J. L. Bentley, Multidimensional binary search trees used for associative searching, Commun. ACM, vol.18, pp.509-517, 1975.

L. Béziaud, T. Allard, and D. Gross-amblard, Lightweight privacypreserving task assignment in skill-aware crowdsourcing, Proc. of DEXA '28, pp.18-26, 2017.

G. Cormode, C. Procopiuc, D. Srivastava, E. Shen, and T. Yu, Differentially private spatial decompositions, Proc. of IEEE ICDE '12, pp.20-31, 2012.

I. Damgård and M. Jurik, A generalisation, a simplification and some applications of paillier's probabilistic public-key system, International Workshop on PKC, pp.119-136, 2001.

J. Duguépéroux and T. Allard, A Space Partitioning Algorithm for Privacy-Preserving Crowdsourcing, 2019.

C. Dwork, Differential privacy, Proc. of ICALP '06, pp.1-12, 2006.

A. Ghosh, T. Roughgarden, and M. Sundararajan, Universally utility-maximizing privacy mechanisms, SIAM J. Comput, vol.41, pp.1673-1693, 2012.

M. Hay, V. Rastogi, G. Miklau, and D. Suciu, Boosting the accuracy of differentially private histograms through consistency, Proc. of the VLDB Endow, vol.3, pp.1021-1032, 2010.

H. Kajino, Privacy-Preserving Crowdsourcing. Ph.D. Dissertation. Univ. of Tokyo, 2015.

M. Lease, J. Hullman, J. P. Bigham, M. S. Bernstein, J. Kim et al., Mechanical Turk is Not Anonymous. SSRN Electronic Journal, 2013.

I. Mironov and O. Pandey, Computational Differential Privacy, Proc. of CRYPTO '29, pp.126-142, 2009.

P. Paillier, Public-key cryptosystems based on composite degree residuosity classes, Proc. of EUROCRYPT '99, pp.223-238, 1999.

H. Xia, Y. Wang, Y. Huang, and A. Shah, Our Privacy Needs to be Protected at All Costs: Crowd Workers' Privacy Experiences on Amazon Mechanical Turk, Proc. of ACM HCI', vol.17, p.113, 2017.