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OPTIMAL CONTROL TECHNIQUES BASED ON INFECTION AGE FOR THE
STUDY OF THE COVID-19 EPIDEMIC ∗

J. FRÉDÉRIC BONNANS† AND JUSTINA GIANATTI‡

September 11, 2020

Abstract. We propose a model for the COVID-19 epidemic where the population is partitioned into classes
corresponding to ages (that remain constant during the epidemic). The main feature is to take into account the
infection age of the infected population. This allows to better simulate the infection propagation that crucially
depend on the infection age. We discuss how to estimate the coefficients from data available in the future, and
introduce a confinement variable as control. The cost function is a compromise between a confinement term, the
hospitalization peak and the death toll. Our numerical experiments allow to evaluate the interest of confinement
varying with age classes.
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1. Introduction. The COVID-19 epidemic appears for the first time in Wuhan, China at the
end of 2019. It quickly spread throughout the world, and on March 12, 2020 it was declared a
pandemic by the World Health Organization (WHO). So far there are no vaccines and it is not
clear if there is any effective treatment to combat it. That is why the governments of the different
countries began to implement containment measures in the population, trying to control the disease.
Since these actions have a great impact on the daily life of the population, one of the big questions
now is knowing how long to carry out these measures.

The recent COVID-19 epidemic has already been modelized in e.g. [8, 10, 9]. These papers use
variants and extensions of the SIR (Susceptible-Infected-Recovered) model based on ODEs (ordinary
differential equations). SIR is the standard approach for the modelization of epidemics and takes its
origin in [7]. Of course it is difficult to model confinement. The simplest way is to assume that it
boils down to a multiplicative factor coefficient with value in [0, 1] in the formula for new infections.
That is, the dynamics in the SIR setting would be

(1.1)

Ṡ(t) = −δ(1− u(t))S(t)I(t)

İ(t) = δ(1− u(t))S(t)I(t)− (η + µ)I(t)

Ṙ(t) = µI(t)

with δ > 0 infection coefficient, η > 0 death rate, and µ > 0 recovery rate. Observe that, here as in
the sequel, our models do not take into account birth, as well as death for other reasons than the
epidemic itself. We recover the classical SIR dynamics in the case of an uncontrolled system, i.e.,
when u(t) = 0 for all t. Total confinement is out of reach and therefore we may assume that we have
the control constraint u(t) ≤ uM , with uM ∈ (0, 1). Of course it is not easy to specify a confinement
cost, but we might take

(1.2) c(u) := pu

∫ T

0

ϕ(u(t))dt

with pu ≥ 0 penalty factor, and for example ϕ(s) = s (as we did in our numerical tests) or ϕ
quadratic.

Our proposal is to distinguish, among infected people, those who are hospitalized and those who
are not, and to take into account the limited duration of the infection. The latter can be achieved
by associating with the infected population an ”infection age” variable. That also allows us to
differentiate between the incubation and infectious phases of the disease. Furthermore, since the
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severity of this COVID-19 seems to depend on the age of the infected population, it may be useful
to take into account the population age, in addition to the infection age. The cost function will
minimize a combination of confinement cost, value of hospitalization peak, and death toll.

Concerning the optimal control of age-structured population, see [4] (without diffusion), and [1]
(with diffusion). The optimal control of age models with state constraints is discussed in [3]. About
optimal control application to epidemiological models, see e.g. [11]. About the related question of
models involving delays, see e.g. [13]. On optimal control approaches for COVID-19, see [5]. During
the revision process, we noticed the appearance of [12] that also propose an optimal control model
with infection age. The main difference with respect to our model is that we consider the peak value
in the objective function, which leads to a problem with state constraints. Let us also mention a
mean field game approach to the COVID-19 epidemic [6].

The paper is organized as follows. In Section 2 we present a continuous time (and infection age)
optimal control problem. The corresponding discrete time problem is discussed in Section 3. The
data analysis (how to estimate the coefficients of the problem) as well as the initial conditions are
the subject of Section 4. Finally in Section 5 we discuss various numerical results. The paper ends
with a conclusion giving a perspective of possible extensions.

Our open access code, based on the optimal control toolbox Bocop http://www.bocop.org, can
be downloaded from http://www.cmap.polytechnique.fr/∼bonnans/covid-19/covid-19.html or
https://www.fceia.unr.edu.ar/∼justina/covid-19/.

2. Continuous time optimal control problem.

2.1. An infection age structured model. We have two kinds of patients, the exposed ones,
who are asymptomatic or with mild symptoms, and those who need hospitalization. Let z(t, a, b)
(resp. h(t, a, b)) denote the number of exposed (resp. hospitalized) patients of age a ∈ [0, A] at time
t, that have been infected for duration b ∈ [0, B]. Here A and B are positive constants. Let y(t, a)
(resp. ȳ(t, a)) denote the number of non immunized (resp. immunized) people of age a at time t.
Since in practice the age variable a does not significantly vary during the epidemic, we assume that
individuals keep the same age over time. The control variable u(t, a) ∈ [0, 1] is the confinement
policy (no confinement if u(t, a) = 0, total confinement if u(t, a) = 1). We consider the following
dynamics

(2.1)



ẏ(t, a) = −δ(a)(1− u(t, a))Z(t)y(t, a)

y(0, a) = y0(a),

(zt + zb)(t, a, b) = −ν(a, b)z(t, a, b)

z(0, a, b) = z0(a, b) > 0, z(t, a, 0) = δ(a)(1− u(t, a))Z(t)y(t, a)

(ht + hb)(t, a, b) = ν(a, b)z(t, a, b)− (η(a, b) + γ(a, b)E(t))h(t, a, b)

h(0, a, b) = h0(a, b) ≥ 0, h(t, a, 0) = 0

˙̄y(t, a) = z(t, a,B) + h(t, a,B)

ȳ(0, a) = 0.

Here δ(a) ≥ 0 is the ”transmission coefficient”, Z(t) is the ”global transmission factor”, modeled
as

(2.2) Z(t) =

∫ A

0

∫ B

0

e(a, b)z(t, a, b)dadb,

with e(a, b) ≥ 0 ”transmission factor” (we assume that hospitalized patients do not contribute to
the transmission of the disease). Also, ν(a, b) ≥ 0 is the hospitalization coefficient, and E(t) ∈ [0, 1]
is the hospital saturation estimate, given by

(2.3) E(t) :=
(H(t)− C)+
H(t) + C

; H(t) :=

∫ A

0

∫ B

0

h(t, a, b)dadb,

http://www.bocop.org
http://www.cmap.polytechnique.fr/~bonnans/covid-19/covid-19.html
https://www.fceia.unr.edu.ar/~justina/covid-19/
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where C > 0 is the nominal capacity. We assume that only hospitalized patients die, with death
rate

(2.4) d(t, a, b) := η(a, b) + γ(a, b)E(t),

where η(a, b) ≥ 0 is the minimal death rate and γ(a, b) sensitivity of the death rate w.r.t. the
hospital saturation estimate.

Remark 2.1. In our numerical tests we will assume that there exists an incubation phase [0, n0)
during which transmission and hospitalization do not occur. Additionally, in the infectious phase
for which b ∈ [n0, B], we assume that e(a, b) = 1 and that ν(a, b), η(a, b) and γ(a, b) have constant
values denoted by ν̄(a), η̄(a) and γ̄(a) resp. Then, the coefficients take the form:
(2.5)
e(a, b) = 1[n0,B](b), ν(a, b) = 1[n0,B](b)ν̄(a), η(a, b) = 1[n0,B](b)η̄(a), and γ(a, b) = 1[n0,B](b)γ̄(a).

Consequently, h(t, a, b) = 0 whenever b ∈ [0, n0] and

(2.6) Z(t) =

∫ A

0

∫ B

n0

z(t, a, b)dbda.

So, in this case, the model has four parameters for each value of a: δ(a), ν̄(a), η̄(a) and γ̄(a).

2.2. Optimal control problem. We next introduce the cost function to be minimized. Given
the horizon T , the death toll for age a is equal to the difference between the initial and final
population for this age:

(2.7)
D(a) := y(0, a) + ȳ(0, a) +

∫ B
0
z(0, a, b) + h(0, a, b)db

−
(
y(T, a) + ȳ(T, a) +

∫ B
0

(z(T, a, b) + h(T, a, b)) db
)
.

The total death toll is DT :=
∫ A
0
D(a)da. Denote by

(2.8) c(u) :=

∫ T

0

∫ A

0

ce(a)u(t, a)dadt

the weighted confinement cost, with weights ce(a) ≥ 0. The cost to be minimized is a combination
of several costs. Its expression is

(2.9) J(M,u,DT ) := pMM + puc(u) + pDDT ,

where the penalty coefficients pM , pu and pD are nonnegative. Here M is an additional variable,
called the peak value, subject to

(2.10) H(t) ≤M, ∀t ∈ [0, T ].

Indeed, if pM is nonzero, the optimal M will be the minimal hospital capacity needed to take care in
an optimal way of all patients, which justifies the peak value terminology. The ability to minimize
this amount has been recognized of paramount importance.

The second term in the cost function involves the weighted confinement effort. The associated
economic cost is difficult to evaluate; this question being out of the scope of the present paper, we
simply take it linear with somewhat arbitrary weights, having in mind the obvious fact that the
confinement of retired people has a smaller economic impact than for the rest of the population,
although psychological aspects should also be taken into account.

Finally remember that the death rate depends on the saturation of hospital capacities; so the
confinement has an impact on the death toll too (assuming the coefficient γ to be nonzero and the
hospital capacity to be saturated).

In addition, in our model we include confinement duration constraints for each age, more precisely:

(2.11)

∫ T

0

u(t, a)dt ≤M(a), for a.a. a ∈ (0, A).
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3. Discretization of the control problem. In this section we present the discrete model
associated to the previous formulation. The main objective of this section is to explain how to write
the discrete problem so that an optimal control solver (based on an ODE model) can address it (See
appendix A for more details).

For the age a ∈ [0, A] we take discrete values {1, . . . , na}. As both time unit, time step and
discretization of the infection age we choose one day.

The horizon of the problem will be N ∈ N. Let n0, nb, with n0 < nb be the duration of the
incubation phase and of the infection, respectively.

The time index is k ∈ N, starting from value 0. The infection age is j ∈ {1, . . . , nb}. The initial
conditions are

(3.1)

y0a = y0(a) a = 1, . . . , na,

z0a,j = z0(a, j) a = 1, . . . , na, j = 1, . . . , nb,

h0a,j = h0(a, j) a = 1, . . . , na, j = 1, . . . , nb.

The global transmission factor and the size of the hospitalized population are respectively

(3.2) Zk =

na∑
a=1

nb∑
j=1

ea,jz
k
a,j , Hk =

na∑
a=1

nb∑
j=1

hka,j .

Also Ek ∈ [0, 1] is a discrete counterpart to the hospital saturation estimate E(t), given by

(3.3) Ek :=
(Hk − C)+
Hk + C

.

Willing to keep conservation laws, we may write the dynamics as follows: for all a = 1, . . . , na,

(3.4)

yk+1
a =

(
1− δa(1− uka)Zk

)
yka

zk+1
a,1 = δa(1− uka)Zkyka

zk+1
a,j = (1− νa,j−1)zka,j−1 j = 2, . . . , nb

hk+1
a,1 = 0

hk+1
a,j = νa,j−1z

k
a,j−1 + (1− ηa,j−1 − γa,j−1Ek)hka,j−1 j = 2, . . . , nb

ȳk+1
a = ȳka + zka,nb

+ hka,nb
.

The death toll per age and day, and per day, are resp.

(3.5) Dk
a :=

nb−1∑
j=1

(ηa,j + γa,jE
k)hka,j ; Dk :=

na∑
a=1

Dk
a .

The parameters of the dynamics are:
δa: transmission rate

νa,j : hospitalization rate
ηa,j : minimal death rate
γa,j : sensitivity of the death rate w.r.t. hospital saturation.

Remark 3.1. The state variable yka remains nonnegative iff

(3.6) δa(1− uka)Zk ≤ 1.

In the case of normalized (i.e., summing to 1) initial population, we have that Zk ≤ 1. So, the
previous nonnegativity condition holds whenever δa ≤ 1. In our numerical test, it may happen that
δa ≥ 1, but yka always remained positive.

On the other hand, in our tests ηa,j + γa,j ≤ 1. Since Ek ≤ 1 by definition, it follows that hka,j
always remains nonnegative.
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We have the following constraints: maximal achievable confinement, peak value for the hospital
capacity, and cumulated confinement effort. Namely, for some uMa ∈ [0, 1], M ≥ 0, and Ma ≥ 0:

(3.7)

0 ≤ uka ≤ uMa , k = 0, . . . , N, a ∈ {1, na}

Hk ≤M, k = 0, . . . , N,∑N−1
k=0 u

k
a ≤Ma, a ∈ {1, na}.

The expression of the cost is

(3.8) Jd(M,u,DT ) := pMM + pucu + pDDT ,

with cu weighted confinement cost, DT total death toll:

(3.9) cu :=

N−1∑
k=0

na∑
a=1

ce,au
k
a; DT =

N−1∑
k=0

Dk,

and pu, pM and pD are nonnegative penalty coefficients.
Due to the incubation phase, the value of control for the last n0 days has no influence on the

hospitalizations and therefore, neither on the death toll nor on the hospital capacity constraint.

4. Estimation of coefficients and initial state.

4.1. Incubation and infectious phases. As we mentioned in Remark 2.1, for our numerical
tests we assume that there exists an incubation phase (days 1 to n0 − 1 of infection) where no
transmission and hospitalizations occur. So,

(4.1) ea,j = 0 for 1 ≤ j ≤ n0 − 1, ea,j = 1 for n0 ≤ j ≤ nb, and νa,j = 0 for 1 ≤ j ≤ n0 − 1.

The above assumptions together with the initial condition hka,1 = 0 implies that

(4.2) Zka =

na∑
a=1

nb∑
j=n0

zka,j , and hka,j = 0, whenever 1 ≤ j ≤ n0.

During the infectious phase (j varying from n0 + 1 to nb) we may assume that the coefficients νa,j ,
for j ≥ n0 ηa,j and γa,j , for j ≥ n0 + 1, do not depend on j and therefore are equal to some positive
constants ν̄a, η̄a, γ̄a.

We assume that we know for each age the total proportion ν̂ of transfers from z to h, that satisfies

(4.3) ν̂a = ν̄a + ν̄a(1− ν̄a) + · · ·+ ν̄a(1− ν̄a)nb−n0−1 = ν̄a

nb−n0−1∑
j=0

(1− ν̄a)j = 1− (1− ν̄a)nb−n0 ,

so that we can estimate

(4.4) ν̄a = 1− (1− ν̂a)1/(nb−n0).

Similarly, we may assume that we know for each age the proportion η̂a of hospitalized people that
will die, when the hospital capacity is not saturated. Since hka,j = 0, for j = 1, . . . , n0, we have by
similar arguments

(4.5) η̄a = 1− (1− η̂a)1/(nb−n0−1).

As expected, ν̄ and η̄ take values in [0, 1].
When the total hospital capacity is exceeded we assume that it can be measured so that γ̄a itself

can be evaluated.
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4.2. Initial condition. Assuming that we know a growth factor g for the infected population
given a time period of p time steps, then epλ = g, so that

(4.6) λ = (log g)/p.

We assume that the initial time corresponds to an early phase of the epidemic, and therefore that
the h and ȳ variables are equal to zero, and (since the order of magnitude of y is almost constant)
search for the z variable a solution of the form

(4.7) zka,j = ca,je
λ(k−j).

We can express ca,j as function of ca,1:

(4.8) ca,j =

{
ca,1 if j ≤ n0
ca,1(1− ν̄a)j−n0 otherwise.

So the total and infectious population of z for each age are resp.

(4.9) Z̄ka :=

nb∑
j=1

zka,j = ca,1χ̄ae
λk; χ̄a :=

n0−1∑
j=1

e−λj +

nb∑
j=n0

(1− ν̄a)b−n0e−λj



(4.10) Zka :=

nb∑
j=n0

zka,j = ca,1χae
λk; χa :=

nb∑
j=n0

(1− ν̄a)j−n0e−λj .

In the absence of confinement at initial time, estimating ca,1 with the previous relation, we deduce
the value of δ from:

(4.11) ca,1 = z1a,1 = δaZ
0y0a.

As noted in remark 3.1, in order that yk remains nonnegative, we need that

(4.12) δa(1− uka)Zk ≤ 1, for all k = 0, · · · , N.

Remark 4.1. We have seen that, since the initial time corresponds to an early stage of the epi-
demic, we can assume that h0 = 0 and ȳ0 = 0, and additionally, we can assume that there is no
saturation of the hospital capacity. We could consider that we have statistical estimates of the
”initial parameters” λ, ν̂, η̂, y0, Z0.

Then we can deduce ν̄ and η̄ from (4.4) and (4.5), respectively. The value of χ and χ̄ follow. We
can deduce ca,1 from (4.10) and the values of z0 follow with (4.7). Finally, we deduce δ from (4.11).

For the estimate of the γ parameters, specific methods are needed, which are beyond the scope
of this paper.

5. Numerical tests.

5.1. Choice of parameters and initial conditions. We consider the available data for
France up to April 6, 2020. From Santé publique France and data.gouv.fr we obtain the following
information:

Total confirmed cases: 74390
Total hospitalized cases: 54036
Total confirmed deaths: 8911

From these data we can estimate the values of ν̂ and η̂ that represent the proportion of infected
population in needs of hospitalization and the proportion of deaths with respect to the hospitaliza-
tions, respectively.

(5.1) ν̂ = 0.726, and η̂ = 0.165.

https://www.santepubliquefrance.fr/maladies-et-traumatismes/maladies-et-infections-respiratoires/infection-a-coronavirus/articles/infection-au-nouveau-coronavirus-sars-cov-2-COVID-19-france-et-monde
https://dashboard.COVID19.data.gouv.fr/
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Furthermore, from the above mentioned sources, we can observe that in the beginning of the epi-
demic, the growth factor per week is between 2.5 and 3, we can consider that

(5.2) λ ∈ [0.13, 0.15].

In the French demographic institute website INED we find detailed information on deaths in
hospitals, taking into account the age of the population. We deduce that the strong population y1
can be considered as the population up to 59 years and the weak population y2 as the population
over 60 years. In this case we have

Total population % Total confirmed deaths %
strong 49213491 73.4 416 6.5
weak 17850240 26.6 6021 93.5
total 67063703 100 6037 100

Since they only consider deaths in hospitals, the number of deaths in the two previous tables is
not the same. From the last table we can calculate the relative mortality rate as

(5.3) ηr1 =
416

49213491
= 8.45e− 6, and ηr2 =

6021

17850240
= 3.4e− 4,

which implies that the ratio of this rate is

(5.4)
ηr1
ηr2

= 0.0248.

In order to obtain the values of η̂1 and η̂2, we assume that ratio is the same, i.e. η̂1/η̂2 = 0.0248.
Normalizing the population, the global death rate η̂ is equal to

(5.5) η̂ = η̂1y1 + η̂2y2 = (0.0248η̂2)0.734 + η̂20.266.

By (5.1) we obtain,

(5.6) η̂1 = 0.014, η̂2 = 0.58.

Since we do not have detailed information about the age of hospitalized people, we assume:

(5.7) ν̂ = ν̂2 = ν̂1.

Finally, from data.gouv.fr we know the total of confirmed cases per day, but again we do not
have the information by age. For this reason, and since in our formulation, the discount term in the
first dynamics equation is depending on the sum of infected population (Zk), we consider that if Z̄0

is the initial confirmed cases, then we can define the (normalized) initial confirmed cases by age, as

(5.8) Z̄0
1 = Z̄0 0.734

y0
, Z̄0

2 = Z̄0 0.266

y0
,

where y0 = 67063703 is the total population of France.
Since we have taken the same values of ν̄ for the two populations, and the initial infected pop-

ulation proportional to the total population, the values for δ are identical. The initial infected
population is computed as it was explained, taking the data from data.gouv.fr.

In our numerical tests the first day is March 15, 2020. For France this was actually the first day
of confinement, with 6633 confirmed cases. We consider the following parameters:

y01 initial strong population 0.734
y02 initial weak population 0.266
Z̄0
1 initial infected strong population 7.26e− 5

Z̄0
2 initial infected weak population 2.63e− 5
λ growth coefficient given by (4.6) 0.13
ν̂1 total proportion of transfers from z1 to h1 0.726
ν̂2 total proportion of transfers from z2 to h2 0.726
η̂1 strong minimal death rate 0.014
η̂2 weak minimal death rate 0.58

https://dc-COVID.site.ined.fr/fr/donnees/
https://dashboard.COVID19.data.gouv.fr/
https://dashboard.COVID19.data.gouv.fr/
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We choose an incubation duration of 6 days, and a total infection duration as 14 days. From the
above table, following the methodology described in Remark 4.1, we obtain:

(5.9)
δ1 = 1.656, ν̄1 = 0.149412, η̄1 = 0.002012

δ2 = 1.656, ν̄2 = 0.149412, η̄2 = 0.116557

In addition, we assume:

(5.10) γ̄a,j = η̄a,j , ∀a = 1, 2, 1 ≤ j ≤ nb; C = 0.005.

5.2. Numerical results in the case of an age independent control. In these first four
tests, we assume the control variables to be independent of the age a, i.e. uk1 = uk2 for all k, that the
upper bound for the control is uM = 0.75, and that the confinement cost, given by (3.9), satisfies
ce,1+ce,2 = 1. We present different scenarios, taking different penalty terms in the objective function.
We do not consider any cumulated control constraints.

In each of the figures below, we show four graphics. The first one (upper left), is the optimal
confinement, the second one (upper right) is the cumulative number of deaths for the strong and
weak population, the third one (bottom left) is the number of people in need of hospitalization
per day and the last one (bottom right) shows the evolution of the susceptible strong and weak
population.

Test 1: pM = 1, pu = 1, pD = 1, Figure 1.
Test 2: pM = 1, pu = 0.000001, pD = 0, Figure 2
Test 3: pM = 1e− 5, pu = 0, pD = 1, Figure 3
Test 4: pM = 1, pu = 0.0005, pD = 1, Figure 4

In the following table we show the death toll for strong, weak and total population, follow by
I(u) :=

∑N
k=0 u

k and the peak value M .

Test D1,T D2,T DT I(u) M

1 0.0088192 0.116966 0.1257852 0 0.27665

2 0.00816993 0.111278 0.11944793 54.49 0.0698543

3 0.00660044 0.0906906 0.09729104 102.375 0.0693109

4 0.00688871 0.094924 0.10181271 65.9702 0.0715698
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Fig. 1. Test 1: pM = 1, pu = 1, pD = 1. The optimal control is 0. Without confinement, the death toll
is greater than 10% and the peak value is very large, as expected.

Fig. 2. Test 2: pM = 1, pu = 0.000001, pD = 0. In this case the main objective is to reduce the peak
value. We can observe the delay, between the confinement decision and the response in the hospitalized
population. Indeed, when the confinement stops, the size of hospitalized population remains constant for
several days. The death toll is greater than 10%.
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Fig. 3. Test 3: pM = 1e − 5, pu = 0, pD = 1. The main objective is to reduce the death toll, without
considering the confinement cost. Therefore, the optimal policy assumes the maximum confinement value
until the last days. Since the saturation of hospital capacity impacts in the death rate, as a consequence the
peak value is reduced.

Fig. 4. Test 4: pM = 1, pu = 0.0005, pD = 1. In this case we want to reduce the peak value and the
death toll, taking into account the economical impact.

Discussion of the numerical results for an age independent control:
To analyze and compare the complete behavior of the epidemic when different confinement poli-

cies are applied, we assume that the maximum for this control is 0.75. Of course, this is the reason
why in the tests we obtain that almost the entire population is immunized in the period considered.
On the contrary, at the moment in France and in many countries around the world, containment
measures are stronger and after more than a month of confinement we are far from the end of the
epidemic. If these policies continue, the time needed to reach this level of immunization will be even
longer.

From the above tests we can observe that if there is no confinement, which is the case of Test 1,
then the health system will collapse and the death toll will be very large, as expected.

It is interesting to compare Test 2 and Test 3. In Test 3, the main objective is to reduce the
death toll, and we observe that in comparison with Test 2, we obtain more or less the same peak,
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some days after, but with a small death toll. The difference between them, is that in the first case,
when the hospitalized population attains its maximum, the confinement stops, whereas in Test 3,
the confinement is maximal until the end. That means that reducing the peak is not enough to
reduce the final number of deaths.

Finally, as expected, in Test 4 since the control penalty is greater than those previously consid-
ered, the confinement is reduced, obtaining a greater peak value and death toll, but even though the
death toll is smaller than in Test 2. We can also observe that in Test 4 since the optimal policy is 0
during the first 20 days, the peak value is obtained several weeks before than in Test 2 and Test 3.

As we mentioned in the introduction, it is very difficult to weigh economic losses against the
number of lives lost.

5.3. Numerical results with age dependent controls. Taking into account these results,
it is clear that most deaths occur in the weak population, so it is natural to address the issue of
considering two different levels of confinement, depending on the age of the population. We take
0.75 as upper bound for the two confinement controls. In this case the cost function is given by
(3.9). For the numerical tests, we assume that ce,1 = 0.734 and ce,2 = 0.133. With this coefficients
we take into account the proportion of the population that is weak and strong and we also assume
that confinement for the elderly has less impact on the economy than confinement for the young.
We use the same initial conditions and parameters as in the previous tests. For Test 5 and Test 6
we do not consider any cumulated control constraints.

Test 5: pM = 1, pu = 0.000001, pD = 0, Figure 5
Test 6: pM = 1, pu = 0.0005, pD = 1, Figure 6

In the last test, we take the same values of Test 6, but we include cumulated control constraints
(3.7) with M1 = 25 and M2 = 45.

Test 7: pM = 1, pu = 0.0005, pD = 1, Figure 7

In the following table we summarized the results of the tests with differentiated confinement:

Test D1,T D2,T DT I(u1) I(u2) M

5 0.00817212 0.109833 0.11800512 67.7524 73.6568 0.0693917

6 0.00824508 0.0983062 0.10655128 35.8425 62.25 0.0729996

7 0.00837618 0.10037 0.10874618 25 45 0.0805676
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Fig. 5. Test 5: pM = 1, pu = 0.000001, pD = 0. Since hospitalizations rates ν̄1 and ν̄2 are assumed equals, to
reduce the amount of hospitalizations that occur at the same time, it makes sense that both populations are confined
for almost the same period. In this case, once the peak is reached, the confinement stops. We still observe a large
number of deaths, greater than 10%.

Fig. 6. Test 6: pM = 1, pu = 0.0005, pD = 1. As in Test 4, the aim is to balance between reducing peak value,
death toll and confinement cost. We observe an important difference between optimal confinement for strong and
weak populations. Of course, this occurs due to the difference between the mortality rates for both populations.

Discussion of the numerical results for age dependent controls:
We analyze the difference between taking a confinement policy dependent or independent of the

age. Test 5 is similar to Test 2, in both cases we achieve to reduce the peak value, but we obtain a
very high death toll. In Test 5, there is no significant difference between confinement for the strong
and weak population, and the behavior is similar to Test 2, once the peak is reached, the confinement
stops (taking into account the delay effects).

The comparison between Test 4 and Test 6 is maybe the most interesting one. With similar
penalty terms, we obtain almost the same death toll and peak value. The main difference is that the
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Fig. 7. Test 7: pM = 1, pu = 0.0005, pD = 1, with the confinement lengths M1 = 25 and M2 = 45. The
objective of this test is to show how the optimal policy changes when we add constraints in the confinement lengths.
Taking the delay into account, we see that the end of confinement of the strong population corresponds to the end of
the hospitalization peak.

strong population has a considerably shorter confinement in Test 6, while the weak population has
almost the same as in Test 4. This confirms that performing differentiated confinement is perhaps
the best response when seeking to minimize the economic impact of confinement, while at the same
time reducing the number of deaths.

From the available data, it is evident that the majority of deaths belong to the weakest group, so
it is natural to think that if the objective is to reduce the number of final deaths, the confinement for
this group should be larger than for the other. When the sole objective is to reduce the peak, we do
not observe this behavior because it is more important to reduce the number of infected people than
the total number of deaths. Since in our model we take into account the saturation of the hospital
system in the mortality rate of hospitalized people, when we minimize the number of deaths, we also
obtain a reduction in the peak.

5.4. Two cases of specific interest. As we mentioned in the previous discussions, the objec-
tive of the previous tests was to analyze different scenarios that show that our numerical methods
work well and that all the results obtained are consistent with our model. Now we will try to analyze
cases closer to the current data.

5.4.1. A quasi-periodic control. In order to show an example which may be closer to the
actual available data so far in France, we consider the case when after 15 March, the transmission
rate δ is reduced to the half. This can be interpreted as a result of a change in the population
behavior, in addition to the confinement policy itself, such as washing hands, social distancing, and
the use of masks. We allow the confinement policy to take values between 0 and 0.9. We choose
pM = 12, pu = 0.005, pD = 1 and assume that the hospital capacity is C = 0.01. See figure 8.

After several weeks of confinement, hospitalizations per day begin to decrease. As expected,
since the total number of immunized people is still too small, the epidemic is far from the end and
when the confinement policy is relaxed, a rebound can be observed. This quasi-periodic feature of
confinement could be a good strategy not to overwhelm the health system.

Given that the containment policy is very strong, after 140 days we did not observe great changes
in the number of immunized people. However, the death toll is close to 0.0011, which is equivalent
to approximately 73,000 people. Again, the reason for this large number of deaths is due to the
hospitalization and mortality rates considered.
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Fig. 8. Quasi-periodic case: pM = 12, pu = 0.005, pD = 1, C = 0.01.

5.4.2. Long term behavior. In this case we take the parameters values of the above test, in
particular the transmission rate δ = 0.825 and the control takes values in [0, 0.9]. The penalty terms
are pM = 12, pu = 0.005, pD = 1, which implies that the main objective is to reduce the peak value,
taking into account the death toll, but the costs associated with confinement are quite high. In this
test we increase the horizon to 260 days.

We observe that some days after the peak of hospitalizations is achieved, the control is very high,
and then it begins to slowly decrease to zero, which is when the epidemic is close to ending, see
figure 9. When the situation of the country do not allow to take a long and strong confinement, this
may be the more accurate strategy. Of course, due to penalties considered, the death toll is still too
high.

Fig. 9. Long-term behavior: pM = 12, pu = 0.005, pD = 1, C = 0.01, T = 260.

5.5. Comments on the numerical results. A critical question is to check if data are avail-
able for evaluating the coefficients. Exchanges on the model with epidemic experts would be of
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course very useful.
We want to point out that all the results obtained in the tests are illustrative. It is well known

that the available data on confirmed cases could be far from the actual number, due to asymptomatic
cases. A higher number of infected people would imply that hospitalization and mortality rates are
lower and, therefore, the death toll as well as the maximum number of hospitalizations will be lower.
In fact, we took the available data on March 15, 2020, when the death toll was almost 16%. This is
why, in our tests, when the epidemic is almost over, the number of deaths is so high.

In addition, the other parameter that influences the number of deaths and the peak value, is the
hospitalization rate ν̄, which at the beginning was close to 70%. Given that there are apparently
many cases that are not serious, at a later stage of the epidemic when there is more demand in
hospitals, some of these cases could be treated at home, obtaining a lower rate. Furthermore, we
have no information on the length of hospitalization.

6. Conclusion.

6.1. Possible extensions. We want to highlight several possible extensions or modifications
of our model. Of course, such changes require further information, but we may have more accurate
data in the near future. For instance, if a vaccine is available we can introduce a new control v(t, a)
which is the per capita rate of vaccination. The resulting modification in the dynamics would be:

(6.1)
ẏ(t, a) = −δ(a)(1− u(t, a))Z(t)y(t, a)− v(t, a)y(t, a),

˙̄y(t, a) = z(t, a,B) + h(t, a,B) + v(t, a)y(t, a).

It is natural to think that v depends on the age of the population, and the limitation of MV vaccines
per day would read as

(6.2)

∫ A

0

v(t, a)y(t, a)da ≤MV , for a.a. t ∈ (0, T ).

Here we neglect any delay for the vaccination to become effective. Also, if data was available, it may
be useful to split the infected population between the confirmed cases (taking advantage of a testing
policy) and non-confirmed (among then some asymptomatic cases). Keeping the variable z for the
non-confirmed cases, we could introduce a new state w(t, a, b) representing the confirmed cases.
Assuming the latter to be isolated, only the z population contributes to the global transmission
factor Z(t). We obtain the following dynamics:

(6.3)



ẏ(t, a) = −δ(a)(1− u(t, a))Z(t)y(t, a)

(zt + zb)(t, a, b) = −µ(t, a, b)z(t, a, b)− ν(a, b)z(t, a, b)

(wt + wb)(t, a, b) = µ(t, a, b)z(t, a, b)− ν(a, b)w(t, a, b)

(ht + hb)(t, a, b) = ν(a, b)(z(t, a, b) + w(t, a, b))− (η(a, b) + γ(a, b)E(t))h(t, a, b)

˙̄y(t, a) = z(t, a,B) + w(t, a,B) + h(t, a,B).

Here µ(t, a, b) ≥ 0 is another control, which represents the detection rate. A possible associated cost
for the testing policy would be, for some positive coefficients c1 and c2:

(6.4)

∫ T

0

∫ A

0

∫ B

0

µ(t, a, b)(c1z(t, a, b) + c2y(t, a, b))dbdadt.

In addition, we can consider the hospitalization age to be a significant parameter. Denoting it by
c ∈ [0, C], and assuming that h depends on (t, a, c), we get the following dynamics for the hospitalized
population:

(6.5)

{
h(t, a, 0) =

∫ b
0
ν(a, b)(z(t, a, b) + w(t, a, b))db

(ht + hc)(t, a, c) = − (η(a, c) + γ(a, c)E(t))h(t, a, c), c ∈ [0, C].

It is also possible to introduce a recovery rate, that could depend on the hospitalization age, and
would contribute to the dynamics of ȳ.



16 J. F. BONNANS, AND J. GIANATTI

As we can see there are many possible adaptations of our model. On the other hand, one should
avoid to excessively increase the number of states and parameters. A model with too many states
is difficult to optimize; one with too many parameters makes identifiability uneasy.

6.2. Final remarks. Population models with infection age need (after infection age discretiza-
tion) many states. Nevertheless, we could obtain a numerical convergence of our solvers in various
cases. Sometimes we needed to solve the problem first with a small horizon (e.g. 3 months) and
then to increase progressively the horizon, in order to obtain the convergence.

The main advantage of our model is the age-structure. Despite the limited accuracy of the
parameters and the obtained data, in our tests we recovered the particular behavior of the epidemic
with respect to the incubation phase and almost fixed duration, at least for non-severe cases. We
can see the delay in the response when a containment policy is taken, which is crucial in this type
of disease where the infected population grows exponentially.

Our model is quite flexible and allows to take for instance variable coefficients during or after the
incubation phase. In future studies one should of course take advantages of clinical studies in order
to take into account a more accurate dynamical model, including the response to drugs, as well as
the extensions just previously discussed.

It is of interest to observe how is the containment variable in the ’long term’ case of subsection
5.4.2. The containment is initially absent, then close to its maximal value at a time close to the
saturation of the hospital capacity, then smoothly decreases and goes back to 0. This (happily)
seems to be in accordance with the expected social behavior (to accept more easily strict measures
at the beginning).

Besides, this study raises interesting questions related to the analysis of the optimality conditions,
especially since the model involves state constraints. For this purpose the techniques of the recent
paper [3] could be useful.

Appendix A. General time steps.
We used the open-source optimal control solver Bocop ([2], http://www.bocop.org). Since our

software solves optimal control problems described by an ODE, the present problem does not enter
in its format. However, note that we can rewrite the discrete system (3.4) in this way:

(A.1)

yk+1
a − yka = −δa(1− uka)Zkyka

zk+1
a,1 − zka,1 = −zka,1 + δa(1− uka)Zkyka

zk+1
a,j − zka,j = −zka,j + (1− νa,j−1)zka,j−1

hk+1
a,j − hka,j = −hka,j + νa,j−1z

k
a,j−1 + (1− ηa,j−1 − γa,j−1Ek)hka,j−1

ȳk+1
a − ȳka = zka,nb

+ hka,nb
.

Taking advantage of the fact that the time step is 1, we see that the discrete system (3.4) can be
interpreted as the explicit Euler discretization scheme, for dynamics corresponding to the r.h.s. of
the above array.

While a time step of one day is natural, in the case of large horizons it may be useful to conduct
experiments with time steps of several days. So, consider a time step (equal to the step for the
infection age) ∆ > 0. We need n′b := nb/∆ to be integer. Clearly the following system is a
consistent approximation of (2.1):

(A.2)

yk+1
a − yka

∆
= −δa(1− uka)Zkyka

zk+1
a,1 − zka,1

∆
=
−zka,1

∆
+ δa(1− uka)Zkyka

zk+1
a,j+1 − zka,j+1

∆
=

zka,j − zka,j+1

∆
− νa,j−1zka,j

hk+1
a,j+1 − hka,j+1

∆
=

hka,j − hka,j+1

∆
+ νa,jz

k
a,j − (ηa,j + γa,jE

k)hka,j

ȳk+1
a − ȳka

∆
= zka,n′

b
+ hka,n′

b
.

http://www.bocop.org
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In addition the above scheme is conservative, and can be interpreted as the explicit Euler discretiza-
tion scheme, for dynamics corresponding to the r.h.s.
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