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Abstract. We propose some convenient notations for expressing com-
plicated properties of finite and infinite, ordinal-indexed sequences. The
algebra of ordinal-indexed sequences is being implemented in the proof-
assistant Coq, together with the algebra of ordinals represented in Cantor
normal form.

1 Purpose

In infinite combinatorics, program verification, and other subjects of mathemat-
ical interest, one often encounters a need to describe properties of finite and
infinite sequences. For example, a “good” sequence in well-quasi-ordering (wqo)
theory is an infinite sequence containing at least one element that is related (in
a quasi-ordering -) to a subsequent element.

We have been seeking convenient notations and operations that would enable
us to easily express properties of sequences that are of interest. Not finding
anything suiting our needs, we propose some in this note.

In programming and proof development, the idea of dependent types has
established itself as most useful for various applications. In practice, such types
depend either on natural numbers, such as lists depending on a natural number
expressing their length, or on a proposition whose proof is required for type-
checking purposes. Infinite lists, as studied in this note, will depend instead on
ordinals. This paper therefore contains a formalization in Coq of ordinals in
Cantor normal form, and their use for formalizing infinite sequences. Proofs of
most statements are provided in the online supplement.

2 Finite Paths

We begin with the simpler finite case.
Let V be a (finite or infinite) alphabet, which we call points (akin to vertices),

and let V n be all n-tuples of points, thought of as n-element sequences, which
we refer to as paths. The length of a path s0, s1, . . . , sn−1 is n, the number of its
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points. This definition of length, although somewhat unusual, generalizes best
to transfinite paths.

Note that the path s0 has length one, the empty (pointless) path being
obtained for n = 0. We will have little recourse to empty paths (but ε would be
a natural symbolization): from here on, a path will always have n > 0 points.

A binary relation E ⊆ V ×V consists of pairs of points, and may be thought
of as a set of “colored” steps (edges) between points, the color being E. More
generally, an n-ary relation (hyperedge) R ⊆ V n would represent a set of paths
s0, s1, . . . , sn−1, of length n, consisting of n points and n− 1 consecutive steps.
The empty relation is ∅.

It will prove handy to view any single path as a singleton relation and to
view an individual point p ∈ V as a path of length 1 – the starting point and
ending point of the path being one and the same. A set P ⊆ V of such zero-step
paths may be thought of as a monadic property of points.

The concatenation of two paths r = r0, r1, . . . , rm and s = s0, s1, . . . , sn
over V is simply ras = r0, r1, . . . , rm, s0, s1, . . . , sn, as in formal language the-
ory. The concatenation of two paths need not be a path. More relevant is the
multiplication-like join operation: those two paths can be joined only if the sec-
ond starts where the first leaves off, that is, if rm = s0, in which case their join
is the path

rs = r0, r1, . . . , rm−1, s0, s1, . . . , sn

For binary relations (m = 1, n = 1), there is also composition, where r ◦ s =
r0, sn.1

As we are more interested in relations between points than in the points
themselves, the basic operation on paths that is of interest to us is join, not
concatenation or composition, which is why we simply use juxtaposition for it.
It is then natural to let 1 denote the set of all singleton paths, V , since it is the
unit element vis-à-vis join (whereas ε is the identity element for concatenation).
We also let 2 = V × V be the full Cartesian product, that is all possible single
steps (that is, paths of length 2) between pairs of points.

If R and S are sets of paths,2 then we denote by

RS = {rs : r ∈ R and s ∈ S}

the set of all (possible) joins between their elements, starting with a path in R.
As is the norm for formal languages, we use additive notation for union of sets,
so R+ S = {q : q ∈ R or q ∈ S}. We also use the customary exponents. So the
join unit is

S0 = 1

the n-fold join (n > 0) is
Sn+1 = SnS

1 A suitable notion of composition for relations that are wider than binary is non-
trivial. See, for example, [4].

2 It is tempting to propose the term gene for a path (sequence of steps) and genome
for a set of genes.



and finite iteration of join is

S∗ =
∑
n<ω

Sn

Using this Kleene-star notation, 2∗ is the set of all finite paths.

3 Infinite Paths

Paths, in general, need not be finite; they may be infinite or transfinite. The
length |s| of a finite or transfinite path s = {sα}α<β (over V ), for countable
ordinal β, is β − 1, the number of edges in the path (β − 1 = β for limit ordinal
β). Note that this definition coincides with the previous one in case β is a finite
ordinal.

The join of two paths needs to be defined differently when the length of the
first is a limit ordinal (like ω), in which case the two paths are concatenated,
there being no last element for the first path:

rs =


r0, . . . , r|α|, s0, . . . |r| = α+ 1, r|α| = s0

nonexistent |r| = α+ 1, r|α| 6= s0

r0, . . . , s0, . . . otherwise

We have
|rs| = (|r| − 1) + |s|

where addition is the standard non-commutative addition of ordinals, and sub-
traction is defined so that α− β is the unique γ such that β + γ = α, for α ≥ β.
In particular, the predecessor of a limit ordinal is itself.

Joins are indexed as follows:

(rs)α =

{
rα α < |r|
sα−|r| |r| ≤ α

Exponentiation of sets of paths acts as expected for nonlimit ordinals.3 Let
S be a set of paths.

S0 = 1 Sβ+1 = SβS

For exponentiation to a limit ordinal λ, matters are significantly more com-
plicated. To begin with, let s be some ordinal-indexed sequence {s(β)}β<γ of
paths s(β) ∈ S for which we want to define the infinite join

∏
β<γ s(β) =

s(0)s(1) · · · s(β) · · · of its elements in the given order. Let’s abbreviate s(<γ) =∏
β<γ s(β).

Before we can figure out how to index the points in joined paths, we need to
know how to measure the length of joined paths. The easy cases are:∣∣∣s(<0)

∣∣∣ = 0
∣∣∣s(<γ+1)

∣∣∣ =
∣∣∣s(<γ)∣∣∣+

∣∣∣s(γ)∣∣∣
3 We do not consider 0 to be a limit ordinal.



But what is the size of a limit join? Naturally, it is the limit of longer and longer
joins: ∣∣∣s(<λ)∣∣∣ = sup

γ<λ

∣∣∣s(<γ)∣∣∣
which is well-defined by ordinal induction.

Now, we are ready define infinite joins by specifying its elements one by one.
Given an ordinal α < |s(<λ)|, we need to find the path s(γ) in the sequence
{s(β)}β<λ, and the position δ in that path such that

s(<λ)α = s
(γ)
δ

Clearly, γ is the largest ordinal such that |s(<γ)| ≤ α, and δ = α− |s(<γ)|.
We can now complete the definition of exponentiation by adding the limit

case:
Sλ =

{
s(<λ) : s ∈ [λ→ S]

}
where [λ→ S] are all λ-long sequences of paths in S.

For example, a binary relation E is well-founded,4 or strongly normalizing, if
it admits no (ordinary) infinite (ω) paths: Eω = ∅.

It also pays to have

S<α =
∑
β<α

Sβ

Then we may view the star notation as shorthand for the ω case and use it for
infinite paths as well as finite ones:

S∗ = S<ω

More generally we might want any range of ordinals in the exponent, as in
S[ω..ω2) for

∑
ω≤β<ω2 Sβ .

With these definitions in hand, the following equalities hold:

∅S = S∅ = ∅
1S = S

(QR)S = Q(RS)

On the other hand, S1 6= S, when S has limit paths. In other words, 1 is a left
unit only.

4 Path Operations

Let Ω = 2<ω1 be all (finite or countably transfinite) paths over V . We can define
(modal) unary operators on a set of paths S:

eventually : 3S = ΩS

complement : !S = Ω \ S
always : 2S = ! 3 !S

4 We allow ourselves the luxury of using this term even for non-transitive relations.



Thus, R ⊆ 2S means that every tail of a path in R satisfies S (i.e. belongs to
the set S).5 The binary until modality, P U S = (P2)∗S, states that monadic
P holds at every point in a path until S holds of the continuation of the path.

Let

〈S〉 = {s0 : s ∈ S}

give just the first (source) elements of paths in S. This may be used to filter
paths by elements that initiate other paths. For example, we say that R escapes
from S if Sω ⊆ 3 〈R(R+ S)ω〉Ω, meaning that in any ω-long path of R- and
S-steps there is a point from which an R-step (perhaps leading out of the path)
initiates a path in R+ S of length ω (see [1]).

We found it useful to define

bS c =
{

(s0, s|s|) : s ∈ S, |s| not a limit
}∪{(s0, a) : s ∈ S, a ∈ V, |s| limit

}
that is, the binary relation consisting of all single steps composed of all first (s0)
and last (s|s|) elements in paths s ∈ S. If there is no last element, then the first
relates to everything (a). Let

dSe = {r : brc = bsc, s ∈ S}

be a span containing all possible paths r with the same beginnings and ends
as paths s ∈ S. Finally, another convenient notion is that of a residual (initial
segment):

S/R = {Q : QR = S}

for which

RS ∩ T ⊆ (R ∩ T/Ω)(S ∩ ΩT )

These definitions allow us to easily express the conditions for badness and
goodness, as used in wqo theory (see, for example, [2, Chap. 12]). A quasi-
ordered set S is good if S ⊆ 3 dQeΩ, meaning that every path in S has a pair
of (not necessarily consecutive) points in Q, and is bad otherwise. It is perfect
if S ⊆ 3dQeω, meaning that S has a Q-chain as a (noncontiguous) subsequence
(like stepping stones).6

One may also define the reverse of a finite path (starting at the end and
ending at the start): sᵀ = s|s|, . . . , s0. Similarly, Sᵀ = {sᵀ : s ∈ S} is the set of
reverses.7

5 Typically, S is defined in terms of a property of its initial point, so this means that
every point in every path has that property.

6 By a simple case of Ramsey’s Theorem, a good ω-sequence is perfect.
7 The reverse of a transfinite path is not ordinal-indexed. Rather, the order type of

the reverse of a path of order type α is the reverse order type α∗. We do not deal
here with such paths.



5 Formalization of Ordinals and Infinite Sequences

All the above definitions can be easily modeled in a proof assistant like Coq,
and their algebraic properties proved formally; this is what we have begun to
do for some basic properties. To this end, we first need ordinal numbers. We
could of course work with a theory of ordinal numbers without providing an
explicit representation of them, but extraction is then impossible in Coq. Since
ordinals are not present in the standard library of Coq, we decided to start
our development with ordinals represented in Cantor normal form, in which an
ordinal is written

ωα1n1 + . . .+ ωαknk + nk+1

where αi is an ordinal, ni is a natural number (hence, ni 6= 0), α1 > α2 . . . αk > 0,
k is a non-negative integer, as well as nk+1. There is also a variant in which ni = 1
and αi ≥ αi+1. Also, in classical Cantor normal form, nk+1 appears instead as
ω0nk+1. We found it simpler, however, to omit ω0.

Note that it is easy to check if an arbitrary succession of monomials ωαini
ending in a natural number, let us call it an ordinal notation, satisfies the con-
straint of being in Cantor normal form (α1, . . . , αk is a decreasing sequence of
ordinals in Cantor normal form). It is very easy as well to characterize if an
ordinal notation is the smallest ordinal, zero (k = n1 = 0), a limit ordinal
(k 6= 0 = nk+1), as well as a successor ordinal (nk+1 6= 0). Ordinal notations are
the elements of our basic inductive type Ord in Coq, and Cantor normal forms
are the subset of Ord defined by a predicate checking its well-formedness.

The algebra of infinite sequences is still under development. Infinite sequences
are indexed by ordinals in Cantor normal form, hence belong to a type dependent
on ordinals. Usually, types depend on natural numbers (to measure the size of a
given data structure), or on a proposition (to carry proofs within terms that are
often used for type-checking purposes). To the best of our knowledge, the use of
ordinals in dependent types is new.

5.1 Ordinals in Cantor Normal Form in Coq

We provide some explanations about our development below. The current ver-
sion of the development can be found at https://github.com/superwalter/

Sequences.
We hope these definitions, notations, and development will prove useful, not

only to those interested in the theory of well-quasi-orders, or logics of processes,
but also to those who use these concepts. Well-quasi orders, in particular, have
been extensively used in the study and verification of transition systems. See, for
example, [3], where the author insists on constructivity of proofs, which could
therefore, in principle, be carried out in Coq.

(***************************************************************)

(*We use CNF as an abbreviation for Cantor Normal Form Ordinals*)

(***************************************************************)

https://github.com/superwalter/Sequences
https://github.com/superwalter/Sequences


(*Ordinal notations*)

Inductive Ord : Set :=

| fin : nat -> Ord

| inf : nat -> Ord -> Ord -> Ord.

(*All subsequent operations are defined on ordinal notations*)

(*but work provided they are in CNF*)

(*Degree of an ordinal*)

Fixpoint degree (o : Ord) : Ord :=

match o with

| fin _ => fin 0

| inf n p Q => p

end.

(*Equality of ordinals*)

Fixpoint beq_ord (o o’ : Ord) : bool :=

match o, o’ with

| fin m, fin n => beq_nat m n

| inf n p Q, inf n’ p’ Q’ =>

(beq_nat n n’) && (beq_ord p p’) && (beq_ord Q Q’)

| _, _ => false

end.

(*Order between ordinals*)

Fixpoint btb_ord (o o’ : Ord) : bool :=

match o, o’ with

| fin m, fin n => (ltb n m)

| fin _, inf _ _ _ => false

| inf _ _ _, fin _ => true

| inf n p Q, inf n’ p’ Q’ =>

(btb_ord p p’) || (beq_ord p p’) && (ltb n’ n) ||

(beq_ord p p’) && (beq_nat n n’) && (btb_ord Q Q’)

end.

(*Max of two ordinals*)

Definition max_ord o o’ := if (btb_ord o o’) then o else o’.

(*Cantor Normal Form (CNF)*)

(*Note that CNF is a predicate, not a type*)

(*Having CNF as a (sub-) type will occur later*)

(*once most properties of CNFs are proved; *)

(*predicates make it simpler in Coq*)

Fixpoint CNF (o : Ord) : bool :=



match o with

| fin _ => true

| inf n p Q => ((ltb 0 n)) && (CNF p) &&

(CNF Q) && (btb_ord p (degree Q))

end.

(*Plus*)

Fixpoint ord_plus (o o’ : Ord) :=

match o with

| fin m =>

match o’ with

| fin n => fin (m+n)

| inf _ _ _ => o’

end

| inf n p Q =>

match o’ with

| fin _ => inf n p (ord_plus Q o’)

| inf n’ p’ Q’ =>

if (btb_ord p p’) then (inf n p (ord_plus Q o’)) else

if (beq_ord p p’) then (inf (n+n’) p’ Q’) else o’

end

end.

(*Pred*)

Fixpoint ord_pred (o : Ord) : Ord :=

match o with

| fin 0 => o

| fin (S n) => fin n

| inf n p o’ => inf n p (ord_pred o’)

end.

(*Minus*)

Fixpoint ord_minus (o o’ : Ord) :=

match o, o’ with

| fin n, fin m => fin (n - m)

| fin n, inf _ _ _ => o

| inf n p q, fin _ => inf n p (ord_minus q o’)

| inf n p q, inf n’ p’ q’ =>

if (btb_ord p p’) then inf n p (ord_minus q o’) else

if (beq_ord p p’) then

(if (ltb n’ n) then inf (n-n’) p (ord_minus q q’) else

ord_minus q q’)

else o

end.



(******************************************************************)

(*This ends up the development of ordinal notations*)

(*We now have everything we need to introduce CNFs as types*)

(*under the name of Cantor Normal Form Ordinals*)

(******************************************************************)

Definition CNFO := {o : Ord | CNF o = true}.

Definition CNFO_plus (o : CNFO) (o’ : CNFO) : CNFO.

destruct o as (o, CNFo); destruct o’ as (o’, CNFo’).

exists (ord_plus o o’).

apply CNF_ord_plus; trivial.

Defined.

Definition CNFO_pred (o : CNFO) : CNFO.

destruct o as (o, CNFO).

exists (ord_pred o).

apply CNF_ord_pred; trivial.

Defined.

Definition CNFO_minus (o : CNFO) (o’ : CNFO) : CNFO.

destruct o as (o, CNFo); destruct o’ as (o’, CNFo’).

exists (ord_minus o o’).

apply CNF_ord_minus; trivial.

Defined.

Definition CNFO_nat (n : nat) : CNFO.

exists (fin n); simpl; trivial.

Defined.

Definition CNFO_btb (o o’ : CNFO) :=

btb_ord (proj1_sig o) (proj1_sig o’).

Definition CNFO_beq (o o’ : CNFO) :=

beq_ord (proj1_sig o) (proj1_sig o’).

5.2 Infinite Paths

We shall now proceed in a similar way to define the join of two paths, by first
concatenating them.

(************************************************************************)

(*paths over an alphabet A, that is sequences on A of an ordinal length.*)

(*A is assumed to be equipped with an equality predicate*)

(************************************************************************)



Variable A : Type.

Variable eq_A : A -> A -> bool.

Definition domain (o : CNFO) := {i: CNFO|CNFO_btb o i = true}.

Definition path (o : CNFO) := (domain o) -> A.

(*The definition of a join is complex, and requires much effort*)

(*we skip it and refer to the development*)

Definition join (o o’ : CNFO) (p : path o) (p’ : path o’) :

option (path (CNFO_plus (CNFO_pred o) o’)).

...

Defined.

(*************************************)

(*Set of paths*)

(This part is still under development*)

(*************************************)
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