S. S. Dibris, Automa Intelligente Robotico per Organizzazione Navette Elettriche (AIRONE), 2017.

G. Robot and &. Genova-robot, , 2017.

F. Capezio, F. Mastrogiovanni, A. Scalmato, A. Sgorbissa, P. Vernazza et al., Mobile robots in hospital environments: an installation case study, ECMR, vol.4, p.52, 2011.

M. Piaggio, A. Sgorbissa, and R. Zaccaria, Ethnos-ii: A programming environment for distributed multiple robotic systems, Systems Sciences, 1999. HICSS-32. Proceedings of the 32nd Annual Hawaii International Conference on, p.10, 1999.

M. Piaggio, A. Sgorgbissa, and R. Zaccaria, Ethnos: a light architecture for real-time mobile robotics, Intelligent Robots and Systems, 1999. IROS'99. Proceedings. 1999 IEEE/RSJ International Conference on, vol.3, pp.1292-1297, 1999.

P. Biber and W. Straßer, The normal distributions transform: A new approach to laser scan matching, Proceedings. 2003 IEEE/RSJ International Conference on, vol.3, pp.2743-2748, 2003.

L. Zhang and B. K. Ghosh, Line segment based map building and localization using 2d laser rangefinder, Robotics and Automation, 2000. Proceedings. ICRA'00. IEEE International Conference on, vol.3, pp.2538-2543, 2000.

S. T. Pfister, S. I. Roumeliotis, and J. W. Burdick, Weighted line fitting algorithms for mobile robot map building and efficient data representation, Proceedings. ICRA'03. IEEE International Conference on, vol.1, pp.1304-1311, 2003.

E. Schulenburg, T. Weigel, and A. Kleiner, Self-localization in dynamic environments based on laser and vision data, Proceedings. 2003 IEEE/RSJ International Conference on, vol.1, pp.998-1004, 2003.

M. Seelinger and J. Yoder, Automatic pallet engagment by a vision guided forklift, Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, pp.4068-4073, 2005.

G. Garibotto, S. Masciangelo, M. Ilic, and P. Bassino, Service robotics in logistic automation: Robolift: vision based autonomous navigation of a conventional fork-lift for pallet handling, Advanced Robotics, 1997. ICAR'97. Proceedings., 8th International Conference on, pp.781-786, 1997.

J. Pages, X. Armangué, J. Salvi, J. Freixenet, and J. Martí, A computer vision system for autonomous forklift vehicles in industrial environments, Proc. of the 9th Mediterranean Conference on Control and Automation MEDS, pp.1-6, 2001.

J. Nygards, T. Hogstrom, and A. Wernersson, Docking to pallets with feedback from a sheet-of-light range camera, Proceedings. 2000 IEEE/RSJ International Conference on, vol.3, pp.1853-1859, 2000.

M. M. Aref, R. Ghabcheloo, and J. Mattila, A macro-micro controller for pallet picking by an articulated-frame-steering hydraulic mobile machine, Robotics and Automation (ICRA), 2014 IEEE International Conference on, vol.8, p.10, 2014.

G. Garibott, S. Masciangelo, M. Ilic, and P. Bassino, Robolift: a vision guided autonomous fork-lift for pallet handling, Intelligent Robots and Systems' 96, IROS 96, Proceedings of the 1996 IEEE/RSJ International Conference on, vol.2, pp.656-663, 1996.

W. Kim, D. Helmick, and A. Kelly, Model based object pose refinement for terrestrial and space autonomy, 2001.

R. Cucchiara, M. Piccardi, and A. Prati, Focus based feature extraction for pallets recognition, BMVC, 2000.

S. Wang, A. Ye, H. Guo, J. Gu, X. Wang et al., Autonomous pallet localization and picking for industrial forklifts based on the line structured light, Mechatronics and Automation (ICMA), 2016 IEEE International Conference on, pp.707-713, 2016.

R. Varga and S. Nedevschi, Vision-based autonomous load handling for automated guided vehicles, Intelligent Computer Communication and Processing, pp.239-244, 2014.

R. Varga, A. Costea, and S. Nedevschi, Improved autonomous load handling with stereo cameras, 2015 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP, p.9

G. Cui, L. Lu, Z. He, L. Yao, C. Yang et al., A robust autonomous mobile forklift pallet recognition, Informatics in Control, Automation and Robotics (CAR), vol.3, p.9, 2010.

C. Beder, B. Bartczak, and R. Koch, A comparison of pmd-cameras and stereo-vision for the task of surface reconstruction using patchlets, Computer Vision and Pattern Recognition, 2007. CVPR'07. IEEE Conference on, pp.1-8, 2007.

F. Weichert, S. Skibinski, J. Stenzel, C. Prasse, A. Kamagaew et al., Automated detection of euro pallet loads by interpreting pmd camera depth images, Logistics Research, vol.6, issue.2-3, pp.99-118, 2013.

S. Byun and M. Kim, Real-time positioning and orienting of pallets based on monocular vision, Tools with Artificial Intelligence, 2008. ICTAI'08. 20th IEEE International Conference on, vol.2, pp.505-508, 2008.

G. Chen, R. Peng, Z. Wang, and W. Zhao, Pallet recognition and localization method for vision guided forklift, Wireless Communications, Networking and Mobile Computing (WiCOM), 2012 8th International Conference on, pp.1-4, 2012.

J. Oh, H. Choi, S. Jung, H. Kim, and H. Shin, Development of pallet recognition system using kinect camera, International Journal of Multimedia and Ubiquitous Engineering, vol.9, issue.4, pp.227-232, 2014.

J. Syu, H. Li, J. Chiang, C. Hsia, P. Wu et al., A computer vision assisted system for autonomous forklift vehicles REFERENCES in real factory environment, Multimedia Tools and Applications, pp.1-21, 2016.

D. Holz and S. Behnke, Fast edge-based detection and localization of transport boxes and pallets in rgb-d images for mobile robot bin picking, ISR 2016: 47st International Symposium on Robotics; Proceedings of, pp.1-8, 2016.

R. Varga and S. Nedevschi, , pp.470-477, 2016.

M. Hebert, Outdoor scene analysis using range data, Robotics and Automation. Proceedings. 1986 IEEE International Conference on, vol.3, pp.1426-1432, 1986.

R. Hoffman and A. K. Jain, Segmentation and classification of range images, IEEE transactions, issue.5, pp.608-620, 1987.

T. S. Newman, P. J. Flynn, and A. K. Jain, Model-based classification of quadric surfaces, CVGIP: Image Understanding, vol.58, issue.2, pp.235-249, 1993.

L. Baglivo, N. Bellomo, G. Miori, E. Marcuzzi, M. Pertile et al., An object localization and reaching method for wheeled mobile robots using laser rangefinder, Intelligent Systems, 2008. IS'08. 4th International IEEE Conference, vol.1, pp.5-6, 2008.

M. R. Walter, S. Karaman, E. Frazzoli, and S. Teller, Closed-loop pallet manipulation in unstructured environments, Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, vol.9, p.10, 2010.

D. Lecking, O. Wulf, and B. Wagner, Variable pallet pick-up for automatic guided vehicles in industrial environments, Emerging Technologies and Factory Automation, 2006. ETFA'06. IEEE Conference on, pp.1169-1174, 2006.

Z. He, X. Wang, J. Liu, J. Sun, and G. Cui, Feature-to-feature based laser scan matching for pallet recognition, Measuring Technology and Mechatronics Automation (ICMTMA), 2010 International Conference on, vol.2, p.10, 2010.

C. Premebida and U. Nunes, Segmentation and geometric primitives extraction from 2d laser range data for mobile robot applications, Robotica, issue.10, pp.17-25, 2005.

R. Bostelman, T. Hong, and T. Chang, Visualization of pallets, Optics East, pp.638408-638408, 2006.

L. Baglivo, N. Biasi, F. Biral, N. Bellomo, E. Bertolazzi et al., Autonomous pallet localization and picking for industrial forklifts: a robust range and look method, Measurement Science and Technology, vol.22, issue.8, p.85502, 2011.

M. M. Aref, R. Ghabcheloo, A. Kolu, M. Hyvonen, K. Huhtala et al., Position-based visual servoing for pallet picking by an articulatedframe-steering hydraulic mobile machine, Robotics, Automation and Mechatronics (RAM), 2013 6th IEEE Conference on, pp.218-224, 2013.

M. M. Aref, R. Ghabcheloo, A. Kolu, and J. Mattila, A multistage controller with smooth switching for autonomous pallet picking, Robotics and Automation (ICRA), 2016 IEEE International Conference on, pp.2535-2542, 2016.

M. R. Walter, M. Antone, E. Chuangsuwanich, A. Correa, R. Davis et al., A situationally aware voice-commandable robotic forklift working alongside people in unstructured outdoor environments, Journal of Field Robotics, vol.32, issue.4, pp.590-628, 2015.

S. Haykin and N. Network, A comprehensive foundation, Neural Networks, vol.2, p.12, 2004.

Y. Lecun and M. Ranzato, Deep learning tutorial, Tutorials in International Conference on Machine Learning (ICML13), p.12, 2013.

R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, Proceedings of the IEEE conference on computer vision and pattern recognition, vol.12, p.19, 2014.

S. Ren, K. He, R. Girshick, and J. Sun, Faster r-cnn: Towards real-time object detection with region proposal networks, Advances in neural information processing systems, vol.12, p.19, 2015.

R. Girshick, Fast r-cnn, Proceedings of the IEEE international conference on computer vision, vol.12, p.19, 2015.

J. R. Uijlings, K. E. Van-de-sande, T. Gevers, and A. W. Smeulders, Selective search for object recognition, International journal of computer vision, vol.104, issue.2, p.19, 2013.

K. He, X. Zhang, S. Ren, and J. Sun, Spatial pyramid pooling in deep convolutional networks for visual recognition, European Conference on Computer Vision, pp.346-361, 2014.

S. Lazebnik, C. Schmid, and J. Ponce, Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories, Computer vision and pattern recognition, vol.2, pp.2169-2178, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00548585

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You only look once: Unified, real-time object detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.779-788, 2016.

M. Everingham, S. A. Eslami, L. Van-gool, C. K. Williams, J. Winn et al., The pascal visual object classes challenge: A retrospective, International journal of computer vision, vol.111, issue.1, pp.98-136, 2015.

G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik, R-cnns for pose estimation and action detection, 2014.

G. Gkioxari, R. Girshick, and J. Malik, Contextual action recognition with r* cnn, Proceedings of the IEEE international conference on computer vision, pp.1080-1088, 2015.

W. Ouyang, X. Wang, X. Zeng, S. Qiu, P. Luo et al., Deepid-net: Deformable deep convolutional neural networks for object detection, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.2403-2412, 2015.

J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy et al., Recent advances in convolutional neural networks, vol.13, p.19, 2015.

T. Barbié, R. Tanaka, R. Kabutan, and T. Nishida, Real time object position estimation by convolutional neural networks

A. Teichman and S. Thrun, Practical object recognition in autonomous driving and beyond, Advanced Robotics and its Social Impacts (ARSO), 2011 IEEE Workshop on, pp.35-38, 2011.

W. Xiaoa, B. Valletb, K. Schindlerc, and N. Paparoditisb, Simultaneous detection and tracking of pedestrian from panoramic laser scanning data, ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, pp.295-302, 2016.

A. M. Pinto, L. F. Rocha, and A. P. Moreira, Object recognition using laser range finder and machine learning techniques, Robotics and Computer-Integrated Manufacturing, vol.29, issue.1, pp.12-22, 2013.

C. Premebida, G. Monteiro, U. Nunes, and P. Peixoto, A lidar and visionbased approach for pedestrian and vehicle detection and tracking, Intelligent Transportation Systems Conference, p.14, 2007.

V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann machines, Proceedings of the 27th international conference on machine learning (ICML-10), p.14, 2010.

I. Goodfellow, A. Courville, and Y. Bengio, Deep learning, book in preparation for, p.14, 2016.

M. Braun, Q. Rao, Y. Wang, and F. Flohr, Pose-rcnn: Joint object detection and pose estimation using 3d object proposals, Intelligent Transportation Systems (ITSC), p.14, 2016.

A. L. Maas, A. Y. Hannun, and A. Y. Ng, Rectifier nonlinearities improve neural network acoustic models, Proc. ICML, vol.30, 2013.

K. He, X. Zhang, S. Ren, and J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, Proceedings of the IEEE international conference on computer vision, p.18, 2015.

B. Xu, N. Wang, T. Chen, and M. Li, Empirical evaluation of rectified activations in convolutional network, p.18, 2015.

D. Clevert, T. Unterthiner, and S. Hochreiter, Fast and accurate deep network learning by exponential linear units (elus), p.18, 2015.

T. Zhang, Solving large scale linear prediction problems using stochastic gradient descent algorithms, Proceedings of the twenty-first international conference on Machine learning, p.116, 2004.

W. Liu, Y. Wen, Z. Yu, and M. Yang, Large-margin softmax loss for convolutional neural networks, ICML, p.19, 2016.

S. Chopra, R. Hadsell, and Y. Lecun, Learning a similarity metric discriminatively, with application to face verification, Computer Vision and Pattern Recognition, vol.1, p.19, 2005.

R. Hadsell, S. Chopra, and Y. Lecun, Dimensionality reduction by learning an invariant mapping, Computer vision and pattern recognition, vol.2, pp.1735-1742, 2006.

F. Schroff, D. Kalenichenko, and J. Philbin, Facenet: A unified embedding for face recognition and clustering, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, p.19, 2015.

C. Brust, S. Sickert, M. Simon, E. Rodner, and J. Denzler, Convolutional patch networks with spatial prior for road detection and urban scene understanding, 2015.

Z. Teng, J. Kim, and D. Kang, Real-time lane detection by using multiple cues, Control Automation and Systems (ICCAS), 2010 International Conference on, p.23, 2010.

A. Gurghian, T. Koduri, S. V. Bailur, K. J. Carey, and V. N. Murali, Deeplanes: End-to-end lane position estimation using deep neural networksa, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.38-45, 2016.

G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, Improving neural networks by preventing co-adaptation of feature detectors, 2012.

S. Arlot and A. Celisse, A survey of cross-validation procedures for model selection, Statistics surveys, vol.4, p.27, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00407906

E. V. Cuevas, D. Zaldivar, and R. Rojas, Kalman filter for vision tracking, 1928.

H. W. Kuhn, The hungarian method for the assignment problem, Naval Research Logistics (NRL), vol.2, issue.1-2, p.30, 1955.

M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote et al., Ros: an open-source robot operating system, ICRA workshop on open source software, vol.3, p.36, 2009.

C. M. Bishop, Pattern recognition and machine learning, p.42, 2006.

A. Babinec, L. Juri?ica, P. Hubinsk?, and F. Ducho?, Visual localization of mobile robot using artificial markers, Procedia Engineering, vol.96, p.54, 2014.

M. Piaggio, A. Sgorbissa, and R. Zaccaria, Navigation and localization for service mobile robots based on active beacons, Systems Science, vol.27, issue.4, p.52, 2001.

M. Piaggio, A. Sgorbissa, and R. Zaccaria, Autonomous navigation and localization in service mobile robotics, Proceedings. 2001 IEEE/RSJ International Conference on, vol.4, p.52, 2001.

B. F. Hähnel and D. Fox, Gaussian processes for signal strength-based location estimation, Proceeding of Robotics: Science and Systems, Citeseer, p.53, 2006.

E. Ivanjko, A. Kitanov, and I. Petrovic, Model based Kalman filter mobile robot self-localization, p.53, 2010.

Y. Lee, B. Yim, and J. Song, Mobile robot localization based on effective combination of vision and range sensors, International Journal of Control, Automation and Systems, vol.7, issue.1, p.53, 2009.

H. Andreasson, A. Treptow, and T. Duckett, Localization for mobile robots using panoramic vision, local features and particle filter, Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, p.53, 2005.

M. Bennewitz, C. Stachniss, W. Burgard, and S. Behnke, Metric localization with scale-invariant visual features using a single perspective camera, European Robotics Symposium, p.53, 2006.

P. Elinas and J. J. Little, ?mcl: Monte-carlo localization for mobile robots with stereo vision, Proc. of Robotics: Science and Systems (RSS), p.53, 2005.

J. Biswas and M. Veloso, Depth camera based indoor mobile robot localization and navigation, Robotics and Automation (ICRA), 2012 IEEE International Conference on, p.53, 2012.

N. Crombez, G. Caron, and E. M. Mouaddib, Using dense point clouds as environment model for visual localization of mobile robot, Ubiquitous Robots and Ambient Intelligence (URAI), 2015 12th International Conference on, p.53, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01267719

F. Capezio, A. Sgorbissa, and R. Zaccaria, Gps-based localization for a surveillance ugv in outdoor areas, Robot Motion and Control, 2005. RoMoCo'05. Proceedings of the Fifth International Workshop on, p.53, 2005.

J. J. Leonard and H. F. Durrant-whyte, Mobile robot localization by tracking geometric beacons, IEEE transactions on robotics and automation, vol.7, p.53, 1991.

E. Kiriy and M. Buehler, Three-state extended kalman filter for mobile robot localization, Tech. Rep. TR-CIM, vol.5, p.53, 2002.

H. Ahmad and T. Namerikawa, Extended kalman filter-based mobile robot localization with intermittent measurements, Systems Science & Control Engineering: An Open Access Journal, vol.1, issue.1, pp.113-126, 2013.

J. M. Pak, C. K. Ahn, Y. S. Shmaliy, and M. T. Lim, Improving reliability of particle filter-based localization in wireless sensor networks via hybrid particle/fir filtering, IEEE Transactions on Industrial Informatics, vol.11, issue.5, p.53, 2015.

H. Nurminen, A. Ristimaki, S. Ali-loytty, and R. Piché, Particle filter and smoother for indoor localization, Indoor Positioning and Indoor Navigation (IPIN), 2013 International Conference on, pp.1-10, 2013.

J. Röwekämper, C. Sprunk, G. D. Tipaldi, C. Stachniss, P. Pfaff et al., On the position accuracy of mobile robot localization based on particle filters combined with scan matching, Intelligent Robots and REFERENCES Systems (IROS), 2012 IEEE/RSJ International Conference on, p.53, 2012.

F. Dellaert, D. Fox, W. Burgard, and S. Thrun, Monte carlo localization for mobile robots, Proceedings. 1999 IEEE International Conference on, vol.2, p.53, 1999.

F. Dellaert, W. Burgard, D. Fox, and S. Thrun, Using the condensation algorithm for robust, vision-based mobile robot localization, Computer Vision and Pattern Recognition, vol.2, p.53, 1999.

M. Mirkhani, R. Forsati, A. M. Shahri, and A. Moayedikia, A novel efficient algorithm for mobile robot localization, Robotics and Autonomous Systems, vol.61, issue.9, pp.920-931, 2013.

K. Khoshelham and S. Zlatanova, Sensors for indoor mapping and navigation

Y. Gao, S. Liu, M. M. Atia, and A. Noureldin, Ins/gps/lidar integrated navigation system for urban and indoor environments using hybrid scan matching algorithm, Sensors, vol.15, issue.9, p.53, 2015.

E. Digiampaolo and F. Martinelli, Mobile robot localization using the phase of passive uhf rfid signals, IEEE Transactions on Industrial Electronics, vol.61, issue.1, p.53, 2014.

J. Borenstein, H. Everett, and L. Feng, Where am i? sensors and methods for mobile robot positioning, vol.119, p.53, 1996.

J. Borenstein, L. Feng, and H. Everett, Navigating mobile robots: Systems and techniques, p.53, 1996.

H. Everett, Sensors for mobile robots: theory and application, p.53, 1995.

B. Siciliano and O. Khatib, Springer handbook of robotics, p.53, 2016.

O. Marques, Practical image and video processing using MATLAB, p.53, 2011.

M. Sukop, M. Hajduk, J. Varga, and M. Vaga?, Image processing and object founding in the robot soccer application,-2012, International Scientific Herald, vol.3, issue.2, p.53, 2012.

G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with the OpenCV library, p.53, 2008.

S. Garrido-jurado, R. Muñoz-salinas, F. J. Madrid-cuevas, and M. J. Marín-jiménez, Automatic generation and detection of highly reliable fiducial markers under occlusion, Pattern Recognition, vol.47, issue.6, p.54, 2014.

M. Fiala, Artag, a fiducial marker system using digital techniques, Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol.2, p.54, 2005.

A. , Automa Intelligente Robotico per Organizzazione Navette Elettriche (AIRONE), p.54, 2017.