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Detecting EEG outliers for BCI on the Riemannian manifold using
spectral clustering

Maria Sayu Yamamoto1,2, Khadijeh Sadatnejad1, Toshihisa Tanaka2, Md. Rabiul Islam2,
Yuichi Tanaka2 and Fabien Lotte1,2

Abstract— Automatically detecting and removing
Electroencephalogram (EEG) outliers is essential to design
robust brain-computer interfaces (BCIs). In this paper, we
propose a novel outlier detection method that works on the
Riemannian manifold of sample covariance matrices (SCMs).
Existing outlier detection methods run the risk of erroneously
rejecting some samples as outliers, even if there is no outlier,
due to the detection being based on a reference matrix and a
threshold. To address this limitation, our method, Riemannian
Spectral Clustering (RiSC), detects outliers by clustering SCMs
into non-outliers and outliers, based on a proposed similarity
measure. This considers the Riemannian geometry of the space
and magnifies the similarity within the non-outlier cluster
and weakens it between non-outlier and outlier clusters,
instead of setting a threshold. To assess RiSC performance, we
generated artificial EEG datasets contaminated by different
outlier strengths and numbers. Comparing Hit-False (HF)
difference between RiSC and existing outlier detection methods
confirmed that RiSC could detect outliers significantly better
(p < 0.001). In particular, RiSC improved HF difference the
most for datasets with the most severe outlier contamination.

I. INTRODUCTION
Brain-Computer Interfaces (BCI) can identify users’ intent

from their brain activity only, mostly measured by Electroen-
cephalography (EEG) [1]. BCI is notably promising as a
communication and control tool for motor impaired users
but also for Human-Computer Interaction for healthy users.
However, several limitations have prevented practical BCI
use outside laboratories [2], including their sensitivity to
outliers. Outliers may be generated by ocular artifacts such as
eye blinks or muscle artifacts such as jaw clenching [3]. This
can lead to recognizing erroneous user’s BCI commands.

In recent years, describing EEG signals by Sample Covari-
ance Matrices (SCMs) and analyzing them in their native
geometry, the so-called Riemannian geometry (RG), has
contributed to improve BCI reliability [4], [5]. In particular,
using RG led to state-of-the-art classification performance in
many BCI studies, and even won multiple brain signal clas-
sification competitions [5]. Even though removing outliers
is crucial to improve BCI classification performance, only
two outlier detection methods were proposed based on RG
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for BCI application: the Riemannian Potato and Geometric
Trimmed Averages, (cf. Section II) [6], [7]. However, these
methods suffer from one main limitation: they need a thresh-
old to detect outliers and a reference matrix to characterize
the structure of the SCMs dispersion on the Riemannian
manifold. Thus, they may detect different outliers depending
on those parameters. In other words, there is a risk that some
true outliers may not be detected as outliers or that some
non-outlier samples may be erroneously rejected as outliers.

In this paper, we thus propose a novel approach to detect
outliers without using any threshold nor reference matrix.
With our method, the dispersion of the SCMs on the Rie-
mannian manifold is represented with a graph structure, and
SCMs are clustered according to their similarity. Ultimately,
clusters with a smaller number of elements are regarded as
outliers. We compare the proposed method and the existing
methods with intentionally contaminated EEG datasets we
generated. This enables us to have a ground truth to assess
objectively how well each method can detect outliers.

This paper is organized as follows: Section II describes
the principles of RG, the existing methods and our new
approach. The data used for evaluation is described in section
III. Then, Section IV describes the results while Sections V
and VI discuss and conclude the paper, respectively.

II. METHODOLOGY

Let X ∈ RM×N be an EEG signal, with M channels and
N time points. The SCM of X , PX , is defined as:

PX =
1

N − 1
(X − µX)(X − µX)T (1)

where µX = 1
N

∑N
n=1X

(:)
n and X

(:)
n is the nth column

of X . The space of SCMs is a subspace of a Riemannian
manifold, i.e., a curved space equipped with an inner product
on the tangent space at each point. Thus, when measuring
the distance between two SCMs P1 and P2 on a Riemannian
manifold, we should use the Riemannian distance Rd:

Rd(P1, P2) = ‖log(P1
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where λi are positive eigenvalues of P1
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− 1
2 and ‖.‖F

is the Frobenius norm of the matrix. The reader can refer to
[8] for an in-depth review of Riemannian geometry.



A. Existing SCM outlier detection methods

Riemannian Potato is the first outlier detection method
proposed for RG, for online EEG signal quality monitoring
[6]. The detection algorithm requires two parameters: a
reference matrix and a threshold. Samples whose distances
from a reference matrix are larger than the threshold are
rejected as outliers. The reference matrix is the Riemannian
mean of all samples. The threshold th to reject samples is
estimated as th = µ + 2.5σ, where µ and σ are the mean
and the standard deviation respectively of the Riemannian
distances between each SCM and the reference matrix.

Geometric Trimmed Averages was proposed to improve
the reliability of Tangent Space Mapping (TSM) based
classifiers for BCI [7]. As an estimator for average, the plain
geometric average derived from all samples is conventionally
used but this estimation is affected strongly by outliers. In
this method, the d% (a user-specified threshold) of samples
that exhibit the largest Riemannian distance to the geometric
mean (or geometric median) of all samples are eliminated
as outliers. When evaluating TSM-based BCI, all types of
geometric trimmed averages including mean-based trimmed
mean and median-based trimmed median exhibited higher
classification accuracies than the plain geometric average.

B. New method: Riemannian Spectral Clustering (RiSC)

RiSC firstly computes the graph of SCMs, whose similari-
ties is based on their pairwise Riemannian distance. Then, the
nodes, i.e., SCMs, are clustered using spectral clustering. All
clusters ,except the one with the largest number of elements,
are rejected as outliers.

First, from a dataset containing s SCMs, the relations be-
tween them can be described by a fully connected similarity
graph G = (V,E), where V = {P1, ..., Ps} is a set of nodes,
here SCMs, and E is a set of edges connecting V . The edges
are weighted by the Gaussian similarity wij based on the
Riemannian pairwise distance between Pi and Pj :

wij =

{
exp

(
−R2

d(Pi,Pj)
2q2

)
i 6= j,

0 i = j,
(3)

where q ∈ [0, 1] controls the similarity between SCMs. In
general, spectral clustering can be quite sensitive to changes
in q values [9]. In the literature, the q parameter is often
selected using rules of thumb [9]. However, we use the
median of the length of the edges of the minimum spanning
tree (MST) of a new graph G1 that has the same structure as
G, for automatic selection. Given a fully connected graph
G1 with s nodes and the Riemannian pairwise distance
Rd(Pi, Pj) as edge weight, its MST is a subgraph. This MST
has the same s nodes as G1 and all nodes are connected
by a route that minimizes the total edge weights without
any cycle. We assume the median of their length to be a
reasonable radius of adjacency among non-outliers. Thus,
using q defined in this way should magnify the similarity
within the non-outlier cluster and weaken it between the non-
outlier and the outlier clusters.

Another important point for spectral clustering is the
choice of the number of clusters k. In this work, the optimal
k is selected according to the eigengap heuristic [9]. The
eigengap heuristic is based on the spectral decomposition
of the Laplacian of graph G. The graph Laplacian L is a
variation operator of G, obtained as L = D − W , where
W is a symmetric matrix called weighted adjacency matrix,
such that (W )ij = wij , and D is a diagonal matrix whose
diagonal elements are given by (D)ii =

∑s
i=1(W )ij . Note

that the graph Laplacian is always positive-semidefinite.
The eigenvalues of L, 0 ≤ λ1 < λ2 ≤ · · · ≤ λs, are
obtained by eigenvalue decomposition. The index of the ith

eigenvalue which indicates the maximum gap is set as k, i.e.,
k = arg maxi(λi+1 − λi).

After determining k using the eigengap heuristic, we
conduct spectral clustering on L. First, we create a matrix
U ∈ Rs×k containing the first k eigenvectors of L, u1, ..., uk
as columns, and normalize the rows. Let yi ∈ Rk (i =
1, ..., s) be the vector corresponding to the ith row of U ,
which represents the ith SCM by k-dimensions. Then, all
yi vectors are clustered on Rk with the k-means algorithm
into clusters C1, ..., Ck. After clustering with k-means, all
clusters except the one with the largest number of elements
are regarded as outlier clusters. Thus, if there is no outlier, a
single cluster should be detected, and no data will be rejected
as outlier. This is in contrast to other existing methods, which
always reject data, even when there is no outlier.

III. EXPERIMENT

For evaluation, we conducted two experiments. Exper-
iment 1 investigated whether RiSC can correctly detect
outliers for various datasets. Thus, we generated multiple
intentionally contaminated datasets including artificial out-
liers. This provided us with a ground truth to objectively
quantify the outlier detection performance of each method.
Experiment 2 investigated RiSC performance on a real and
clean EEG dataset, without any artificial outlier.

A. Real EEG Dataset Description

As real EEG dataset, we used dataset IIa from BCI
competition IV, provided by TU Graz, Austria [10]. This set
comprises EEG signals from nine subjects who performed
left hand, right hand, both feet, and tongue Motor Imagery
(MI). EEG signals were recorded using 22 EEG channels.
In this dataset, the presence of eye movement artifacts was
marked. However, here, EEG signals were band-pass filtered
in the 7-30 Hz frequency band, using a 2nd order Butterworth
filter. Thus, since eye movements artifacts usually affect
frequency bands lower than 7 Hz [3], they should not affect
the resulting SCMs. Training and testing sets are available for
each subject. Both sets contain 72 trials for each class, each
trial lasting 7 sec. Subjects performed MI within the time
interval of t = 3 to 6 sec of each trial. In this work, we only
used training EEG signals from left hand MI from subjects
A01, A02, A03, and A07 because these datasets contain the
fewest ocular artifacts. For computing SCMs, we used EEG
signals from the whole MI interval.



B. Contamination scenario

The contaminated datasets were generated by adding ar-
tificial artifacts to reference EEG trials by following the
reference paper about probability models for time series ad-
ditive outliers [12]. The reference EEG trials were randomly
selected from the real dataset. In actual EEGs, outliers are
often due to artifacts affecting specific channels and time
periods. For instance, a common type of such artifacts is
facial muscle artifacts (e.g., from frowning), which affect
EEG recordings from frontal channels [3]. Thus, we gener-
ated contaminated EEG, i.e., outliers, by adding artifacts to
frontal channels (Fz, FC3, FC1, FCz, FC2, and FC4), for
a fixed time interval, to the reference EEG trials. Based on
these trials, we produce c contaminated trials Y ∈ RM×N ,
such that the contaminated EEG signal Y (m)

t for channel
m and time instance t is expressed by Y (m)

t = x
(m)
t + γtvt,

where x(m)
t is a reference trial signal and γt ∈ {0, 1} controls

the proportion of time points to which we add artifacts.
In this experiment, the simulated artifact vt is added (i.e.,
γt = 1) with probabilities ε = 0.10, 0.30 or 0.50. We call ε
the outlier strength. vt is drown from a multivariate normal
distribution vt ∼ N(µ, 2σ2I) in which N(·) is the normal
distribution with mean µ and variance σ2 of a reference
channel selected randomly from each reference EEG trial.
We used three different outlier numbers c = 5, 10, 25.
For each generating condition, 30 datasets were randomly
generated, for a total of 270 datasets per subject.

IV. EVALUATION

The performance of RiSC is compared with both Rieman-
nian Potato and Geometric Trimmed Averages. Geometric
Trimmed Averages can use many types of trimming, as
mentioned in Section II. Here, we used the median-based
trimmed average since the median is more robust to out-
liers, and thus called this approach Median-Based Trimming
(MBT). We used 95% trimming with MBT, a common
threshold for statistical outlier detection.

In Experiment 1, the performance of each method was
evaluated by Hit-False (HF) difference. The HF difference
is calculated by subtracting the False Positive Rate (FPR)
from the True Positive Rate (TPR) [11]. Here, the FPR is
the percentage of non-outliers that were detected as outliers
whereas the TPR is the percentage of actual outliers that were
detected as outliers. To investigate the outlier detection per-
formance of each method according to the outlier strengths
and numbers, we performed a three-way ANOVA for re-
peated measures with factors Method (RiSC: Riemannian
Spectral Clustering, RP: Riemannian Potato, MBT (95%):
Median based Trimming (95%)), Outlier Strength, (10%,
30% or 50% strength), and Outlier Number, (5, 10 or 25
outliers).

In Experiment 2, each outlier detection method was eval-
uated by the number of trials detected as outlier.

A. Results: Experiment 1

The average HF difference for each intentionally contam-
inated dataset is summarized in Table I. The average HF

difference with RiSC was globally higher than RP and MBT
(95%) except for 10% strength, with either 5 or 10 outliers.

Three-way ANOVA for repeated measure revealed main
effects of “Method” [F (2, 238) = 1773; p < 0.001], “Outlier
Strength” [F (2, 238) = 1297; p < 0.001], and “Outlier Num-
ber” [F (2, 238) = 628; p < 0.001]. It also revealed interac-
tions for “Method X Outlier Strength” [F (4, 476) = 828; p <
0.001], and “Method X Outlier Number” [F (4, 476) =
1761; p < 0.001] and “Method X Outlier Strength X Outlier
Number” [F (8, 952) = 170; p < 0.001]. Post-hoc analyses
of “Method”, with Tukey’s honestly significant difference
test, showed that RiSC is significantly better than both RP
[MD = 27.80; p < 0.001] and MBT (95%) [MD =
24.08; p < 0.001].

Fig. 1 shows the distribution of HF difference for each
method and outlier strength. The HF difference with RiSC
increased as the outlier strength increased. The HF difference
with RP and MBT (95%) did not show any substantial
change with the outlier strength.

Fig. 2 compares the HF difference for each outlier de-
tection method and each outlier number. The HF difference
of RiSC was constantly higher, regardless of the amount of
outliers. In contrast, the performance of RP and MBT (95%)
decreased with increasing the outlier number.

TABLE I
THE AVERAGE HF DIFFERENCE FOR EACH INTENTIONALLY

CONTAMINATED DATASET [%]

Method Outlier Number Outlier Strength
10% 30% 50%

RiSC 5 outliers 2.67± 13.5 74.8±42.5 96.7±18.0
10 outliers 0.67± 5.14 86.8±23.0 93.4±6.92
25 outliers 84.4± 18.7 91.5±2.39 92.9±2.18

RP 5 outliers 54.2± 16.2 64.5±11.1 67.5±10.4
10 outliers 38.8± 9.00 47.2±5.53 49.4±6.39
25 outliers 17.3± 3.48 17.2±3.10 17.6±2.51

MBT(95%) 5 outliers 68.9± 14.7 78.6±5.36 80.0±0.00
10 outliers 39.7± 1.79 40.0±0.00 40.0±0.00
25 outliers 20.0± 0.00 20.0±0.00 20.0±0.00

0

25

50

75

100

10% 30% 50%

Outlier Strength

H
F

 d
if
fe

re
n
c
e
 [
%

]

Method

RiSC
RP
MBT(95%)

Fig. 1. Distribution of HF difference for each outlier strength, averaged
across all outlier numbers.

B. Results: Experiment 2

In this experiment with clean, non-contaminated data, RP
and MBT (95%) erroneously rejected some samples, while
our proposed method did not detect any outlier (see table II).
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Fig. 2. Distribution of HF difference for each outlier number, averaged
across all outlier strengths.

TABLE II
THE NUMBER OF SAMPLES DETECTED AS OUTLIERS IN THE

NON-CONTAMINATED DATASET

Method Subject
A01T A02T A03T A07T

RiSC 0 0 0 0
RP 1 0 2 2
MBT (95%) 4 4 4 4

V. DISCUSSION

The purpose of Experiment 1 was to compare the per-
formance among outlier detection methods on datasets with
different types of contamination. Our method RiSC globally
showed significantly higher HF difference than RP and MBT
(95%), especially for the most contaminated dataset, e.g.,
with 50% strength and 25 outliers. However, the performance
for more weakly contaminated datasets, notably with 10%
strength and 5 outliers, was significantly lower than existing
methods. This may be due to SCMs being based on EEG sig-
nal variance computation. Indeed, when estimating the signal
variance over a long time window of EEG, short artifacts
may have a small impact on the resulting overall variance.
In other words, if the artifact affects a small proportion of
EEG signals, the resulting SCM may be rather similar to non-
outlier SCMs. Thus, its location on the manifold may become
near the boundary of the non-outlier cluster. Thus, RiSC
might incorrectly treat such weakly contaminated SCMs as
part of the non-outlier cluster. On the other hand, RP and
MBT (95%) both estimate the location of each SCM using
their Riemannian distance from a reference matrix and then
detect outliers with a threshold. Therefore, they can handle
“weak” outliers interspersed near non-outliers. However, this
comes at the risk of rejecting non-outliers as outliers, as
shown by Experiment 2.

In contrast to RiSC, the HF difference with RP decreased
with increasing the outlier number. This may be because the
more outliers, the larger the Standard Deviation (SD). Since
SD is one parameter defining the rejection threshold, the
higher the SD, the higher the threshold, which reduces the
amount of rejected outliers. Since MBT (95%) determines
outliers as a fixed percentage of data, its performance did
not change when changing the outlier strength.

The result of Experiment 2 revealed RiSC is a robust
outlier detection method that does not detect normal samples

as outlier incorrectly. On the other hand, RP and MBT (95%)
detected some supposedly clean SCMs as outliers.

Both experiments suggested that rejecting SCMs that are
only slightly different from normal SCMs risks to remove
some normal samples as outliers. To determine whether we
should take such a risk, we need further investigations on
how such SCMs affect classification accuracy.

VI. CONCLUSIONS

In this paper, we proposed RiSC, an outlier detection
method on the Riemannian manifold based on spectral
clustering. Our proposed method addressed one limitation
of existing methods, i.e., the necessity of a threshold and
a reference matrix, by clustering SCMs into a non-outlier
cluster and outlier clusters according to their similarity.

Results of comparisons with existing methods showed
the superiority of RiSC. RiSC indeed performed overall
significantly better with various contamination conditions
and did not detect any SCM as outlier on the dataset without
outlier. In particular, the performance increased on highly
contaminated datasets. This suggests that RiSC could be
useful in the future for BCI applications outside laboratories
which are expected to suffer from various artifact sources.

This paper evaluated our method on MI-BCI data, how-
ever, RiSC is generic and should work on any type of EEG
signals, e.g., Steady-State Visual Evoked Potentials, Event
Related Potentials, or Sleep EEG. Thus, as future works,
we will investigate the proposed method with other EEG
signals. We will also explore whether RiSC can be used for
improving BCI classifier training on noisy EEG data.
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