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Abstract

To build a French national electronic injury surveillance sys-
tem based on emergency room visits, we aim to develop a
coding system to classify their causes from clinical notes in
free-text. Supervised learning techniques have shown good
results in this area but require a large amount of expert anno-
tated dataset which is time consuming and costly to obtain.
We hypothesize that the Natural Language Processing Trans-
former model incorporating a generative self-supervised pre-
training step can significantly reduce the required number of
annotated samples for supervised fine-tuning.
In this preliminary study, we test our hypothesis in the simpli-
fied problem of predicting whether a visit is the consequence
of a traumatic event or not from free-text clinical notes. Using
fully re-trained GPT-2 models (without OpenAI pre-trained
weights), we assess the gain of applying a self-supervised
pre-training phase with unlabeled notes prior to the super-
vised learning task. Results show that the number of data re-
quired to achieve a ginve level of performance (AUC>0.95)
was reduced by a factor of 10 when applying pre-training.
Namely, for 16 times more data, the fully-supervised model
achieved an improvement <1% in AUC. To conclude, it is
possible to adapt a multi-purpose neural language model such
as the GPT-2 to create a powerful tool for classification of
free-text notes with only a small number of labeled samples.

Introduction

The French emergency room surveillance system

Syndromic surveillance is an approach in which automatic
data recording procedures allow the provision of data for
near-real-time tracking unexpected health events, monitor-
ing expected trends and conducting health impact assess-
ment of infectious or environmental hazards. The French
emergency room (ER) surveillance system (Oscour net-
work) was implemented by the French National Public
Health Agency in the early 2000s. Oscour ensures auto-
matic and near real-time transmission of individual-level
data and covers more than 90% of all emergency hospital
visits in the country. The data quality concerning the demo-
graphic (date of birth, gender, location) and medical diag-
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noses (coded in International Classification of Diseases di-
agnostic codes, version 10, ICD-10) have permanently been
increasing (Fouillet et al. 2015). This surveillance system
has therefore shown its utility in detecting and following-
up public health events such as seasonal outbreaks. How-
ever, the current lack of standardized data concerning the
context and cause of the event makes epidemiological risk
factor analysis unfeasible. In particular, injury epidemiol-
ogy studies require the mechanism of traumatic injury to be
documented: intentional/unintentional, self-inflicted/other-
inflicted, resulting from a transport/workplace/home and
leisure time accident, etc. Fortunately, the cause for the visit
and injury mechanisms are fully described with free-text
narratives stored in digital clinical records. More than 21
million unlabeled ER clinical notes are produced every year
in France open to potential exploitation.

Pre-trained NLMs: an overview

Over the past 10 years, neural language models (NLMs)
have progressively taken the largest share in the field of natu-
ral language processing with techniques based on long short-
term memory and gated recurrent networks (Huang, Oso-
rio, and Sy 2019) or convolutional networks (Li et al. 2019).
NLMs have then become indispensable in this field with ap-
plications like machine translation, document classification,
text summarization and speech recognition.

The benefit of unsupervised pre-training have been
quickly identified (Erhan et al. 2010), but in the domain
of NLMs, new levels of performance have only been re-
cently achieved with the use of models based on the con-
cept of attention that consists in learning dependencies be-
tween words in a sentence without regard to their distances.
This mechanism has been implemented in a sequence to se-
quence neural network model, the Transformer architecture,
proposed in 2017 (Vaswani et al. 2017). This model can be
trained with an unsupervised generative step that learns from
a large set of text to predict the new token in a sentence
(Rothe, Narayan, and Severyn 2019). One of the latest exam-
ples is the OpenAI’s Generative Pre-Trained Transformer-
2 (GPT-2), published in February 2019. GPT-2 is a large
transformer-based language model with 1.5 billion param-
eters, trained on a dataset of 8 million web pages to predict
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the next word after a given prompt sentence (Radford et al.
2019). This work quickly drew attention from the commu-
nity as it demonstrated the model’s ability to generate arti-
ficial texts which are difficult to be distinguished from hu-
mans written texts. Moreover, the meaning of these artificial
sentences was surprisingly consistent with the original con-
text text (prompt), suggesting potentially numerous appli-
cations. Indeed, beyond the capability to generate coherent
texts, fine-tuning the GPT-2 model has the potential to per-
form other tasks such as question answering and document
classification. Following the same idea as the Bidirectional
Encoder Representations from Transformers (BERT) model
(Devlin et al. 2018), transferring many self-attention blocks
from a pre-trained model proved sufficient to transfer con-
textual representations in the dataset.

The training of the model is then performed in two dis-
tinct phases (Radford et al. 2018): the first generative pre-
training unsupervised (or more accurately self-supervised)
phase, consists in exploitation of a text corpus. This leads
to the ability of automatic text generation. The relevance of
these synthetic sentences suggests that the networks learned
contextual semantic representations. The second supervised
fine-tuning phase consists in resuming learning from anno-
tated text corpus with the objective of creating a system able
to perform specific tasks.

Objective

The so-called TARPON project proposes to build a French
national surveillance system based on the exhaustive col-
lection of ER visits reports in France for automated trauma
monitoring. Its main feature is the application of automatic
language analysis to extract injury mechanism and cause
from the digital medical record of each ER visit. The overall
objective is to develop a tool that would derive standard-
ized trauma/injury information and their causes from these
ER notes. To that purpose, substantial amounts of experts-
annotated data would be necessary to train a conventional
text classification model with acceptable accuracy.

We hypothesize that the GPT-2 incorporating a genera-
tive self-supervised pre-training step can significantly re-
duce the required number of expert annotated samples for
supervised fine-tuning. This is of paramount significance for
all projects wishing to use NLMs models for free-text classi-
fication tasks because the manual annotation phase is by far
the most expensive one. The objective of the present study
is to measure the gain in terms of manual annotation load
obtained by adopting this pre-training step.

Methods

Study design and data sources

To test our hypothesis and measure the gain, we exploited
the current digital medical record data of our ER depart-
ment. We leveraged the fact that the traumatic/non-traumatic
cause of the ER visit could be easily derived from avail-
able diagnostic codes (ICD-10) already assigned by clini-
cians at patient’s hospitalization. We also retrieved clinical
notes from the digital medical record system of the adult ER
of our University hospital, from 2011 to 2018. The ICD-10

(Organization 2015) is the most used standard way to indi-
cate diagnoses and medical procedures, and is the manda-
tory terminology used in France for all stays in any private
or public hospitals. This data set then contains 288 404 med-
ical records of which 209 341 contain both diagnosis code
(from which we derived the traumatic/non-traumatic cause)
and the free-text clinical note. A total of 56 410 visits with
ICD-10 codes beginning with letters S, T1 to T35 and V
were coded as trauma and 115 520 visits with ICD-10 codes
beginning with letters A, C, D, E, G, H, I, J, L, N were coded
as non-trauma. A total of 37 411 visits (with codes begin-
ning with letters F, M, O, P, Q, T36 to T98, X40 to X57,
Y10 to Y98, U, Z) were excluded since they correspond to
pathologies for which the traumatic nature is either uncer-
tain or discussed from a semantic point of view. The total
number of available clinical notes was therefore 171 930.

We then trained the GPT-2 model to predict from free-text
clinical notes only whether the visit was due to a traumatic
VS non-traumatic cause. We designed the following two sce-
narios to predict if an ER visit was due to trauma or not from
free-text clinical notes and to measure the gain obtained with
a self-supervised pre-training phase. Scenario A consisted in
retraining the GPT-2 from scratch on the labeled dataset in a
single fully-supervised phase. In Scenario B, we further split
the training dataset in two parts: a large unlabeled dataset
for the self-supervised pre-training phase and a smaller la-
beled dataset for the supervised training. The main question
was therefore how many clinical notes were required in this
training part of Scenario B to achieve the same acceptable
performance as in Scenario A. This should give us a mea-
sure of how much annotation load can be gained.

Sampling strategy

The sampling strategy is illustrated on Figure 1. For test pur-
poses, 10 000 clinical notes were randomly selected and then
frozen for both scenarios. This test set was used to estimate
the number of notes needed to achieve maximum prediction
performance. The clinical notes from the remaining 161 930
notes were used with labels in Scenario A. For Scenario B,
we further split the 161 930 notes into a set of 151 930 un-
labeled notes for unsupervised pre-training and a second set
with 10 000 labeled notes for the supervised fine-tuning step.

Models were independently trained with different num-
bers of notes. We built a grid of values of numbers of notes:
• 19 cases regularly spaced on a log-scale, from 20 to

10 000, shared by the two scenarios;
• plus 6 cases regularly spaced on a log-scale, from 20 000

to 120 000, plus 161 930, the total number of notes, only
pertinent for Scenario A (indeed, in Scenario B, only
10 000 notes are used for supervised learning on labeled
notes thus, only the first 19 cases could be done).

The number of cases to be evaluated was chosen in agree-
ment with our computing capabilities.

Adapting the GPT-2 model to our setting

Like other NLMs based on convolutional and recurrent neu-
ral networks, the GPT-2 proposed by Radford and col-
leagues is a sequence to sequence transduction model (Cho
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Figure 1: Strategy of sampling: 26 cases evaluated in SCE-
NARIO A and 19 cases in SCENARIO B.

et al. 2014). The main feature of the Transformer architec-
ture is to use attention weight on text inputs (Vaswani et
al. 2017). During the training process, the network learns a
context vector which gives global level information on in-
puts telling where attention should be focused. The novel
approach consists in replacing recurrence with attention to
handle the dependencies in input and output.

The GPT-2 is built to predict the next token from the input
of a text sequence. By looping this process, it works then as
a text generator. The text can be generated de novo or by
feeding any arbitrary text prompts. The model was origi-
nally trained on millions of webpages without any explicit
supervision. Four models of GPT-2 with respectively 117,
345, 762 and 1542 million parameters were trained. Only
the first two models are trainable on standard workstations
with an appropriate Nvidia GPU. Note that the GPT-2 mod-
els are trained with web text mostly written in English while
our clinical notes data are all in French. Consequently in the
present work, we did not use those pre-trained models and
retrained the models from a random set of weights.

The 117M models were trained mainly with a single
Nvidia R© GeForce GTX 1080 Ti with 11GB of VRAM (4
parallel sessions can be run on our workstation with 4 GTX
1080 Ti). The 345M models were trained on another work-
station with a single Nvidia R© TITAN RTX with 24GB of
VRAM.

Operating principle

In Scenario B, the pre-training step is referred as unsuper-
vised learning because it is derived from simply reading the
unlabeled clinical notes. It actually uses a sliding learning
window on the text. The first part of this window corre-
sponds to the input and the last token is then the token to
be predicted. This first step leads to models that can gener-
ate texts resembling clinical notes in French, including the
use of medical jargon and specialized abbreviations.

For the supervised learning phases (Scenario A and sec-
ond training process in Scenario B), we added the string
“TARPON” to the end of each clinical note and the next

TARPON 1

TARPON 0

TARPON 1

…
Training on labeled clinical notes

(from a dataset of 161,930 notes)

Building prompts

ended with TARPON key-word

for prediction

TARPON

TARPON

Prediction

0

Figure 2: SCENARIO A: supervised training

…
Pre-training on 151,930 

unlabeled clinical notes

e model is able to generate 
arti cial textPrediction

TARPON 1

TARPON 0

TARPON 1

…
Training on labeled clinical notes

(from a dataset of 10,000 notes)

Building prompts

ended with TARPON key-word

for prediction

TARPON

TARPON 0

Prediction

Figure 3: SCENARIO B: self-supervised training + super-
vised training

position of string, “1” (if the clinical note corresponds to a
traumatic event) or “0” (if non-traumatic event), is used for
training label and to be predicted. As described above, this
code was derived from the diagnosis classification manually
coded by clinicians.

For both scenarios (Figures 2 and 3), the test phase con-
sists in feeding the models with prompts by adding the task
identifier at the end of each test clinical note and ask the
model to predict the next token right after the task identi-
fier. Ideally, this newly generated token should be one of the
classification codes (tokens). On the first iterations, due to
the random initialization and insufficient learning, the pre-
dicted token could be any tokens from the vocabulary other
than expected classification tokens. But, this turns quickly to
be mainly the classification tokens. Our operating principle
can therefore be compared to a Question Answering task.

The prediction performance of the model was measured
by F1 score and area under the ROC curve statistics (AUC)
(Powers 2011). Evaluations on the same 10 000 clinical
notes were performed for both Scenario A and Scenario B.

Confidentiality and data protection

No nominative data were necessary for this work. The
dataset was not checked and not specifically deidentified.
Data processing and computing were conducted within the
facilities of the Emergency department of the Bordeaux Uni-
versity Hospital which have received regulatory clearance to
host and exploit databases with personal and medical data.

Results

For both scenarios, we compared AUC (Figures 4 to 6) and
F1 score (Figures 7 to 9) by iterations with a batch size
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Figure 4: Scenario A: AUC by number of iterations. 26
cases.

of 1. The number of iterations needed to achieve a maxi-
mal AUC/F1 score value varied depending on the number of
notes (Figures 4 and 5 for AUC and Figures 7 and 8 for F1
score). For each set of clinical notes, the maximum AUC/F1
score value was retained to build Figure 6 for AUC and Fig-
ure 9 for F1 score, thus representing how model performance
varied with respect to the number of labeled notes.

In Scenario A, AUC and F1 score reach the values of
0.979 and 0.908 respectively after the processing of all the
161 930 labeled notes. The use of generative pre-training
(Scenario B) achieved an AUC of 0.949 and an F1 score
of 0.852 after the processing of only 600 labeled clinical
notes. To achieve the same performance, 6 000 labeled clin-
ical notes had to be processed in Scenario A (Figures 6
and 9). At the end of Scenario B, with a training of all 10 000
notes, AUC and F1 score are respectively 0.970 and 0.889,
corresponding the cases of more than 100 000 notes in Sce-
nario A. For 16 times more data, the gain from Scenario
A compared to Scenario B shows an improvement of only
0.89% in AUC and 2.12% in F1 score.

The same is observed for the F1 score. In Scenario A (Fig-
ure 7), the F1 score cannot be measured for the first 500 it-
erations since recall and precision are both null. While for
Scenario B, F1 score can be measured after only 20 iter-
ations (up to 0.633) and reached 0.878 with 600 iterations.
For comparison, in Scenario A, the F1 score was only around
0.03 after 600 iterations.

As regard to training time, one iteration (batch size was
1) took about 0.25 second; the required number of itera-
tions depended on the data length and varied from 15 000
to 330 000 which resulted in training time ranging from 1
to 23 hours. The prediction task on the 10 000-notes dataset
lasted around 4 minutes for each iterations. As a result, the
time for each case run took from 4 hours up to 100 hours.

Comparing 117M and 345M GPT-2 models showed no
significant improvement using a more complex model (Fig-
ure 10). However, the 345M model takes around 1.5 sec-
ond for each iteration (6× longer). The classification task of
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10 000 notes with 345M model required about 480 seconds
which is 2× longer than with 117M model (245 seconds).
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Considering the time cost and performance, all the above-
mentioned results (Figures 4 to 9) are trained with the GPT-2
117M model.

Discussion

As suggested by Radford and colleagues (Radford et al.
2018), large gains could be obtained by generative pre-
training with unlabeled text corpus, saving a large amount
of annotation load. In our example of clinical notes classifi-
cation task, the order of magnitude is a factor of 10. In their
2019 paper, Radford and colleagues reported an improve-
ment of 8.9% on commonsense reasoning (Stories Cloze
Test), 5.7% on question answering (RACE), and 1.5% on
textual entailment (MultiNLI) (Radford et al. 2018).

Though the AUC converged to the same ending point in
both scenarios, the learning patterns were quite different. In
the fully-supervised scenario, the AUC started with a value
∼ 0.5. Because of insufficient learning, almost all clini-
cal notes were classified as non-trauma at this stage. The
AUC dropped during the first iterations due to clinical notes
wrongly classified as trauma, then increased as expected.
The main reason is that, in this question answering design,
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Scenario A: AUC by number of iterations
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Scenario B: AUC by number of iterations
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Figure 10: Comparison of GPT-2 117M models and 345M
model on the cases of 161 930 notes in Scenario A and
10 0000 notes in Scenario B.

the model has to perform two tasks at the same time: how to
learn the semantic representation in clinical notes and how
to perform the classification task. But for the pre-trained sce-
nario, the clinical notes generation task is learned during
the pre-training phase, leading to an increasing monotonous
AUC curve in step 2, corresponding to the learning of the
classification task.

Our results are in line with recent work using self-
supervised pre-training methods, such as ELMo (Peters et al.
2018) and BERT (Devlin et al. 2018), and have established a
qualitatively new level of performance in most widely used
Natural Language Understanding benchmarks. Howard and
Ruder (Howard and Ruder 2018) in particular reported very
similar results in a comparable text classification task, with
a model trained with only 100 labeled samples that matches
the performance of training from scratch on 20 000 samples.
While the extensive use of pre-trained word embeddings
could be considered as of the same nature of generative pre-
training, the gain provided by generative pre-training is a
major step for those who seek to classify free-text document
with minimal manual coding efforts for same acceptable ac-
curacy.
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We have benefited from the work of the researchers who
published the GPT-2 model, which still seems to be one of
the most efficient today. The NLM field progresses fast with
extensive research efforts from the community. Other mod-
els have been and will be proposed, so the text classifica-
tion strategies will need to be updated. Recent and promis-
ing work includes the work of Yang and colleagues and their
XLNet model (Yang et al. 2019) which currently ranks first
at the Standford Question Answering Dataset (SQuAD2.0).

Probably because the GPT-2 model was only recently
made public, few applications have been published today.
However, this type of tool will with no doubt be exten-
sively used in the near future for a wide range of tasks. In
the area of document classification alone, they will likely
provide faster and more relevant access to expected infor-
mation. Certainly, these applications will go beyond simple
classification tasks. Of note, it is unusual to generate the next
token (in a Question Answering fashion) in an NLP model
to perform classification tasks. A more classical approach
would certainly be to add a soft-max layer after a hidden
state of the model to output prediction probabilities. While
this will be done in future work, adding a layer however re-
quires much more skill in Python/TensorFlow programming.
That is why we decided to present a method that can be used
by a much broader scientific community.

While the 345M GPT-2 model did not generate better re-
sults than the 117M model in the current study, the use of
larger models could bring further improvement. Unfortu-
nately, the required computing power of larger models is far
beyond our resources for this pilot study, we will have to be
satisfied with the results presented here.

In this study, the trauma/non-trauma labeling procedure of
the clinical notes was indirectly based on the ICD-10 codes.
We tried to maximize the consistency of the ground-truth
labeling by selecting a subset of ICD-10 codes for which the
traumatic/non-traumatic characteristic is indisputable. This
method has had the advantage of providing a large amount
of labeled data but does not allow us to compare the model’s
performance with human annotation.

Conclusion
Our work shows that it is possible to easily adapt a multi-
purpose NLM model such as the GPT-2 to create a powerful
classification tool of free-text notes even in languages other
than English. The self-supervised training phase appeared to
be a very powerful tool to dramatically decrease the number
of labeled samples required for supervised learning.

Our results could be refined by extending the experiment
to multi-label classification of ICD-10 codes. In the coming
months, based on the results obtained, the exhaustive cod-
ing of all events leading to trauma with emergency room
visits will be implemented. The multilingual aspect of the
problem (clinical notes are in French and include clinical
jargon, slang words, abbreviations, acronyms, and short-
cuts) deserves further investigation. Deidentification ques-
tions should also be explored.

These are the first steps towards a national trauma obser-
vatory within the TARPON project framework. More gener-
ally, this also opens broad perspectives for those interested

in automatic free-text annotation. In the field of health, this
will be particularly useful for diagnosis coding, clinical re-
port classification and patient reports analysis and mining.
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