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Boundedness of the Kitanidis Filter for
Optimal Robust State Estimation

Qinghua Zhang ∗

∗Univ. Gustave Eiffel, Inria, COSYS-SII, I4S, 35042 Rennes, France

Abstract: The Kitanidis filter is a natural extension of the Kalman filter to systems subject
to arbitrary disturbances or unknown inputs. Though the optimality of the Kitanidis filter was
founded for general time varying systems more than 30 years ago, its stability analysis is still
limited to time invariant systems, to the author’s knowledge. In the framework of general time
varying systems, this paper establishes upper bounds for the error covariance of the Kitanidis
filter and for all the auxiliary variables involved in the filter.
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1. INTRODUCTION

This paper considers linear time varying (LTV) stochastic
systems in the form of

xk+1 = Akxk +Bkuk + Ekdk + wk (1a)

yk = Ckxk + vk, (1b)

where xk ∈ Rn is the state, yk ∈ Rm the output, uk ∈ Rp
the (known) input, dk ∈ Rq some disturbance (or unknown
input), wk ∈ Rn the state noise of covariance Qk, vk ∈ Rm
the output noise of covariance Rk, and Ak, Bk, Ck, Ek are
known matrices of appropriate sizes at each discrete time
instant k = 0, 1, 2, . . . .

The disturbance dk, also known as unknown input, is a
totally arbitrary and unknown vector sequence.

In this framework, state estimation is said robust in the
sense of being insensitive to the disturbance dk. Such
results are useful for robust prediction (Kitanidis, 1987),
for robust control (Ioannou and Sun, 1996), and for fault
diagnosis (Chen and Patton, 1999).

The Kitanidis filter (Kitanidis, 1987) provides an optimal
solution to this robust state estimation problem, by mini-
mizing an error covariance criterion while being insensitive
to the unknown disturbance. It is a natural extension of
the classical Kalman filter to systems subject to unknown
disturbances. Nevertheless, more than 30 years after the
publication of this algorithm, an important piece of the
theory is still missing or incomplete: the stability analysis
of the Kitanidis filter. The importance of stability analy-
sis is obvious: as a recursive algorithm, the boundedness
property guarantees absence of data overflow, and the
error dynamics stability ensures the well-behavedness of
numerical computations.

The Kitanidis filter (Kitanidis, 1987) has been designed
for general LTV (time varying) systems as formulated
in (1), and it has been later studied in the same framework
(Darouach and Zasadzinski, 1997). However, when its sta-
bility is analyzed, the result reported in the last cited ref-
erence is restricted to linear time invariant (LTI) systems.

As this stability analysis is related to transfer functions,
it has no obvious generalization to time varying systems.
Stability was also considered in early studies on unknown
input observers (Yang and Wilde, 1988; Darouach et al.,
1994; Chen and Patton, 1999), but these stability results
are all restricted to the LTI (time invariant) case. Indeed,
there is a true difficulty to study the stability of time
varying systems.

The main purpose of this paper is to establish an upper
bound of the error covariance matrix of the Kitanidis filter,
in the general framework of LTV systems as formulated
in (1). It will also be shown that the Kitanidis filter gain
matrix is bounded, as well as all the auxiliary variables
involved in the filter. The main idea is to build a non-
optimal filter insensitive to the disturbance dk, for which
an upper bound of the error covariance matrix can be first
established. Then due to the optimality of the Kitanidis
filter, its error covariance matrix cannot be larger, hence
its boundedness is established.

Note on notations
In this paper, lower case letters denote scalars and vectors,
whereas upper case letters are reserved to matrices. The
n × n identity matrix is denoted by In. For a vector
v, its Euclidean norm is denoted by ‖v‖. For a matrix
M , its matrix-norm induced by the Euclidean vector
norm is denoted by ‖M‖, which is equal to its largest
singular value. For a symmetric positive (semi)-definite
matrix M , ‖M‖ is also equal to its largest eigenvalue.
For a matrix M , the sum of its main diagonal entries
is denoted by Trace(M). For a random variable vector x,
its mathematical expectation is denoted by E(x), and its
covariance matrix by Cov(x).

2. PROBLEM FORMULATION

Consider LTV stochastic systems as formulated in (1).
Among all recursive linear filters of the form



x̂k+1 = Akx̂k +Bkuk
+ Lk+1(yk+1 − Ck+1Akx̂k − Ck+1Bkuk), (2)

with the state estimate x̂k ∈ Rn and the filter gain
matrix Lk ∈ Rn×m, the Kitanidis filter, characterized by
an optimal gain matrix L∗k+1, is the unbiased minimum
variance filter, in the sense that

(Optimal gain) L∗k = arg min
Lk

Trace Cov(x̃k|Lk) (3)

subject to

(Unbiasedness) E(x̃k|L∗k) = 0, (4)

where the dependence of the filter error

x̃k , xk − x̂k (5)

on the filter gain matrix is indicated in the notations of
error mean (mathematical expectation) E( · |L∗k) and error
covariance Cov( · |Lk).

Note that the unbiasedness (4) holds despite the distur-
bance dk ∈ Rq, which is totally unknown and arbitrary,
random or not.

The Kitanidis filter, as presented in (Kitanidis, 1987), is
given by

x̂k+1 = Akx̂k +Bkuk
+ L∗k+1(yk+1 − Ck+1Akx̂k − Ck+1Bkuk) (6)

with the optimal gain L∗k+1 recursively computed as

Pk+1|k = AkPk|kA
T
k +Qk (7a)

Σk+1 = Ck+1Pk+1|kC
T
k+1 +Rk+1 (7b)

Γk+1 = Ek − Pk+1|kC
T
k+1Σ−1k+1Ck+1Ek (7c)

Ξk+1 = ETk C
T
k+1Σ−1k+1Ck+1Ek (7d)

Λk+1 = Γk+1Ξ−1k+1 (7e)

Pk+1|k+1 = Pk+1|k − Pk+1|kC
T
k+1Σ−1k+1Ck+1Pk+1|k

+ Λk+1Ξk+1ΛTk+1 (7f)

L∗k+1 = Pk+1|kC
T
k+1Σ−1k+1

+ Γk+1Ξ−1k+1E
T
k C

T
k+1Σ−1k+1. (7g)

The purpose of this paper is to study the boundedness of
the Kitanidis filter, mainly the existence of upper bounds
for the error covariance matrix Pk|k = Cov(x̃k|L∗k) and for
the Kitanidis gain matrix L∗k. The reported results will
also ensure that all the auxiliary variables involved in the
filter are bounded, under easy to check conditions.

3. BOUNDEDNESS OF A NON-OPTIMAL FILTER

The main idea for establishing an upper bound of the
error covariance matrix Pk|k = Cov(x̃k|L∗k) is to build

a non-optimal filter, corresponding to a gain matrix L̄k,
such that it is easier to establish an upper bound of
the error covariance Cov(x̃k|L̄k). Then an upper bound
of Pk|k will be obtained through Trace Cov(x̃k|L∗k) ≤
Trace Cov(x̃k|L̄k).

3.1 Assumptions

The results of this paper will be based on some assump-
tions.

Basic assumptions.

(i) Ak, Bk, Ck, Ek are bounded matrix sequences for all
k ≥ 0.

(ii) The initial state x0 ∈ Rn is a random vector fol-
lowing the Gaussian distribution N (x̄0, P0), with a
mean vector x̄0 and a positive definite covariance
matrix P0.

(iii) wk and vk are zero mean white Gaussian noises
independent of each other and of x0, with bounded
covariance matrices E(wkw

T
k ) = Qk and E(vkv

T
k ) =

Rk for all k ≥ 0. The inverse matrix R−1k is also
bounded for all k ≥ 0.

These assumptions are usually made in the classical LTV
system Kalman filter theory, apart from the involved
matrix Ek that did not exist in the classical case.

Disturbance subspace assumption

(iv) For all k ≥ 0, the matrix product Ck+1Ek has a full
column rank and a bounded Moore-Penrose inverse.

This assumption is for the purpose of reliable rejection of
disturbances.

3.2 Building a non-optimal filter

For the purpose of bounding the error covariance matrix of
the (optimal) Kitanidis filter, let us build a non-optimal
filter corresponding to a gain matrix L̄k, satisfying the
following requirements:

• L̄k is bounded for all k ≥ 0.
• L̄k leads to an unbiased filter, i.e., E(x̃|L̄k) = 0.
• L̄k is simple enough so that an upper bound for the

resulting filter error covariance matrix Cov(x̃|L̄k) can
be established.

The construction of L̄k presented below consists of two
components, the first one ensuring the unbiasedness of
the filter, and the second one stabilizing the filter error
dynamics. This construction may appear complex, but
the result will indeed satisfy the above requirements, as
analyzed in the following subsection.

First define a matrix sequence, for k ≥ 0,

Gk+1 , Ek[(Ck+1Ek)T (Ck+1Ek)]−1(Ck+1Ek)T , (8)

which exists and is bounded due to Assumptions (i)
and (iv). This first component of L̄k will ensure the
unbiasedness of the filter.

In order to build a second component of L̄k stabilizing
the filter error dynamics, consider the auxiliary stochastic
system

x̄k+1 = Ākx̄k + w̄k (9a)

ȳk = Ckx̄k + v̄k (9b)

where x̄k ∈ Rn is the state, ȳk ∈ Rm the output, w̄k ∈ Rn
and v̄k ∈ Rm are Gaussian white noises with

Cov(w̄k) = In (10a)

Cov(v̄k) = Im. (10b)

The state transition matrix in (9a) is defined as

Āk , (In −Gk+1Ck+1)Ak, (11)

which is bounded, since Gk+1, Ck+1, Ak are all bounded.



Note that the matrices Ak, Ck, Ek appearing in (8),(9),(11)
are the same as in (1).

Apply the classical Kalman filter to system (9), resulting
in

x̂k+1|k = Ākx̂k|k (12a)

ỹk+1 = yk+1 − Ck+1x̂k+1|k (12b)

x̂k+1|k+1 = x̂k+1|k +Kk+1ỹk+1. (12c)

The Kalman gain Kk is recursively computed by

P̄k+1|k = ĀkP̄k|kĀ
T
k + In (13a)

Σ̄k+1 = Ck+1P̄k+1|kC
T
k+1 + Im (13b)

Kk+1 = P̄k+1|kC
T
k+1Σ̄−1k+1 (13c)

P̄k+1|k+1 = (In −Kk+1Ck+1)P̄k+1|k (13d)

A non-optimal gain Lk = L̄k of the linear filter (2) is then
built, for k = 0, 1, 2 . . . , as

L̄k , Gk +Kk −KkCkGk. (14)

3.3 Analysis of the non-optimal filter

One more assumption is needed in this analysis.

Observability assumption.

(v) The matrix sequence pair [Āk, Ck] is uniformly com-
pletely observable.

The uniform complete observability is defined with the aid
of Gramian matrix. See (Kalman, 1963; Jazwinski, 1970;
Moore and Anderson, 1980).

Notice that this observability assumption involves the ma-
trix Āk depending on Gk, which in turn depends on Ek.
Like in the classical Kalman filter theory for time varying
systems, if the involved time varying matrices are known
in advance (typically constant or periodical), then this
assumption can be checked in advance, otherwise it has to
be checked in real time (e.g. for linear parameter varying
systems).

Proposition 1. The time varying gain matrix L̄k defined
in (14) is bounded for all k ≥ 0. 2

Proof.

The boundedness of the first term Gk is trivially due to
Assumptions (i) and (iv), whereas the boundedness of Kk

relies on the classical Kalman filter theory, as explained in
the following.

Under Assumption (i), the boundedness of Gk implies that
the matrix Āk defined in (11) is also bounded.

The matrix Kk is the gain of the classical Kalman filter
applied to system (9), as expressed in (12) and (13). Ac-
cording to (Moore and Anderson, 1980), the boundedness
of the Kalman filter is ensured by the boundedness of the
involved matrices, under uniform complete observability
and controllability (regarding the state noise) conditions.
In the present case of the auxiliary system (9), the uni-
form complete observability of the matrix pair [Āk, Ck] is
ensured by Assumption (v), whereas the uniform complete
controllability of the matrix pair [Āk, In] holds trivially

with the state noise covariance Cov(w̄k) = In. In particu-
lar, the Kalman gain Kk is bounded, according to (Moore
and Anderson, 1980). The matrix L̄k defined in (14) is then
also bounded, by simply reminding that Ck is assumed
bounded in Assumption (i). 2

Remark that, in the proof above, the boundedness of Kk is
based on the results of (Moore and Anderson, 1980), which
do not require an invertible state transition matrix, in
contrary to those of (Deyst Jr and Price, 1968; Jazwinski,
1970). Indeed, in the case of the auxiliary system (9),
the state transition matrix Āk defined in (11) is always
singular.

Proposition 2. The gain matrix L̄k defined in (14) satisfies

(In − L̄k+1Ck+1)Ek = 0. (15)

2

Proof.

It is straightforward to check that

(In − L̄k+1Ck+1)Ek
= Ek − (Gk+1 +Kk+1 −Kk+1Ck+1Gk+1)Ck+1Ek
= Ek −Kk+1Ck+1Ek − (In −Kk+1Ck+1)Gk+1(Ck+1Ek)

= Ek −Kk+1Ck+1Ek − (In −Kk+1Ck+1)Ek×
[(Ck+1Ek)T (Ck+1Ek)]−1(Ck+1Ek)T (Ck+1Ek)

= Ek −Kk+1Ck+1Ek − (In −Kk+1Ck+1)Ek
= 0

2

This property of L̄k is essential for the unbiasedness of the
linear filter (2) with the gain matrix Lk = L̄k, as shown in
the following proposition.

Proposition 3. In the linear filter (2), let the gain matrix
Lk = L̄k as defined in (14). Then this filter applied to
system (1), with the initialization x̂0 = E(x0), is unbiased,
despite the arbitrary disturbance dk (or unknown input)
affecting system (1). 2

Proof.

First consider the linear filter (2) with any gain matrix
Lk ∈ Rn×m. It is straightforward to check that the filter
error x̃k, as defined in (5), satisfies

x̃k+1 = (In − Lk+1Ck+1)Akx̃k + (In − Lk+1Ck+1)Ekdk
+ (In − Lk+1Ck+1)wk − Lk+1vk+1. (16)

With the particular gain Lk = L̄k satisfying (15), the term
involving the disturbance dk disappears from (16). In this
case,

x̃k+1 = (In − L̄k+1Ck+1)Akx̃k

+ (In − L̄k+1Ck+1)wk − L̄k+1vk+1. (17)

Assumption (iii) then leads to

E(x̃k+1) = (In − L̄k+1Ck+1)AkE(x̃k). (18)

The initialization x̂0 = E(x0) implies

E(x̃0) = E(x0 − x̂0) = E(x0)− x̂0 = 0. (19)

It then recursively follows from (18) that E(x̃k) = 0 for all
k ≥ 0.



It is thus established that the linear filter (2) with Lk = L̄k
is unbiased. 2

Proposition 4. In the linear filter (2), let the gain matrix
Lk = L̄k as defined in (14). Then this filter applied to
system (1) has a bounded error covariance matrix, i.e.,
there exists some positive constant ρ such that, for all
k ≥ 0,

‖Cov(x̃k|L̄k)‖ ≤ ρ. (20)

2

Proof.

Let us first study the error system of the classical Kalman
filter (12) applied to the auxiliary system (9). More specif-
ically, let

x̃k|k , x̄k − x̂k|k (21)

where x̄k is governed by (9a) and x̂k|k computed with (12),
both recursively. After some computations combining (9)
and (12), the recursive equation governing x̃k|k writes:

x̃k+1|k+1 = (In −Kk+1Ck+1)Ākx̃k|k
+ (In −Kk+1Ck+1)w̄k −Kk+1v̄k+1. (22)

According to (Moore and Anderson, 1980), under the uni-
form complete observability of [Āk, Ck] (Assumption (v))
and the uniform complete controllability of [Āk, In] (triv-
ially satisfied with Cov(w̄k) = In), the error system (22)
is exponentially stable, in the sense that there exist two
positive constants α and β such that

‖Ǎl−1Ǎl−2 · · · Ǎk‖ ≤ αe−β(l−k), (23)

with the notation

Ǎk , (In −Kk+1Ck+1)Āk. (24)

Now consider the error system of the linear filter (2) with
Lk = L̄k. Its equation was already written in (17). Let us
copy it here for ease of reading:

x̃k+1 = (In − L̄k+1Ck+1)Akx̃k

+ (In − L̄k+1Ck+1)wk − L̄k+1vk+1. (25)

It turns out that the state transition matrix (In −
L̄k+1Ck+1)Ak of this error system is equal to the matrix
Ǎk defined in (24). To check this fact, compute, on the one
hand

(In − L̄k+1Ck+1)Ak
= [In − (Gk+1 +Kk+1 −Kk+1Ck+1Gk+1)Ck+1]Ak (26)

= (In −Gk+1Ck+1 −Kk+1Ck+1

+Kk+1Ck+1Gk+1Ck+1)Ak (27)

and on the other hand,

Ǎk = (In −Kk+1Ck+1)Āk (28)

= (In −Kk+1Ck+1)(In −Gk+1Ck+1)Ak (29)

= (In −Gk+1Ck+1 −Kk+1Ck+1

+Kk+1Ck+1Gk+1Ck+1)Ak. (30)

Hence indeed (In − L̄k+1Ck+1)Ak = Ǎk.

The error dynamics equation (25) is then rewritten as

x̃k+1 = Ǎkx̃k + µk, (31)

with

µk , (In − L̄k+1Ck+1)wk − L̄k+1vk+1. (32)

As wk and vk are both zero mean white noises independent
of each other with bounded covariance matrices,

E(µkµ
T
l ) = 0 (33)

for any pair of positive integers k 6= l, though µk involves
wk and vk+1 corresponding to two different time instants.
Hence µk is a zero mean white noise. The covariance
matrix Cov(µk) is bounded, since in (32) L̄k+1 is bounded
according to Proposition 1.

The error dynamics system (31) is exponentially stable,
according to (23). It is driven by a zero mean white
noise µk of bounded covariance. Therefore, the covariance
matrix of the state of system (31), namely Cov(x̃k), is
bounded by applying Lemma 1 (see the appendix) to (31).
2

4. BOUNDEDNESS OF THE KITANIDIS FILTER

The main result of this paper is stated in the following
proposition.

Proposition 5. Under Assumptions (i)-(v), the covariance
matrix Pk|k = Cov(x̃k) of the Kitanidis filter (6) is
bounded for all k ≥ 0, so is the Kitanidis gain matrix
L∗k. 2

Proof.

The Kitanidis filter (6) is a particular case of the general
filter (2) with the optimal gain matrix Lk = L∗k. By the
definition of L∗k in (3),

Trace Cov(x̃k|L∗k) ≤ Trace Cov(x̃k|Lk) (34)

for any gain Lk ∈ Rn×m corresponding to an unbiased
filter (2). Though the Kitanidis filter has been designed by
one-step optimization of the trace criterion, as expressed
in (3), it is also optimal in the sense of the whole gain
sequence (Delyon and Zhang, 2021). In particular for
Lk = L̄k:

Trace Cov(x̃k|L∗k) ≤ Trace Cov(x̃k|L̄k). (35)

For any symmetric positive (semi)-definite matrix M ∈
Rn×n, the matrix norm (induced by the Euclidean vector
norm) ‖M‖ is equal to the largest eigenvalue of M ,
whereas Trace(M) is equal to the sum of the n eigenvalues
of M , which are all positive or zero. Therefore

Trace(M) ≤ n‖M‖ (36)

‖M‖ ≤ Trace(M). (37)

Then,

Trace Cov(x̃k|L∗k) ≤ Trace Cov(x̃k|L̄k) (38)

≤ n‖Cov(x̃k|L̄k)‖ (39)

≤ nρ, (40)

where ρ is an upper bound of ‖Cov(x̃k|L̄k)‖, according to
Proposition 4.

Applying (37) then yields

‖Cov(x̃k|L∗k)‖ ≤ Trace Cov(x̃k|L∗k) (41)

≤ nρ. (42)

It is thus established that the trace and the matrix norm
of the error covariance of the Kitanidis filter Pk|k =
Cov(x̃k|L∗k) are both bounded.

Then it is straightforward to check that, under Assump-
tions (i)-(v), the Kitanidis gain L∗k and the auxiliary



variables involved in the filter recursions (7), namely,
Pk+1|k,Σk+1,Γk+1, Ξk+1,Λk+1, are all bounded.

5. CONCLUSION

It has been established in this paper that the error covari-
ance of the Kitanidis filter is bounded, so are the Kitanidis
gain matrix and all the auxiliary variables involved in the
filter recursive computations. Algorithm boundedness is of
prime importance for real time applications.

APPENDIX

Lemma 1. Consider a stochastic system

zk+1 = Fkzk + ek (43)

with zk ∈ Rn and Fk ∈ Rn×n, initialized such that
E(z0) = 0 and driven by a zero mean white noise ek ∈ Rn
independent of the initial state z0. Assume that

• system (43) is exponentially stable, in the sense that
there exist two positive constants α and β such that,
for any integer pair l ≥ k ≥ 0,

‖Fl−1Fl−2 · · ·Fk‖ ≤ αe−β(l−k), (44)

• the noise ek has a bounded covariance Rk, i.e., there
exists a positive constant γ such that, for all k ≥ 0,

‖Rk‖ = ‖E(eke
T
k )‖ ≤ γ. (45)

Then the covariance matrix Cov(zk) is bounded for all
k ≥ 0. 2

Proof of Lemma 1.

It is assumed that E(z0) = 0 and E(ek) = 0 for all k ≥ 0,
then recursively E(zk) = 0 for all k ≥ 0, and therefore
Cov(zk) = E(zkz

T
k ).

In (43), zk depends on e0, e1, . . . , ek−1, but not on ek.
Therefore, E(zke

T
k ) = 0 and

Cov(zk+1) = E(zk+1z
T
k+1) (46)

= E[(Fkzk + ek)(Fkzk + ek)T ] (47)

= FkE(zkz
T
k )FTk + E(eke

T
k ) (48)

= FkCov(zk)FTk +Rk. (49)

Recursively applying this result yields

Cov(zk+1)

= FkFk−1 · · ·F0Cov(z0)FT0 · · ·FTk−1FTk

+

k−1∑
i=0

FkFk−1 · · ·Fi+1RiF
T
i · · ·FTk−1FTk +Rk. (50)

Then

‖Cov(zk+1)‖ ≤ ‖FkFk−1 · · ·F0‖‖Cov(z0)‖‖FT0 · · ·FTk−1FTk ‖

+

k−1∑
i=0

‖FkFk−1 · · ·Fi+1‖‖Ri‖‖FTi · · ·FTk−1FTk ‖+ ‖Rk‖.

Based on this result, it then follows from (44) and (45)
that

‖Cov(zk+1)‖ ≤ α2e−2β(k+1)‖Cov(z0)‖

+

k−1∑
i=0

α2e−2β(k−i)γ + γ

= α2e−2β(k+1)‖Cov(z0)‖

+ α2γ
1− e−2βk

e2β − 1
+ γ

≤ α2e−2β(k+1)‖Cov(z0)‖

+ α2γ
1

e2β − 1
+ γ.

An upper bound of Cov(zk) is thus established.
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