ∈ SPEC.mode)
or in “driver mode” (D ∈ SPEC.mode). A computation may

be resumed at any point in user mode while it can only be

resumed to the very first instruction of a sequence of in-

structions in driver mode. This means that a sequence of

instructions in driver mode should either be executed en-

tirely without being interrupted by a power failure, or the

entire code block will be re-executed in the next run.

Example 2.1. The calibration code of the radio frequency

synthesizer (discussed in the introduction) should therefore

be specified as a driver mode code sequence. This ensures

that the busy-wait is always executed as a whole before

calibration is deemed completed. Other examples include

non-immediate transactions, frequent with SPI or I
2
C buses.

Modes are thus a key ingredient to specify power-con-

tinuous sections. We write m ∈ SPEC.mode to denote an

arbitrary execution mode.

Our specification should be able to describe a set of de-

sired behaviors. Since peripherals are meant to interact with

their environment, a natural notion of “behavior” is the se-

quence of operations performed by the device. We write

SPEC.trace ≜ DEV.ops∗ the set of sequences of operations.
We write t ∈ SPEC.trace to denote an arbitrary trace, 𝜖 to de-

note the empty sequence and t ; t ′ to denote a concatenation

of traces. We define dev
t
{
DEV

∗ dev ′ ≜ dev
op

0

{
DEV

dev0 . . .
op𝑛
{
DEV

dev ′,



(U,mcu, dev) (D,mcu, dev)Usr Drv

Enter

Leave

Figure 2. Specification state machine

the sequential execution of the trace t = op
0

; . . . ; op𝑛
starting from device state dev, resulting in device state dev ′.
Intermittent computations are described axiomatically.

The state of the computation

SPEC.state ≜ SPEC.mode ×MCU.t × DEV.t

consists of a mode, an MCU state and a device state. We write

s ∈ SPEC.state to denote an arbitrary state. The execution

of a program is specified through a single-step transition

relation − −
{
SPEC

− ⊆ SPEC.state × SPEC.trace × SPEC.state

that takes an input state to produce a (possibly empty) trace

of observable events and a resulting state.

This relation is subject to the following invariants.

(Axiom-Usr): In user mode, computations do not interact

with peripherals, i.e., if

(U,mcu, dev) t
{
SPEC

(U,mcu′, dev ′),

then dev = dev ′ and t = 𝜖 ;

(Axiom-Drv): In driver mode, the emitted trace faithfully

describes the physical evolution of the device, i.e., if

(D,mcu, dev) t
{
SPEC

(D,mcu′, dev ′),

then dev
t
{
DEV

∗ dev ′;

(Axiom-Enter): Transitions from user to driver mode are

computationally transparent, i.e., if

(U,mcu, dev) t
{
SPEC

(D,mcu′, dev ′),

then mcu = mcu′, dev = dev ′ and t = 𝜖 ;

(Axiom-Leave): Transitions from driver to user mode are

computationally transparent, i.e., if

(D,mcu, dev) t
{
SPEC

(U,mcu′, dev ′),

then mcu = mcu′, dev = dev ′ and t = 𝜖 .

This axiomatization amounts to a state machine (Fig. 2)

with two states – the user and driver modes – together with

four possible kinds of transitions. Specifically, Enter and

Leave delineate the power-continuous sections operating on

external peripherals. These two transitions are purely formal,

leaving the concrete state of the application unchanged (same

MCU, same device and producing an empty trace). Upon

reasoning about a concrete application, we are therefore

free to switch mode at any point we see fit from a logical

standpoint, irrespectively of its operational behavior.

The semantics of an intermittent computation follows

simply by iterating the single-step transition relation above,

starting from the initial state. Formally, we define the seman-

tics SPEC.sem as the following set of traces:

𝑡 ∈ SPEC.sem ⇔ ∃s, (U,MCU.init,DEV.init) t
{
SPEC

∗ s

The set SPEC.sem consists of all the admissible behaviors

of the system under study. Indeed, any trace in this set cor-

responds to a sequence of peripheral operations performed

during a continuously-powered execution.

Being a specification, the above definition of SPEC.sem de-

serves scrutiny. In particular, it must be expressive enough

to account for the properties expected by a specific, real-

world application. To fit within our framework, these prop-

erties need to be expressible in terms of traces specifying

expected observations, and/or user-driver transitions speci-

fying power-continuous sections. The following examples

illustrate how our specification addresses Challenge (C2).

Example 2.2. Suppose we want to (1) sense a temperature

with an analog component through an Analog-to-Digital

Converter, then (2) convert that value to a human-readable

format to (3) be displayed on a teletype. This program can

be modeled either as a single sequence encompassing all

three operations executing in modeD, or as three sequences

executing in, successively, D → U → D modes, value

conversion being performed in modeU. In both cases, the

formal trace consists in a sensing operation followed by

a display operation. However, the latter case describes an

application that – subject to power failures – allows for the

displayed temperature to be arbitrarily outdated, whereas

the former case captures the timeliness requirement of the

whole sequence of operations.

Example 2.3. Consider an application that regularly sends

a thermal sensor’s data in radio packets. The application sets

a timer to periodically sense and send data, then waits for

commands coming from the radio between packet emissions.

If both the sensor and the radio devices are accessed through

the same SPI bus, this SPI bus requires two different con-

figurations (e.g., bus clock frequency), both being distinct

operations in DEV.ops, to communicate with both devices.

The datasheet specifies the state of all the peripherals (SPI

bus, thermal sensor, radio device, timer) upon power-up: this

defines DEV.init. The radio module, when set in reception

mode, may fire interrupts. Retrieving the packet should be

performed in a power-continuous section (D mode) so that

either the handler runs to completion in a single run (effec-

tively receiving the radio packet), or the packet is lost in the

event of a power-loss.

Note that the interaction between, say, timer and radio

interrupts requires a resource lockingmechanism to properly

share access to the SPI bus, independently of whether the

applicationmay reboot or not. Such amechanism is therefore

orthogonal to power-continous sections.



3 Interrupt-based checkpointing

We now give a formal description of interrupt-based check-

pointing with peripherals [2, 6, 9, 29]. The present model

plays two roles. First, we lay out the minimal requirements to

implement an interrupt-based checkpointing system. Namely,

one must be able to log peripheral actions and store an image

of theMCU and of the action log to NVM. Second, we provide

a conceptual framework for reasoning about the correctness

of such a checkpointing system. Namely, we introduce the

notion of instrumented trace.

3.1 Operation logging

To restore a physical device into a previously encountered

state, we must resort to the only information accessible to

the program: peripheral operations. A straightforward way

to achieve this objective would consist in logging every such

operation. Restoring the physical device would then amount

to replaying the entire log. However, such an implementa-

tion would be prohibitive both in terms of time and space,

especially in an embedded system. Rather than restricting

ourselves to a single inefficient implementation, we consider

an abstract specification of such a log. In Section 5, we show

that this interface admits several efficient implementations.

We let LOG.t to be the set of such summaries of all pre-

vious peripheral operations. An operation can be added to

a given log through the function LOG.log ∈ DEV.ops →
LOG.t → LOG.t. Restoring the log, through the function

LOG.restore ∈ LOG.t → DEV.t, allows recreating a pe-

ripheral state ex nihilo by replaying the log. We denote

LOG.init ∈ LOG.t the initial state of the log. We write

ℓ ∈ LOG.t to denote an arbitrary log. We require that func-

tion LOG.restore be consistent with LOG.init and LOG.log:

(Axiom-Restore-Init) Restoring the initial log yields the

initial state, i.e., LOG.restore LOG.init = DEV.init;
(Axiom-Restore-Log) Given a log that faithfully repre-

sents a given device, restoring the extension of this log

with a new operation gives the same peripheral state

as the one obtained by running the operation on the

peripheral, i.e., for all ℓ ∈ LOG.t, dev, dev ′ ∈ DEV.t,

op ∈ DEV.ops, if LOG.restore ℓ = dev and dev
op
{
DEV

dev ′,

then LOG.restore (LOG.log op ℓ) = dev ′.

We overload notations and write LOG.log t ℓ for the

sequential logging of each individual operation of a trace

t = op
0

; . . . ; op𝑛 , i.e., LOG.log op𝑛 (. . . (LOG.log op
0
ℓ)).

3.2 Non-volatile checkpoint storage

Checkpointing storage is the only component in our system

that is persistent across reboots. Non-volatile checkpoints

are represented by an abstract set CHKPT.t. Intuitively, a
checkpoint contains two snapshots of the application, imple-

menting double-buffering [31]: a stable one (the “last” valid

one) and an on-going one (the “next” valid one, if check-

pointing succeeds). A snapshot consists of an MCU image

and a peripheral log. We write chkpt ∈ CHKPT.t to denote
an arbitrary checkpointing storage.

We access the last snapshot through the function last ∈
CHKPT.t → MCU.t×LOG.t, and the next snapshot through
next ∈ CHKPT.t → MCU.t × LOG.t. For conciseness, we
also define lastMcu, lastLog, nextMcu and nextLog to di-

rectly access each individual components. The initial check-

point CHKPT.init ∈ CHKPT.t is constructed from the im-

age of the initial MCU and the initial log, i.e., it satisfies
the equations last CHKPT.init = (MCU.init, LOG.init) and
next CHKPT.init = (MCU.init, LOG.init).

Double-buffering requires two operations. First, one must

be able to overwrite atomically the last stable snapshot with

the on-going one, effectively committing the on-going snap-

shot. This is provided by functionCHKPT.set ∈ CHKPT.t →
CHKPT.t. Second, one must be able to overwrite atomically

the on-going snapshot with the last valid one, effectively

resetting the on-going snapshot to the last valid one. This is

provided by CHKPT.reset ∈ CHKPT.t → CHKPT.t. These
functions are specified through a set of equations:

last (CHKPT.set chkpt) = next chkpt

next (CHKPT.set chkpt) = next chkpt

next (CHKPT.reset chkpt) = last chkpt

last (CHKPT.reset chkpt) = last chkpt

Finally, one must be able to update the MCU image or

the log stored in the next snapshot. This is respectively

achieved by function CHKPT.saveNextMcu ∈ CHKPT.t →
MCU.t → CHKPT.t and function CHKPT.saveNextLog ∈
CHKPT.t → LOG.t → CHKPT.t, characterized by:

nextMcu (CHKPT.saveNextMcu chkpt mcu)=mcu

nextLog(CHKPT.saveNextMcu chkpt mcu)=nextLog chkpt
last (CHKPT.saveNextMcu chkpt mcu)= last chkpt

nextLog (CHKPT.saveNextLog chkpt ℓ) = ℓ

nextMcu (CHKPT.saveNextLog chkpt ℓ) = nextMcu chkpt

last (CHKPT.saveNextLog chkpt ℓ) = last chkpt

Elements of CHKPT.t constitute the only piece of state

that we intend to persist across reboots.

3.3 Interrupt-based checkpointing

We now define our model of interrupt-based checkpointing

under the PLF namespace, which stands for “Power-Loss &

checkpoint Failure”. Our model is a refinement [22, 24, 26]

of the specification given in Section 2. It is defined as a

state machine that emits instrumented traces upon reaching

specific transitions.
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Figure 3. Checkpointing state machine

States. Our model operates over 5 kinds of states, whose

union is termed PLF.state, conventionally ranged over by ŝ:
• INIT represents the initial state of the machine;

• (USR, mcu, dev, chkpt) represents a computation run-

ning in user mode;

• (DRV, mcu, dev, chkpt, ℓ) represents a computation

running in driver mode, maintaining a volatile log ℓ

of operations executed up to this point;

• (PWR, chkpt) represents a computation interrupted

by a power failure in which all volatile state is lost;

• (OFF, chkpt) represents a computation that has been

turned off.

The corresponding state machine is represented in Fig. 3. We

explain below each of its transitions.

Instrumented traces. In this system, peripheral opera-

tions could be repeated either by the program – during a run

– or by the run-time system – due to a power failure. In order

to relate precisely the trace produced by the transiently-

powered system with a trace produced by a continuously-

powered execution of the system, it is crucial to distinguish

(repeated) progress from failed attempts.

In the transiently-powered system, we must keep track of

two kinds of information: (1) whether a power-continuous

section has successfully completed or has been aborted due

to a power failure; (2) whether the next snapshot could be

set over the last one, or power ran out beforehand. We thus

extend the notion of trace with four extra observable events:

Information 1. A power-continuous section

• completed before a power-failure interrupt: Log⊤

• or was interrupted due a power failure: Log⊥

Information 2. The checkpointing

• completed before power ran out: Chkpt⊤

• or could not complete before power ran out: Chkpt⊥

In this model, an instrumented trace (written t̂) is thus a
sequence of either of these events or peripheral actions:

PLF.trace ≜ ({Chkpt⊤,Chkpt⊥, Log⊤, Log⊥} ⊎ DEV.ops)∗

In Section 4, we show that, from the traces produced by our

checkpointing model, we can extract a meaningful subtrace

of DEV.ops events that could have been produced by the

specification, i.e., within a single run.

State machine transitions. We model interrupt-based

checkpointing with peripherals through a relational specifi-

cation of the transitions of the state machine in Fig. 3. The

transition relation defined in Fig. 4, and written

− −
{
PLF

− ⊆ PLF.state × PLF.trace × PLF.state

indicates by ŝ
t̂
{
PLF

ŝ′ a computation taking input state ŝ to

output state ŝ′ emitting an instrumented trace t̂. The trace
semantics of the overall application is defined as the set of

traces reachable from the initial state:

t̂ ∈ PLF.sem ⇔ ∃ŝ, INIT t̂
{
PLF

∗ ŝ

Transitions Usr, Drv, Enter and Leave are key to em-

bedding the behavior of the continuous-power specifica-

tion. They mirror their SPEC counterparts, in addition to

retrieving (transition Enter) or storing (transition Leave)

information to checkpointing storage, or to the volatile log

(Drv). Crucially, transitions Enter, Drv and Leave keep

the volatile log of operations in sync with the state of the

physical device.

Transitions to PWR are responsible for producing a con-

sistent checkpoint across the whole application (MCU and
peripherals). Upon transition UsrPwr, the whole MCU is

checkpointed so as to resume at the current program point.

Upon transition DrvPwr, the volatile execution context is

thrown away, relying on the fact that transition Enter has

produced a valid checkpoint right before leaving user mode

to enter the power-continuous section.

Transitions from state PWR to state OFF capture, non-

deterministically, whether checkpointing succeeds or fails

(transitions Chkpt-Succ and Chkpt-Fail). We also allow

cases where power could run out before the power-failure

interrupt is even raised. Therefore, in user mode, the state

machine non-deterministically steps from state USR to ei-

ther state PWR (transition UsrPwr) or state OFF (transi-

tion UsrOff). Similarly, in driver mode, the state machine

non-deterministically steps from DRV to either state PWR
(transition DrvPwr) or state OFF (transitions DrvOff). Ei-

ther way, when the system restarts (transition Reboot), it

reinstates the last MCU image and restores the peripheral’s

state thanks to the last stable log.

As a sanity check, we must validate our model against

the physical objects it is supposed to represent. In particu-

lar, no volatile state is silently preserved across runs: chkpt



First-Boot

INIT
𝜖
{
PLF

(USR,MCU.init,DEV.init,CHKPT.init)

Usr

(U,mcu, dev) t
{

SPEC
(U,mcu′, dev′)

(USR,mcu, dev, chkpt) t
{
PLF

(USR,mcu′, dev′, chkpt)

Drv

(D,mcu, dev) t
{

SPEC
(D,mcu′, dev′)

ℓ ′ = LOG.log t ℓ

(DRV,mcu, dev, chkpt, ℓ) t
{
PLF

(DRV,mcu′, dev′, chkpt, ℓ ′)

Enter

(U,mcu, dev) t
{

SPEC
(D,mcu′, dev′)

chkpt ′ = CHKPT.saveNextMcu chkpt mcu
ℓ = nextLog chkpt

(USR,mcu, dev, chkpt) t
{
PLF

(DRV,mcu′, dev′, chkpt ′, ℓ)

Leave

(D,mcu, dev) t
{

SPEC
(U,mcu′, dev′)

chkpt ′ = CHKPT.saveNextLog chkpt ℓ

(DRV,mcu, dev, chkpt, ℓ)
t;Log⊤
{
PLF

(USR,mcu′, dev′, chkpt ′)

UsrPwr

chkpt ′ = CHKPT.saveNextMcu chkpt mcu

(USR,mcu, dev, chkpt) 𝜖
{
PLF

(PWR, chkpt ′)

DrvPwr

(DRV,mcu, dev, chkpt, ℓ)
Log⊥
{
PLF

(PWR, chkpt)

Chkpt-Succ

chkpt ′ = CHKPT.set chkpt

(PWR, chkpt)
Chkpt⊤
{
PLF

(OFF, chkpt ′)

Chkpt-Fail

(PWR, chkpt)
Chkpt⊥
{
PLF

(OFF, chkpt)

Reboot

mcu′ = lastMcu chkpt
dev′ = LOG.restore(lastLog chkpt)

chkpt ′ = CHKPT.reset chkpt

(OFF, chkpt) 𝜖
{
PLF

(USR,mcu′, dev′, chkpt ′)

UsrOff

(USR,mcu, dev, chkpt)
Chkpt⊥
{
PLF

(OFF, chkpt)

DrvOff

(DRV,mcu, dev, chkpt, ℓ)
Chkpt⊥
{
PLF

(OFF, chkpt)

Figure 4. Interrupt-based checkpointing model − −
{
PLF

−

is the only piece of data that goes through OFF. Further,
the physical device state, DEV.t, cannot magically be cap-

tured in non-volatile memory: onlyMCU.t and LOG.t can
be used to produce CHKPT.t and none of these can contain a

DEV.t. Our model faithfully accounts for checkpointing fail-

ure: Chkpt-Fail keeps the checkpointing storage intact. Our

model supports power-failure interruptions in both user and

driver mode. It also models the eventuality that the power-

failure interruption itself cannot complete before power goes

out, through UsrOff and DrvOff. Finally, traces produced

by the transition system merely record the execution, i.e.,
they play no role in the execution.

4 Correctness

Existing work only provides informal descriptions of what

checkpointing is supposed to achieve, even in the simple

setting of intermittent peripheral operations [2, 6, 9, 29].

Here, we relate our specification of intermittent computing

with peripherals (Section 2) with our model of interrupt-

based checkpointing (Section 3).

A benefit of this conceptual work is to lay out the key

invariants relied upon by existing systems. Indeed, our work

is unencumbered by the particulars of producing an MCU

image (abstracted once and for all by MCU.t), or of log-
ging peripheral operations (axiomatized once and for all by

LOG.t), or even in the minutiae of transfering data to and

from volatile and non-volatile state (axiomatized once and

for all by CHKPT.t). By bringing conceptual clarity, we hope
to provide a blueprint for future system designers.

Stuttering. Our correctness result consists in a semantic

refinement [24, 26] between the model and the specification.

We must prove that computation steps ŝ
t̂
{
PLF

ŝ′ in the model

correspond to computation steps in the specification s
t
{
SPEC

s′

– which executes in a continuously-powered environment.



Figure 5. Matching − −
{
SPEC

− with − −
{
PLF

− executions. Grey areas mark the correspondance between execution states.

Because of power failures, the model may re-execute some

computation steps. In this case, the specification can simply

be put on hold, waiting for the model to make actual progress.

In technical terms, SPEC stutters [22], i.e., it silently takes

no step while the model performs wasted work.

Fig. 5 illustrates how we match, in our refinement proof,

a given execution in PLF (top) with one in SPEC (bottom).

As long as PLF is going to fail to complete the next check-

point, the specification has to stutter. As soon as the next

checkpoint is guaranteed to succeed, the execution in SPEC
should be able to follow, in lockstep, the execution in PLF.
In our proof, we handle non-determinism in PLF by making

the simulation relation depend on the future of the current

PLF execution state.

Stuttering in SPEC must be handled with care. Indeed,

we must make sure that it is not constantly stuttering: that

would make our correctness theorem vacuously true. We

therefore design a subtrace relation that precludes unwanted

stuttering.

Subtrace relation. The cornerstone of our correctness

result is a relation − ≽ − ∈ PLF.trace × SPEC.trace be-

tween instrumented traces and specification traces. Due to

the potential re-execution of operations, only a subset of the

DEV.ops event emitted by PLF might be emitted by SPEC,
as it is exemplified on Fig. 5. Relation − ≽ − thus needs

to enforce a subtrace relation. Besides, we want to ensure

that sequences of operations delineated by Enter/Leave are

eventually executed within a single run.

Intuitively, given a trace 𝑡 ∈ PLF.trace, we first filter all
subtraces where the checkpointing succeeds, leading a trace

containing events in {Log⊤, Log⊥} ⊎ DEV.ops, convention-
ally written as 𝑡 . We write 𝑒 for any such observable event.

Then, within each of these subtraces, we select the events of

power-continuous sections that completed without a power

failure, thereby obtaining a trace 𝑡 ∈ SPEC.trace.
We hence define the subtrace relation − ≽ − as a compo-

sition of two subtrace relations (defined in Fig. 6):

t̂ ≽ t ⇔ ∃ť, t̂ ≽Chkpt ť ∧ ť ≽Log t

Relation − ≽Chkpt − deals with re-execution of code upon

a checkpointing failure (transition Chkpt-Fail), filtering

out sub-sequences of events that end with Chkpt⊥, while
retaining any other event leading to a Chkpt⊤. Similarly,

relation − ≽Log − deals with re-execution of code upon a

𝑡 ≽Chkpt 𝑡 ⇔ 𝑡 ≽Chkpt
⊤ 𝑡 ∨ 𝑡 ≽Chkpt

⊥ 𝑡

𝑡 ≽Chkpt 𝑡

Chkpt⊤ ; 𝑡 ≽Chkpt
⊤ 𝑡

𝑡 ≽Chkpt
⊤ 𝑡

𝑒 ; 𝑡 ≽Chkpt
⊤ 𝑒 ; 𝑡

𝜖 ≽Chkpt
⊥ 𝜖

𝑡 ≽Chkpt
⊥ 𝑡

𝑒 ; 𝑡 ≽Chkpt
⊥ 𝑡

𝑡 ≽Chkpt 𝑡

Chkpt⊥ ; 𝑡 ≽Chkpt
⊥ 𝑡

𝑡 ≽Log 𝑡 ⇔ 𝑡 ≽Log
⊤ 𝑡 ∨ 𝑡 ≽Log

⊥ 𝑡

𝑡 ≽Log 𝑡

Log⊤ ; 𝑡 ≽Log
⊤ 𝑡

𝑡 ≽Log
⊤ 𝑡

op ; 𝑡 ≽Log
⊤ op ; 𝑡

𝜖 ≽Log
⊥ 𝜖

𝑡 ≽Log
⊥ 𝑡

op ; 𝑡 ≽Log
⊥ 𝑡

𝑡 ≽Log 𝑡

Log⊥ ; 𝑡 ≽Log
⊥ 𝑡

Figure 6. Subtrace relations − ≽Chkpt − and − ≽Log −

power-failure interrupt in driver mode (transition DrvPwr),

filtering out sub-sequences of operations ending with a Log⊥,
while retaining the remaining operations.

Example 4.1. In Fig. 5, the trace emitted by SPEC.sem is

𝑡 = op
1
; op

2
; op

3
and the trace emitted by PLF.sem is

𝑡 = op
1
; op

2
; Log⊥;Chkpt⊤;

op
1
; op

2
; op

3
; Log⊤;Chkpt⊥;

op
1
; op

2
; op

3
; Log⊤;Chkpt⊤

We have 𝑡 ≽ 𝑡 thanks to the intermediate subtrace

𝑡 = op
1
; op

2
; Log⊥; op

1
; op

2
; op

3
; Log⊤

Indeed, we have 𝑡 ≽Chkpt 𝑡 by filtering out from 𝑡 the check-

pointing failure subtrace op
1
; op

2
; op

3
; Log⊤;Chkpt⊥. And

𝑡 ≽Log 𝑡 by filtering out from 𝑡 the first aborted power-

continuous section op
1
; op

2
; Log⊥.

Example 4.2. We illustrate the precision of the − ≽ − rela-

tion. For the trace 𝑡 = op
1
; op

2
; op

3
; Log⊤;Chkpt⊤, only one

trace t ∈ SPEC.trace satsifies 𝑡 ≽ t, and it is t = op
1
; op

2
; op

3
.

Only strict prefixes of 𝑡 would have 𝜖 as a ≽-subtrace.



Correctness theorem. Our correctness theorem takes the

form of a trace-refinement between the checkpointing model

and the continuous-power specification:

Theorem 4.3 (Correctness). For any trace t̂ ∈ PLF.sem,
there exists a trace t, such that t ∈ SPEC.sem and t̂ ≽ t.

Informally, this statement reads as: “any behavior exhib-

ited by the model (i.e., t̂ ∈ PLF.sem) could have been ob-

served with the specification (i.e., t ∈ SPEC.sem), ignoring

the operations that had to be re-executed (i.e., t̂ ≽ t)”. The
fact that power-continuous sections are indeed preserved by

our model follows directly from the definition of − ≽ −.
Note that Theorem 4.3 holds for any possible trace in the

non-deterministic semantics of PLF. As long as the model

does not progress, due to either an aborted power-continuous

section or a checkpointing failure, the specification will stut-

ter, emitting the empty trace 𝜖 . However, our precise subtrace

relation ensures, by its very definition, that any observable

progress in PLF.sem is indeed reflected in SPEC.sem.

One difficulty in the proof of Theorem 4.3 is to decide

whether SPEC needs to stutter or to make progress. It re-

quires to know whether the next power failure will lead PLF
to re-executing that portion of the execution. To handle this

difficulty, we introduce an auxiliary oracle-semantics: non-
determinism is replaced by an oracle determining how the

state machine behaves. We prove the existence of such an

oracle for any possible execution in PLF.sem, and prove that

the specification can simulate any possible oracle. Further

details of the proof can be found in our Coq development [4].

5 Applications

We now relate our model to propositions from the literature,

illustrating how they fit within our conceptual framework.

Restop [2]. Restop is a middleware supporting peripher-

als in a transiently-powered context. It specifically targets

devices connected through SPI and I
2
C buses. The authors de-

fine the notion of a “peripheral instruction” ([2, §3]), akin to

our set of operations (DEV.ops), as the “information required

by the system to issue the operation on the peripheral”.

At run-time, peripheral instructions are stored in an “in-

struction history table”, which effectively implements our

LOG.t interface as a sequence of instructions to be replayed

on reboot. To keep the size of this log to a minimum, in-

structions are equipped with a choice of 4 semantics ([2,

§3.1]): “not-save”, “save”, “save-but-replace”, “preserve”. The

choice of a particular semantics reflects the effect of the in-

struction on the peripheral (e.g., save-but-replace expects
the operation to overwrite the effect of a previous instance).

The Restop designers do not commit to a specific check-

pointing scheme (“the history table can either be: (1) placed

in main memory; or (2) directly located in NVM” [2, §3]).

Similarly, our model supports both: our LOG.t interface

leaves unspecified whether the log is physically maintained

in volatile or non-volatile memory.

Sytare [6]. Sytare is a library operating system target-

ing a wide range of peripherals in a transiently-powered

context. Interactions with the peripherals are mediated by

a system call interface (“syscall”) delineating sequences of

instructions allowed to interact with peripherals (“drivers”,

running in “kernel mode”) from application code (running in

“user mode”), which may only access volatile memory. The

syscall interface enables the OS implementers to maintain

a distinct “kernel stack” when interacting with peripherals.

As a result, the system can always backtrack to the entry

point of a syscall by throwing away this stack. This allows

them to easily replay a syscall as a single unit of code, thus

providing a power-continous section mechanism.

Sytare supports any peripheral as long as it registers an

API through the syscall mechanism and exposes a “device

context”. A device context is a C data-structure (a struct)
that records device-specific data necessary to reconfigure it

upon reboot. Each operation exposed to the syscall interface

updates the device context accordingly. The collection of

peripherals thus defines an array of device contexts, which

all together amount to our LOG.t interface. As witnessed by

Fig. 4 of Berthou et al. [6], Sytare naturally fits our model.

Karma [9]. Karma provides a run-time system to ensure

consistency of peripheral state across reboots. Karma pro-

vides a mechanism to implement power-continuous sections,

dubbed “atomicity” there, stating that “two options exist to

integrate Karma with such a system support: i) changing the

conditions that make checkpoints take place in a way to pre-

vent executions lacking the required atomicity, or ii) rolling

back executions to recover the non-atomic cases” [9, §C.2].

No assumption is made on how checkpoints are triggered

(statically or dynamically). Karma proposes, in addition, an

integrated task scheduler for user tasks and peripheral state

updates. A peripheral state is represented by a state machine

and a queue of operations that corresponds to our DEV.ops
operations. After a power failure, peripheral state is restored

by replaying the operations stored in the queue. To ensure

atomicity of peripheral updates, Karma proposes, as Sytare

does, a wrapper for peripheral driver functions. But instead

of storing a device context, a procedure rolls back the code,

which effectively implements power-continuous sections.

Unlike Sytare, Karma allows several tasks to access a pe-

ripheral. This is achieved through a dedicated task man-

agement system, which amounts to a specific “user mode”

program, running inU mode in our model. From our formal

standpoint, the difference between Sytare and Karma thus

lies solely in how they instantiate (i.e., implement) the transi-

tion relation of the specification abstract machine: the former

only allows the execution of a single main task whereas the

latter supports several concurrent tasks. This difference is

orthogonal to power failures.



6 Related Work

Failure-atomicity run-times. In the general case, i.e.,
distributed systems with volatile and non-volatile RAM, en-

suring correctness and consistency of execution is a com-

plex problem because volatile and non-volatile memories

are out of sync after a crash [34]. New programming models

are proposed using locks [8, 11] or extended transactional

memory [14]. These legacy software systems provide mini-

mally invasive change to programming models and environ-

ments, hence they propose concurrency-like abstractions.

These concepts have been used in the context of low-power

transiently-powered sensors [25, 32] that use NVM both

for checkpointing and for regular program storage. Cur-

rently, our specification SPEC does not account for NVM

state, hence we cannot model applications that assume that

part of the program memory, e.g., a stack, is in NVM.

Static and Interrupt-based checkpointing. Following
the development of NVM and harvesting technologies [15,

17, 23, 33], numerous systems have been proposed to allow

low-power sensors to be deployed in transiently-powered

environments. Among the most well-known are chrono-

logically: Mementos [31], QuickRecall [20], Hibernus [3],

Dino [25], Ratchet [37], HarvOS [7], Clank [18], Alpaca [27]

and Coati [32]. Most of these systems used checkpointing.

The insertion of checkpoints can be static [7, 25], dynamic [28,

37] or, when power failures can be detected by voltage drop,

interrupt-based [3, 6, 20]. The IBIS tool suite [35] is able to

detect, statically or dynamically, memory inconsistencies

that may occur in these applications without relying on As-

sumption (A1) (i.e., the MCU may directly manipulate NVM).

Handling peripherals. Peripherals are not handled by

classical checkpointing techniques. Peripherals are very im-

portant in embedded computing and there is also, as for mem-

ory, a state consistency problem when power is lost [25, 29].

Few systems have proposed a complete mechanism to ensure

peripheral device restoration.

Sytare [5, 6] proposed a solution to recover the state of

both the processor and the peripherals. Restop [2] solves a

similar problem with a middleware library for off-chip pe-

ripherals accessed by SPI or I
2
C. Karma [9] proposes another

implementation. These three approaches are captured by

our checkpointing model and can benefit from the modeling

proposed here to verify their correctness.

Samoyed [29] proposes, under some restrictions (no in-

terrupt allowed, stateless peripherals) to ensure peripheral

state consistency by introducing user-controlled atomicity.

This work makes use of NVM in application code, and hence

is not captured by our current model.

Formal models, correctness proofs. Chen et al. [13] dis-

cuss some approaches for specifying and certifying crash-

safety for a persistent file system. The FSCQ system they

later verified [12] uses a Hoare-logic style for specifying the

system: crash conditions specify the disk state right before

a crash, and a recovery procedure ensures the absence of

data loss. A first difference between this line of work and

ours is that we consider crash-safety in systems handling pe-

ripherals. A second difference is in the general specification

methodology. We adopt the so-called DSL approach [13]: we

phrase the specification and the model in terms of state ma-

chines and prove a refinement between the two. Chajed et al.

[10] also derive a refinement result from the Hoare-logic

style specification. As they do not handle peripherals, their

refinement is a simple trace inclusion. In contrast, to derive

a useful and precise correctness result, we must resort to a

subtrace relation.

Koskinen and Yang [21] also employ a DSL approach. Inter-

estingly, their notion of recoverability is expressed in terms

of an un-crashed program: after a crash, the program will

eventually reach a state that simulates another state that an

un-crashed program already reached (i.e., in the trace prefix).

In our model, instrumented traces and the subtrace relation

help us state simply to which prefix it corresponds.

Another line of work focuses on proving the linearizability

of fine-grained concurrent data-structures subject to whole-

system crash [16, 19]. Durable linearizability requires that

upon a crash, only completed operations are guaranteed

to remain visible. Buffered durable linearizability expresses
that the state after the crash must be consistent, but not

necessarily up-to-date. Our subtrace refinement result is

similar in spirit to a buffered durable linearization property.

7 Conclusion

We proposed a specification of intermittent computing with

peripherals, together with a model of interrupt-based check-

pointing that ensures the consistency of the whole system,

i.e., including peripherals, after reboot. Our model contains

the minimal conditions that an implementation of check-

pointing should satisfy to handle correctly peripherals. We

formally proved the correctness of our model: behaviors of

intermittent executions are as prescribed by a continuously-

powered specification, modulo the necessary replays of cer-

tain peripheral operations, due to reboots. Finally, we showed

that our model captures three proposals satisfying our work-

ing assumptions (A1-4): Restop [2], Sytare [6] and Karma [9].

Throughout this work, we have assumed that the applica-

tion code does not interact with non-volatile memory (A1).

We are currently working on extending our specification and

our checkpointing model to account for NVM application

state. This would allow us to model more systems from the

literature [18, 25, 27, 29, 37].
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