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Abstract

We provide finite time reduced order observers for a class of nonlinear time-varying continuous-time systems. We use the observers to
design globally asymptotically stabilizing output feedback controls. We illustrate our work in a tracking dynamics for a nonholonomic
system in chained form.
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1 Introduction

This work continues our search for ways to estimate solu-
tions of systems. This is an important problem, because
solving it can make it possible to design output feedback
stabilizing controls. The Luenberger observer from Luen-
berger (1979) is one of many observers for nonlinear sys-
tems. However, most existing observers usually only ensure
asymptotic convergence of the estimation error to 0, and
this can be an obstacle to their implementation.

By definition, a finite time observer is one that provides
an exact value of the state that is being estimated after
a finite time. This finite time may depend on the initial
state (as in Du et al. (2013); Perruquetti et al. (2008)), or
it may be a fixed time that could be independent of the
initial state as in Lopez-Ramirez et al. (2018). Other finite
time observers use past output values or a dynamic exten-
sion. This later type of observers was proposed for linear
systems, e.g., in Engel and Kreisselmeier (2002), Menold
et al. (2003), and Raff and Allgower (2008). See also the
finite time observers in Mazenc et al. (2015) and Sauvage
et al. (2007) for nonlinear systems.

? Corresponding author: F. Mazenc. A preliminary version ap-
peared in the proceedings of the 2018 IEEE Conference on De-
cision and Control; see Section 1 for the differences between
the conference version and this paper. Malisoff was supported
by US National Science Foundation Grant 1711299.
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frederic.mazenc@l2s.centralesupelec.fr (Frédéric
Mazenc), saeed.ahmed@bilkent.edu.tr (Saeed Ahmed),
malisoff@lsu.edu (Michael Malisoff).

This paper is motivated by the fact that time-varying sys-
tems frequently arise, e.g., by recasting tracking problems
as problems for time-varying systems whose goal is to uni-
formly globally asymptotically stabilize a zero equilibrium,
and because measured state components need not be esti-
mated. Here, we adapt Mazenc et al. (2015) and Sauvage
et al. (2007) to build finite time reduced order observers for
a class of nonlinear time-varying systems. As in (Bonnans
and Rouchon, 2005, Chapt. 4, Sec. 4.4.3) and Friedland
(2009), our observers only estimate unmeasured variables.
This can produce simpler or better performing observers,
and is helpful because when one needs formulas for fun-
damental solutions of time-varying systems, it is advanta-
geous to consider smaller dimensions.

We believe that our work is the first to provide finite time
reduced order observers. Another advantage of this work
is that our main observer provides fixed time convergence
that is independent of the initial state. It improves on our
conference version Mazenc et al. (2018b) by adding suffi-
cient conditions for our assumptions, a design based on dy-
namic extensions that yields a formula for the estimation
of the state without distributed terms, an output feedback
stabilization theorem, and a nonholonomic example that
applies our output stabilization theorem, which were not
included in Mazenc et al. (2018b).

We use the following standard notation. The dimensions of
our Euclidean spaces are arbitrary, unless otherwise noted.
The usual Euclidean norm and the induced matrix norm
are denoted by | · |, | · |∞ is the sup norm, | · |J is the sup
over a set J , and I is the identity matrix. We use the stan-
dard comparison function classesKL andK∞ and input-to-
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state stable (or ISS), properness, and positive definiteness
definitions; see (Khalil, 2002, Chapter 4) and Malisoff and
Mazenc (2009). A function g : R × Rn → Rm is called lo-
cally Lipschitz in the second variable uniformly in the first
variable provided there is a function α ∈ K∞ such that for
all constantsR > 0, we have |g(t, x)−g(t, y)| ≤ α(R)|x−y|
for all t ∈ R, x ∈ B(R), and y ∈ B(R), where B(R) is the
closed ball of radius R centered at 0 in the usual Euclidean
norm. A function V : [0,∞)×Rn → R is called uniformly
proper and positive definite provided there exist functions
α ∈ K∞ and α ∈ K∞ such that α(|x|) ≤ V (t, x) ≤ α(|x|)
for all t ≥ 0 and x ∈ Rn. We assume for simplicity that
the initial times for our solutions are always t0 = 0, un-
less otherwise noted. For any piecewise continuous func-
tion Ω : R → Rn×n, let ΦΩ be the unique function such
that the following conditions hold for all t ∈ R and t0 ∈ R:

∂ΦΩ

∂t
(t, t0) = −ΦΩ(t, t0)Ω(t) and ΦΩ(t0, t0) = I.

Then Φ−1
Ω (t, s) = ΦΩ(s, t) holds for all real s and t, and

MΩ(t, s) = Φ−1
Ω (t, s) is the fundamental solution for Ω and

the system ẋ = Ω(t)x; see (Sontag, 1998, Lemma C.4.1).
We also use the following generalization of (Mazenc et al.,
2018b, Lemma 2) which we prove in the appendix:

Lemma 1 Let A ∈ Rn×n be a constant matrix and let
E : R→ Rn×n be a bounded piecewise continuous function.
LetMA+E denote the fundamental solution of

ζ̇(t) = [A+ E(t)] ζ(t). (1)

Then for all t ∈ R and s ∈ R, the inequalities∣∣MA+E(t, s)− eA(t−s)
∣∣ ≤ |E|∞|t− s|e(|A|+|E|∞)|t−s| (2)

and |MA+E(t, s)| ≤ e|t−s|(|A|+|E|∞) are satisfied. �

2 Main Observer Design for Time-Varying Sys-
tems

2.1 Statement of Result and Remarks

We study nonlinear systems with outputs of the form
ż(t) = A1(t)xr(t) + δ1(t, z(t))

ẋr(t) = A2(t)xr(t) + δ2(t, z(t))

y(t) = z(t)

(3)

where z is valued in Rp, xr is valued in Rn−p, Ai for i = 1
and 2 is piecewise continuous and bounded, and our con-
ditions on δ1 and δ2 will be specified below; see Remark 1
for the motivation for (3). We assume:

Assumption 1 There exist a constant τ > 0 and a
bounded matrix valued function L : R→ R(n−p)×p of class
C1 with a bounded first derivative such that with the choice
H(t) = A2(t) + L(t)A1(t), the following are true: (i) The
matrix

κ(t) = ΦH(t, t− τ)− ΦA2
(t, t− τ) (4)

is invertible for all t ∈ R and (ii) the inverse function κ−1(t)
is a bounded function of t. �

Assumption 2 The δi’s are piecewise continuous with re-
spect to t and locally Lipschitz with respect to z. The system
(3) is forward complete. �

See Section 2.3 below on ways to check Assumption 1. We
introduce the function

δ](t, z) = L(t)δ1(t, z) + δ2(t, z) + L̇(t)z −H(t)L(t)z (5)

where H and L are from Assumption 1, and the dynamic
extensions {

γ̇1(t) = H(t)γ1(t) + δ](t, z(t))

γ̇2(t) = A2(t)γ2(t) + δ2(t, z(t)),
(6)

which are reminiscent of the ones used in Mazenc et al.
(2015). In terms of the observer

x∗r(t) = κ(t)−1 [L(t− τ)z(t− τ)

−ΦH(t, t− τ)L(t)z(t)

+ΦH(t, t− τ)γ1(t)− γ1(t− τ)]

−κ(t)−1[ΦA2
(t, t− τ)γ2(t)− γ2(t− τ)]

(7)

for all t ≥ τ , we prove the following, but see Remark 2 on
the implementability of the observer, and see Remark 3 for
generalizations that allow external disturbances and mea-
surement noise (but where instead of a finite time observer,
we get an observation error depending on sup norms of the
disturbances and of the measurement noise):

Theorem 1 Let L, A1, A2 and τ be such that (3) satisfies
Assumptions 1-2. Then

xr(t) = x∗r(t) (8)

holds for all solutions of (3)-(6) for all t ≥ τ and all
initial conditions. If, in addition, the functions A1, A2

and L are periodic of period T > 0 and τ = T , then
κ(T ) = ΦH(T, 0)− ΦA2

(T, 0) and

x∗r(t) = κ(T )−1 [L(t)z(t− T )− ΦH(T, 0)L(t)z(t)

+ΦH(T, 0)γ1(t)− γ1(t− T )]

−κ(T )−1[ΦA2(T, 0)γ2(t)− γ2(t− T )]

(9)

holds for all t ≥ T and all constant initial functions γ(0) ∈
R2(n−p) and (z(0), xr(0)) ∈ Rn.

Remark 1 To motivate (3), consider the class of nonlinear
systems ẋ(t) = Ax(t) + δ(t, y(t)) where A is a constant
matrix and δ is uniformly locally Lipschitz in y uniformly
in t, with an output y(t) = Cx(t) that is valued in Rp with
p < n where C is of full rank and where the pair (A,C) is
observable. Since C has full rank, (Luenberger, 1979, pp.
304-306) (with δ(t, y) added to the right side) proves that
there are constant matrices CT and A1 and A2, a linear
change of coordinates xT = CTx = [y>, x>r ]> and functions
δi that are uniformly locally Lipschitz in y uniformly in t
such that the xT system can be written as the special case{

ẏ(t) = A1xr(t) + δ1(t, y(t))

ẋr(t) = A2xr(t) + δ2(t, y(t))
(10)
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of (3) with (A2, A1) observable. Since (A2, A1) is observ-
able, (Mazenc et al., 2015, Lemma 1) provides an L and a
τ > 0 so that κ = e−A2τ − e−Hτ with H = A2 + LA1 is
invertible; this is done by picking L so that all eigenvalues
of H are negative, real, and smaller than the real parts of
the eigenvalues of −A2, and then picking τ large enough so
that |eτH ||e−τA2 | < 1. Hence, Assumption 1 holds for (10).

In fact, we can allow arbitrarily small constants τ > 0,
by the following approach. First, choose a matrix L
and a constant τ0 > 0 such that κ = e−A2τ0 − e−Hτ0

with H = A2 + LA1 is invertible, i.e., such that
D(τ) = determinant(e−A2τ − e−Hτ ) is nonzero at τ = τ0.
Then, for our fixed L and any constant τ̄ ∈ (0, τ0), we can
find a constant τ∗ ∈ (0, τ̄) such that D(τ∗) 6= 0, so Assump-
tion 1 holds with this τ∗. The existence of τ∗ follows from
the real analyticity of D, because if there were a τ̄ ∈ (0, τ0)
such that no such τ∗ ∈ (0, τ̄) existed, then D(τ) = 0 for
all τ ∈ (0, τ̄), and then an analytic continuation argument
would give the contradiction D(τ0) = 0. Hence, we can
eliminate the requirement that τ > 0 is large enough. �

Remark 2 The observer (7) can be computed in practice
from the known y measurements and the known δi’s when
ΦH and ΦA2

are available. Besides, the advantages of the
formula (9) are important. First, there is no integral term
in it (which is due to the use of the dynamic extension (6)).
Second, in the periodic case that is described in Theorem 1,
the constant matrices κ(T )−1, ΦH(T, 0) and ΦA2(T, 0) can
be determined through software. In fact, since

MH(T, 0) = [φH(T, 0, e1)...φH(T, 0, en−p)]

where the ith column φH(T, 0, ei) is the solution of the initial

value problem Ż = H(t)Z, Z(0) = ei, for all i evaluated
at T , where ei ∈ Rn−p is the ith standard basis vector (by

the linearity of the system Ż = H(t)Z), we can compute
MH(T, 0) (and so also its inverse ΦH(T, 0)) by solving n−p
initial value problems. The same applies toMA2

(T, 0). �

Remark 3 Our proof of Theorem 1 in Section 2.2 below is
easily generalized to dynamics with external perturbations
and measurement noise, as follows. If we add uncertainties
f1(t), f2(t), and ε(t) to ż(t), ẋr(t), and y(t) respectively in
(3), where the fi’s and ε piecewise continuous and locally
bounded, and if we replace the local Lipschitzness condition
in Assumption 2 by global Lipschitzness with respect to z,
and if we replace the z values in (6)-(7) by the corresponding
output values y(t) = z(t)+ε(t) with the measurement noise
ε, then similar arguments to the ones in Section 2.2 (using
the second conclusion of Lemma 1 and the boundedness of
H and A2 to get supt≥0 sup`∈[t−τ,t] |MH(t− τ, `)| <∞ and
supt≥0 sup`∈[t−τ,t] |MA2

(t − τ, `)| < ∞) provide a function
γe ∈ K∞ such that |x∗r(t)−xr(t)| ≤ γe(|(f1, f2, ε)|[0,t]) holds
for all t ≥ τ and all initial conditions. �

2.2 Proof of Theorem 1

Assumption 2 ensures that the system (3) is forward com-
plete. We deduce that the solutions are defined for all t ≥ 0.

Next, let us introduce

s(t) = xr(t) + L(t)z(t). (11)

Simple calculations give

ṡ(t) = A2(t)xr(t) + δ2(t, z(t))

+L̇(t)z(t) + L(t)ż(t)

= H(t)xr(t) + L(t)δ1(t, z(t)) + δ2(t, z(t))

+L̇(t)z(t)

= H(t)s(t) + δ](t, z(t)),

(12)

where δ] is defined in (5). By applying variation of param-
eters to {

ṡ(t) = H(t)s(t) + δ](t, z(t))

ẋr(t) = A2(t)xr(t) + δ2(t, z(t))
(13)

we obtain
ΦH(t, t− τ)s(t) = s(t− τ)

+
∫ t
t−τMH(t− τ, `)δ](`, z(`))d` and

ΦA2
(t, t− τ)xr(t) = xr(t− τ)

+
∫ t
t−τMA2(t− τ, `)δ2(`, z(`))d`.

(14)

By subtracting the equalities in (14), we obtain

ΦH(t, t− τ)[xr(t) + L(t)z(t)]− ΦA2
(t, t− τ)xr(t)

= xr(t− τ) + L(t− τ)z(t− τ)

+
∫ t
t−τMH(t− τ, `)δ](`, z(`))d`− xr(t− τ)

−
∫ t
t−τMA2

(t− τ, `)δ2(`, z(`))d`

(15)

which gives

κ(t)xr(t) = L(t−τ)z(t−τ)− ΦH(t, t−τ)L(t)z(t)

+
∫ t
t−τMH(t− τ, `)δ](`, z(`))d`

−
∫ t
t−τMA2(t− τ, `)δ2(`, z(`))d`.

(16)

By applying variation of parameters to (6), we obtain∫ t
t−τMH(t− τ, `)δ](`, z(`))d`

= ΦH(t, t− τ)γ1(t)− γ1(t− τ) and∫ t
t−τMA2

(t− τ, `)δ2(`, z(`))d`

= ΦA2(t, t− τ)γ2(t)− γ2(t− τ).

(17)

It follows that

κ(t)xr(t) = L(t−τ)z(t−τ)− ΦH(t, t−τ)L(t)z(t)

+ΦH(t, t− τ)γ1(t)− γ1(t− τ)

−ΦA2
(t, t− τ)γ2(t) + γ2(t− τ).

(18)

Consequently (8) is satisfied. In the particular case where
the functions A1, A2 and L are periodic of period T =
τ then for all t ∈ R, κ(t)−1 = κ(T )−1, ΦH(t, t − τ) =
ΦH(T, 0), L(t − τ) = L(t) and ΦA2(t, t − τ) = ΦA2(T, 0).
This allows us to conclude.
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2.3 Checking Assumption 1

In several cases, one can verify Assumption 1.

1) If n− p = 1, then we can apply variation of parameters
to get ΦA2

and ΦH in explicit forms.

2) Let us assume that the functions A1, A2, and L are
periodic of period T = τ and that

κ(T ) = ΦH(T, 0)− ΦA2
(T, 0) (19)

is invertible. Then κ(t) = κ(τ) is invertible for all t ∈ R
so Assumption 1 is satisfied with τ = T . The invertibility
can be checked in practice by computing ΦH(T, 0) and
ΦA2(T, 0) as explained in Remark 2.

3) Next, let us assume that there are an observable pair
(A02, A01) ∈ R(n−p)×(n−p)×Rp×(n−p) of constant matrices
and functions ∆i such that Ai(t) = A0i+∆i(t) for i = 1, 2.
Then one can determine a matrix L0 and a constant δ > 0
such that if |∆i|∞ ≤ δ, i = 1, 2, then Assumption 1 is
satisfied with L(t) = L0. Indeed, in this case one can use
(Mazenc et al., 2015, Lemma 1) to find a constant matrix
L0 such that

κ0 = e−(A02+L0A01)τ − e−A02τ (20)

is invertible. By writing κ(t) as

κ(t) = κ0 +
[
ΦH(t, t− τ)− e−(A02+L0A01)τ

]
−
[
ΦA2

(t, t− τ)− e−A02τ
]

= κ0 [I +R(t)]

(21)

with

R(t) = κ−1
0

[
ΦH(t, t− τ)− e−(A02+L0A01)τ

]
−κ−1

0

[
ΦA2(t, t− τ)− e−A02τ

]
,

(22)

we can use Lemma 1 to prove that

|R|∞ ≤ c(δ)δ, where (23)

c(δ) =

|κ−1
0 |
[
e(|A02|+δ)τ + (1 + |L0|)e(|H0|+(1+|L0|)δ)τ

]
τ

(24)

and H0 = A02 + L0A01. Thus |κ|∞ ≤ |κ0|(1 + δc(δ)).
If, in addition, δ < 1/c(δ), then we can check that I +
R(t) is invertible for all t ∈ R (by checking that its null
space is trivial). Since κ0 is invertible, it follows that κ(t)
is invertible for all t ∈ R. Then

κ−1(t) = (I +R(t))
−1
κ−1

0 . (25)

Since

(I +R(t))
−1

=

∞∑
k=0

(−1)kR(t)k (26)

we deduce that∣∣∣(I +R(t))
−1
∣∣∣ ≤ +∞∑

k=0

(c(δ)δ)k ≤ 1

1− c(δ)δ
. (27)

Hence, |κ−1|∞ ≤
|κ−1

0 |
1−c(δ)δ

, so Assumption 1 is satisfied.

3 Output Feedback Stabilization

In this section, we use the observer from the previous sec-
tion to solve a dynamic output feedback stabilization prob-
lem.

3.1 Assumptions and Statement of Main Result.

We study 
ż(t) = A1(t)xr(t) +B1(t)u(t)

+ρ1(t, z(t)) + f1(t)

ẋr(t) = A2(t)xr(t) +B2(t)u(t)

+ρ2(t, z(t)) + f2(t)

(28)

where z is valued in Rp, xr is valued in Rn−p, the output
is y(t) = z(t), Ai and Bi for i = 1, 2 are known piecewise
continuous bounded matrix valued functions, ρ = (ρ1, ρ2)
is known and piecewise continuous with respect to t, and
f = (f1, f2) is an unknown locally bounded piecewise con-
tinuous function. We assume:

Assumption 3 There exist a function us(t, χ) that is lo-
cally Lipschitz in χ = (z, xr) uniformly in t, a C1 uniformly
proper positive definite function V , positive constants c1
and c2, and γ ∈ K∞ so that for all choices of the locally
bounded piecewise continuous functions µ = (µ1, µ2) and
h = (h1, h2) and all t ≥ 0, the following hold: (1) The time
derivative of V along all solutions of

ż(t) = A1(t)xr(t) +B1(t)u(t)

+ρ1(t, z(t)) + h1(t)

ẋr(t) = A2(t)xr(t) +B2(t)u(t)

+ρ2(t, z(t)) + h2(t)

(29)

in closed loop with the state feedback u(t) = us(t, xr(t) +
µ1(t), z(t) + µ2(t)) satisfies

V̇ (t) ≤ −c1V (t, χ(t)) + γ(|(µ, h)(t)|) (30)

and (2) its time derivative along all trajectories χ of (29)
in closed loop with u(t) = 0 satisfies

V̇ (t) ≤ c2V (t, χ(t)) + γ(|h(t)|) (31)

for all t ≥ 0. �

Assumption 4 The function ρ = (ρ1, ρ2) is locally Lip-
schitz in its second variable uniformly in t and there is a
function α ∈ K∞ such that |ρ(t, a)| ≤ α(|a|) for all a ∈ Rp
and t ≥ 0. �

The preceding assumptions are satisfied if the ρi’s have the
linear forms ρi(t, z) = ρi,?(t)z with continuous bounded
functions ρi,?(t) for i = 1, 2 and if in addition the system
χ̇ = Q1(t)χ+Q2(t)u with the choices χ = (z, xr),

Q1 =

[
ρ1∗ A1

ρ2∗ A2

]
, (32)

and Q2 = [B>1 B>2 ]> admits a bounded piecewise continu-
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ous function KQ such that χ̇ = (Q1(t) + Q2(t)KQ(t))χ is
uniformly globally exponentially stable to 0. This is done
by using the quadratic Lyapunov function for this closed-
loop system provided by (Khalil, 2002, Theorem 4.14) and
us(t, χ) = KQ(t)χ.

Setting
ρ4(t, z) = −[D(t)z + ρ3(t, z)], (33)

where
ρ3(t, z) = L(t)ρ1(t, z) + ρ2(t, z) (34)

and
D(t) = L̇(t)−H(t)L(t), (35)

and with H, L, and κ from Assumption 1, we prove this
ISS result:

Theorem 2 Let τ , L, H, us, κ, c1, and c2 be such that
Assumptions 1, 3, and 4 hold. Then we can construct β̄ ∈
KL and γ̄ ∈ K∞ such that: All solutions χ(t) of (28), in
closed loop with u(t) = u?(t, xr(t), y(t)) where

u?(t, xr(t), y(t)) =

{
us(t, xr(t), y(t)) when t ≥ τ

0 when t < τ
(36)

and where xr is

xr(t) = κ(t)−1 [L(t− τ)z(t− τ)

−ΦH(t, t− τ)L(t)z(t) + ΦH(t, t− τ)ω1(t)

−ω1(t− τ)]

−κ(t)−1[ΦA2
(t, t− τ)ω2(t)− ω2(t− τ)]

ω̇1(t) = H(t)ω1(t)

+ [L(t)B1(t) +B2(t)]u?(t, xr(t), y(t))

+ρ3(t, z(t)) +D(t)z(t)

ω̇2(t) = A2(t)ω2(t) +B2(t)u?(t, xr(t), y(t))

+ρ2(t, z(t))

(37)

are such that

|χ(t)| ≤ β̄(|χ(0)|, t) + γ̄(|f |[0,t]) (38)

holds for all t ≥ 0 and all constant initial functions ω(0) ∈
R2(n−p), xr(0) ∈ Rn−p, and (z(0), xr(0)) ∈ Rn. 2

3.2 Proof of Theorem 2

Let us consider the system (29) in closed-loop with (36).
First, let us observe that (31) ensures that for any solution
of this system, there is s > τ such that the solution is
defined over [0, s). Now, let

δ1(t) = B1(t)u?(t, xr(t), y(t)) + ρ1(t, z(t)) + f1(t),

δ2(t) = B2(t)u?(t, xr(t), y(t)) + ρ2(t, z(t)) + f2(t)
(39)

and
γ̇1(t) = H(t)γ1(t) + L(t)δ1(t, z(t)) + δ2(t)

+D(t)z(t),

γ̇2(t) = A2(t)γ2(t) + δ2(t).

(40)

Then arguing as we did to prove Theorem 1, we deduce
that for all t ∈ [τ, s),

xr(t) = κ(t)−1 [L(t− τ)z(t− τ)

−ΦH(t, t−τ)L(t)z(t) + ΦH(t, t−τ)γ1(t) −γ1(t−τ)]

−κ(t)−1[ΦA2(t, t− τ)γ2(t)− γ2(t− τ)].

(41)

Now, we observe that %i = γi − ωi for i = 1, 2 satisfy{
%̇1(t) = H(t)%1(t) + f3(t) and

%̇2(t) = A2(t)%2(t) + f2(t),
(42)

where f3(t) = L(t)f1(t) + f2(t). By applying variation of
parameters, we obtain

ΦH(t, t− τ)%1(t)− %1(t− τ)

=
∫ t
t−τMH(t− τ, `)f3(`)d` and

ΦA2
(t, t− τ)%2(t)− %2(t− τ)

=
∫ t
t−τMA2

(t− τ, `)f2(`)d`

(43)

for all t ∈ [τ, s). Thus,

ΦH(t, t− τ)γ1(t)− γ1(t− τ) = ΦH(t, t− τ)ω1(t)

−ω1(t− τ) +
∫ t
t−τMH(t− τ, `)f3(`)d`,

ΦA2
(t, t− τ)γ2(t)− γ2(t− τ) = ΦA2

(t, t− τ)ω2(t)

−ω2(t− τ) +
∫ t
t−τMA2

(t− τ, `)f2(`)d`.

(44)

Combining (41) and (44), we obtain

xr(t) = κ(t)−1 [L(t− τ)z(t− τ)

−ΦH(t, t− τ)L(t)z(t) + ΦH(t, t− τ)ω1(t)

−ω1(t− τ)]

−κ(t)−1[ΦA2
(t, t− τ)ω2(t)− ω2(t− τ)]

+κ(t)−1
∫ t
t−τMH(t− τ, `)f3(`)d`

−κ(t)−1
∫ t
t−τMA2

(t− τ, `)f2(`)d`.

(45)

From (37), it follows that

xr(t) = xr(t) + ς(t) (46)

with

ς(t) = κ(t)−1
∫ t
t−τMH(t− τ, `)[L(`)f1(`)+f2(`)]d`

−κ(t)−1
∫ t
t−τMA2(t− τ, `)f2(`)d`.

(47)

It follows that for all t ∈ [τ, s), the closed-loop system is

ż(t) = A1(t)xr(t) +B1(t)u?(t, xr(t)− ς(t), y(t))

+ρ1(t, z(t)) + f1(t)

ẋr(t) = A2(t)xr(t) +B2(t)u?(t, xr(t)− ς(t), y(t))

+ρ2(t, z(t)) + f2(t).

(48)

Now, from Assumption 3, it follows that

V̇ (t) ≤ −c1V (t, χ(t)) + γ(|(−ς(t), 0, f1(t), f2(t))|) (49)
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for all t ∈ [τ, s) and

V̇ (t) ≤ c2V (t, χ(t)) + γ(|f(t)|) (50)

for all t ∈ [0, τ ]. Since V is uniformly proper positive defi-
nite, we deduce that s = +∞ and for all t ∈ [0, τ ],

V (t, χ(t)) ≤ ec2τV (0, χ(0)) + ec2τ
∫ t

0
γ(|f(`)|)d`

≤ ec2τV (0, χ(0)) + ec2ττγ(|f |[0,t])
(51)

and for all t > τ ,

V (t, χ(t))≤ e−c1(t−τ)V (τ, χ(τ))

+
∫ t
τ
ec1(`−t)γ(|(−ς(`), 0, f1(`), f2(`))|)d`

≤ e−c1(t−τ)V (τ, χ(τ))

+
∫ t
τ
ec1(`−t)γ(2|ς(`)|)d`

+
∫ t
τ
ec1(`−t)γ(2|(f1(`), f2(`))|)d`

= e−c1(t−τ)V (τ, χ(τ))

+
∫ t
τ
ec1(`−t)γ(2|ς(`)|)d`

+
∫ t
τ
ec1(`−t)d`γ(2|f |[0,t]),

(52)

by the bound γ(a+ b) ≤ γ(2a)+γ(2b) for suitable a and b.

From the formula of ς in (47) and Lemma 1, we deduce that

|ς(t)| ≤ |κ−1|∞
(
eτ |H|∞

∫ t
t−τ [|L|∞|f1(`)|+ |f2(`)|]d`

+eτ |A2|∞
∫ t
t−τ |f2(`)|d`

)
≤ |κ−1|∞τ

[
eτ |H|∞ |L|∞ sup

s∈[t−τ,t]
|f1(s)|

+
(
eτ |H|∞ + eτ |A2|∞

)
sup

s∈[t−τ,t]
|f2(s)|

]
≤ b sup

s∈[t−τ,t]
|f(s)|,

(53)

where

b = |κ−1|∞
[
eτ |H|∞ |L|∞ + eτ |H|∞ + eτ |A2|∞

]
τ.

Then for all t > τ ,

V (t, χ(t)) ≤ e−c1(t−τ)V (τ, χ(τ))

+
∫ t
τ
ec1(`−t)γ

(
2b|f |[0,t]

)
d`

+
∫ t
τ
ec1(`−t)d`γ(2|f |[0,t])

≤ e−c1(t−τ)V (τ, χ(τ)) + 1
c1
γ
(
2b|f |[0,t]

)
+ 1
c1
γ(2|f |[0,t]).

(54)

This inequality and (51) yield

V (t, χ(t)) ≤ e−c1(t−τ) [ec2τV (0, χ(0))

+ec2ττγ(|f |[0,t])
]

+ 1
c1
γ
(
2b|f |[0,t]

)
+ 1
c1
γ(2|f |[0,t])

≤ e−c1t+(c1+c2)τV (0, χ(0)) + γ†(|f |[0,t])

(55)

for all t ≥ τ with

γ†(m) = ec2ττγ(m) +
1

c1
γ
(
2bm

)
+

1

c1
γ(2m). (56)

Moreover from the second inequality of (51), we deduce
that, for all t ∈ [0, τ ],

V (t, χ(t)) ≤ e−c1t+(c1+c2)τV (0, χ(0))

+ec2ττγ(|f |[0,t]).
(57)

It follows that

V (t, χ(t)) ≤ e−c1t+(c1+c2)τV (0, χ(0)) + γ†(|f |[0,t]) (58)

for all t ≥ 0. The properties of V ensure that there are two
functions Pi, i = 1, 2 of class K∞ such that

P1(|χ|) ≤ V (t, χ) ≤ P2(|χ|) (59)

for all t ∈ R and χ ∈ Rn. These inequalities and (58) yield

|χ(t)| ≤ P−1
1

(
e−c1t+(c1+c2)τP2(|χ(0)|)+γ†(|f |[0,t])

)
≤ P−1

1

(
2e−c1t+(c1+c2)τP2(|χ(0)|)

)
+P−1

1

(
2γ†(|f |[0,t])

) (60)

for all t ≥ 0. Since the function γ† is of class K∞, we can
conclude.

4 Application toNonholonomic System inChained
Form

4.1 Tracking Problem

We illustrate Theorem 2 using this variant of a system from
(Malisoff and Mazenc, 2009, p. 143):

ξ̇4 = ξ3v1, ξ̇3 = ξ2v1, ξ̇2 = v2, ξ̇1 = v1 (61)

with (ξ1, ξ2, ξ3, ξ4) valued in R4 and the input (v1, v2) val-
ued in R2, which is a nonholonomic system in chained form,
and where we will omit time arguments t of functions to
make the notation more concise. We assume that ξ4, ξ3 and
ξ1 are measured, but that ξ2 is not measured. We design
a dynamic output feedback making (61) track the trajec-
tory

(
ξ1r(t), ξ2r(t), ξ3r(t), ξ4r(t)

)
=
(
t+ 1

2 sin(t), 0, 0, 0
)
.

We use the change of variables and feedback and x1 =
ξ1−ξ1r(t) and v1(t, x1) = −x1+1+ 1

2 cos(t). This produces
the x1 subsystem ẋ1 = −x1 and so prompts us to solve the
problem of globally asymptotically stabilizing the tracking
dynamics

ξ̇4 =
(
1 + 1

2 cos(t)
)
ξ3, ξ̇3 =

(
1 + 1

2 cos(t)
)
ξ2,

ξ̇2 = v2

(62)

to 0, by replacing x1 by 0 in the (ξ2, ξ3, ξ4, x1) dynamics.
In terms of the notation of Section 3, the system (61) can
be written as 

ż1(t) =
(
1 + 1

2 cos(t)
)
z2(t)

ż2(t) =
(
1 + 1

2 cos(t)
)
xr(t)

ẋr(t) = u(t),

(63)
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which has the form (28) with the choices

A1(t) =

(
0

1 + 1
2 cos(t)

)
, (64)

ρ1(t, z) =

( (
1 + 1

2 cos(t)
)
z2

0

)
(65)

A2(t) = 0, B1(t) = 0, B2(t) = 1, f1 = 0, f2 = 0, and
ρ2(t, z) = 0. Let us choose L(t) = [0 2]. This givesH(t) =
A2(t) + L(t)A1(t) = 2 + cos(t) and the functions

ΦH(t, s) = e−2(t−s)+sin(s)−sin(t) and ΦA2(t, s) = 1. (66)

Choosing τ = 2, we obtain

κ(t) = e−4+sin(t−2)−sin(t) − 1. (67)

The inequalities

|κ|∞ ≤ 1 and |1/κ|∞ ≤
e2

e2 − 1
(68)

hold. It follows that Assumption 1 is satisfied.

4.2 Applying Theorem 2 to (63)

One can easily prove that Assumption 3 is satisfied with

us(t, xr, z) =
(
1 + 1

2 cos(t)
)

(−z1 − 3z2 − 3xr) , (69)

by using the Hurwitzness of
0 1 0

0 0 1

−1 −3 −3

 (70)

to obtain a quadratic choice of V . Assumption 4 is satisfied
too. It follows that Theorem 2 applies to (63). This theo-
rem gives the following globally asymptotically stabilizing
output feedback for (63):

u?(t, xr(t), z(t)) =

{
us(t, xr(t), z(t)) when t ≥ 2

0 when t < 2
(71)

with

xr(t) = T (t)
e−4+sin(t−2)−sin(t)−1

+ ω2(t−2)−ω2(t)
e−4+sin(t−2)−sin(t)−1

,

ω̇1(t) = (2 + cos(t))ω1(t) + u?(t, xr(t), z(t))

−2(2 + cos(t))z2(t),

ω̇2(t) = u?(t, xr(t), z(t)) and

(72)

T (t) = 2z2(t− 2)− 2e−4+sin(t−2)−sin(t)z2(t)

+ e−4+sin(t−2)−sin(t)ω1(t)− ω1(t− 2).
(73)

4.3 Simulations

We performed simulations, which show the efficiency of our
approach. Fig. 1 shows the simulation of the system (63)
with u(t) = u?(t, xr(t), z(t)) as defined in (71). Since our
simulation shows good stabilization, it helps illustrate our
general theory, in the special case of the system (61).

Fig. 1. Simulation of the time varying system (63) with
u(t) = u?(t, xr(t), z(t)). Time unit on horizontal axis is seconds.

5 Conclusions

We designed reduced order finite time dynamic observers
and corresponding output feedbacks that are free of dis-
tributed control terms. We have exhibited families of sys-
tems for which the observer and control law can be easily
implemented. We hope to combine Theorem 2 with Mazenc
et al. (2018a) to cover delays and disturbances in the input
and intermittent output observations. Extensions pertain-
ing to disturbances on the measurements are expected too.

Appendix: Proof of Lemma 1

For all real values of s and t, the function z(t, s) =
MA+E(t, s)− eA(t−s) satisfies

∂
∂tz(t, s) = (A+ E(t))MA+E(t, s)−AeA(t−s)

= Az(t, s) + E(t)MA+E(t, s)
(74)

and z(s, s) = 0, so

z(t, s) =
∫ t
s
eA(t−r)E(r)MA+E(r, s)dr, (75)

by a variation of parameters. Also, for all real r and s,
the Peano-Baker formula for fundamental matrix solutions
(e.g., from (Sontag, 1998, p.489)) gives

|MA+E(r, s)| ≤ e|A+E|∞|r−s|, (76)

Set s = min{s, t} and s̄ = max{s, t}. We can combine (76)
with (75) to get

|z(t, s)|≤e(s̄−s)|A||E|∞(s̄− s)e|E|∞(s̄−s). (77)

The lemma follows by noting that s̄− s = |t− s|.
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