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bUniversité Gustave Eiffel, Inria, COSYS/SII, I4S, Campus de Beaulieu, 35042 Rennes, France

cStructural Vibration Solutions A/S, NOVI Science Park, 9220 Aalborg, Denmark

Abstract

The modes of linear time invariant mechanical systems can be estimated from output-only vibration measurements
under ambient excitation conditions with subspace-based system identification methods. In the presence of additional
unmeasured periodic excitation, for example due to rotating machinery, the measurements can be described by a
state-space model where the periodic input dynamics appear as a subsystem in addition to the structural system of
interest. While subspace identification is still consistent in this case, the periodic input may render the modal parameter
estimation difficult, and periodic modes often disturb the estimation of close structural modes. The aim of this work is
to develop a subspace identification method for the estimation of the structural parameters while rejecting the influence
of the periodic input. In the proposed approach, the periodic information is estimated from the data with a non-steady
state Kalman filter, and then removed from the original output signal by an orthogonal projection. Consequently, the
parameters of the periodic subsystem are rejected from the estimates, and it is shown that the modes of the structural
system are consistently estimated. Furthermore, standard data analysis procedures, like the stabilization diagram, are
easier to interpret. The proposed method is validated on Monte Carlo simulations and applied to both a laboratory
example and a full-scale structure in operation.

Keywords: Operational modal analysis, Ambient excitation, Periodic excitation, Non-steady state Kalman filter,
Subspace system identification

1. Introduction

The estimation of modal parameters from output-only vibration measurements is the fundamental task of Opera-
tional Modal Analysis (OMA). Therein, system identification methods are frequently used to estimate the eigenstruc-
ture of a linear system from the accelerations, displacements, velocities or strains recorded on the structure during
ambient excitation conditions [1]. Often, the ambient excitation is assumed to be white and stationary, which is some-
times violated, in particular in the presence of periodic movement of rotating machinery on a structure during its
operation. Then both ambient and unmeasured periodic forces act on the structure, and the outputs of the correspond-
ing system are described by both the structural system dynamics as well as the dynamics of the periodic excitation.
This might render OMA difficult in practice, since the identified eigenstructure then contains a mix of periodic and
structural modes [2]. Moreover, when structural and periodic modes are close, the correct identification of the struc-
tural parameters may become a problem [3]. The aim of this paper is to develop a subspace identification method for
the consistent estimation of the structural modal parameters while rejecting the influence of the unmeasured periodic
excitation.

Two classes of methods are commonly used for OMA under periodic excitation. In the first class, the periodic
subsignal is separated from the random response signal, and subsequently the modal parameters are estimated with
classical methods. For example, time-synchronous-averaging (TSA) is a method extracting periodic waveforms from
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signals by averaging their blocks synchronized in the angular domain. For OMA, this averaged signal is subtracted
from the raw measurements, which results in the removal of the periodic frequencies selected to synchronize the blocks
[4]. Angle matching is often achieved with tachometer measurements, which is not practical in real-life applications
and was attempted to be overcome in the context of TSA in [5]. A family of methods that does not require tachometer
measurements is based on the cepstrum, which is an inverse Fourier transform of the logarithm of spectrum. A number
of applications of cepstral lifters to harmonic removal can be found in [6, 7]. Although the cepstrum is capable to
filter the periodic frequency components out of the spectra of the output data, its empirical premise does not ensure
the consistency of the resulting modal parameter estimates. Another group of methods uses a parametric approach
to estimate periodic subsignals and removes them from the raw measurements, using for example the Gauss-Newton
algorithm [8], or parametric frequency modulation [9].

The second method class comprises techniques that are robust towards intricate input conditions. For example,
some methods relax the assumption of random white noise excitation to arbitrary signals, e.g., colored noise, or white
noise with periodic components [10, 11]. In [2, 10–13] the authors explore the use of a combination of transmissibility
functions under different loading conditions (location or amplitude) to estimate the eigenstructure of the system under
white noise excitation mixed with a periodic subsignal. However, the approach proposed therein imposes additional
constraints on the system inputs that are not present in classical system identification methods. For example, distinc-
tive excitation conditions are required whose number is known and smaller than the number of output locations [11],
which cannot always be ensured in OMA in practice.

A group of classical system identification methods that are well adapted for OMA are stochastic subspace-based
methods [14, 15]. They have been proved to enjoy non-stationary consistency [16], as well as practical aspects
like computational efficiency [17] and explicit variance expressions of the identified parameters [18–20] under the
white noise assumption. However, when both random and periodic inputs are present, the system output is not
strictly ergodic and the output covariances of the system depend on the initial conditions [21, 22]. Since the subspace
parameter estimates rely on the output covariances and ergodicity is not given, the consistency of subspace methods
is not evident in this setting. In [23] the authors prove consistency of both system and oscillatory parameters for
estimates from a covariance-based subspace identification method. This fact can be used to discard the periodic poles
of the system based on the consistent estimate of its eigenstructure, which was illustrated on a theoretical example in
[24].

The current paper builds upon this work with the aim to develop a robust subspace method in the context of
OMA for the identification of structural modes while rejecting the periodic contribution of the signals. The system
matrices of the underlying state space model are time-invariant, and the unmeasured periodic excitation is assumed to
be a superposition of sinusoids. The proposed approach operates in the data-driven output-only stochastic subspace
identification framework. The periodic excitation is modeled as a part of the system states, thus it can be optimally
estimated from the data with a non-steady state Kalman filter. A subspace algorithm is proposed, where the raw output
data are projected on the orthogonal complement of the estimated periodic sequence in order to remove the latter from
the raw data. This is particularly useful when the periodic modes are close to structural modes, or when they are
of high energy and then may mask the system response to the random part of the input. Subsequently, the periodic
excitation parameters are rejected from the resulting estimates of the system matrices in subspace identification based
on the projected signal, and the eigenstructure of the underlying structural system is properly identified.

This paper is organized as follows. The background and modeling of the considered problem is given in Section
2. The proposed method for the removal of the periodic subsignal and subsequent subspace identification is derived
in Section 3, including a proof of the consistency of the method. The method is validated on Monte Carlo simulations
in Section 4. An application to two experimental cases is reported in Section 5, namely to a plate in the laboratory
and to a full-scale ship in operation.

2. Problem statement

In this section, the vibration model is recalled, and the impact of the periodic excitation on the models and identi-
fied parameters is stated. The latter is illustrated by Monte Carlo simulations of a mass-spring chain system.
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2.1. Stochastic system models and parameters

Assume that the vibration behavior of a viscously damped, linear time-invariant (LTI) structural system with m
degrees of freedom is described by the differential equation

Mq̈(t) + Cq̇(t) +Kq(t) = f(t) (1)

where t denotes continuous time, and M, C, K ∈ Rm×m denote mass, damping and stiffness matrices, respectively.
Vectors q(t) ∈ Rm and f(t) ∈ Rm contain the continuous-time displacements and the unmeasured external forces,
respectively. Let system (1) be observed by sensors measuring, e.g., accelerations, velocities or displacements, at r
degrees of freedom (DOF) of the structure, collected in the vector

y(t) = Caq̈(t) + Cvq̇(t) + Cdq(t) + ṽ(t) (2)

where y(t) ∈ Rr is the output vector, ṽ(t) ∈ Rr denotes the sensor noise, and matrices Ca, Cv, Cd ∈ Rr×m select the
respective type of the output at the measurement DOFs.

When defining the states x(t) = [q(t)T q̇(t)T ]T ∈ R2m, the structural system model (1) with output equation (2)
yields the continuous-time state space model

ẋ(t) = Asys
c x(t) + w(t), (3)

y(t) = Csysx(t) + v(t), (4)

where the state matrix Asys
c ∈ R2m×2m, observation matrix Csys ∈ Rr×2m, process noise w(t) ∈ R2m and output noise

v(t) ∈ Rr are

Asys
c =

[
0 I

−M−1K −M−1C

]
, Csys =

[
Cd −CaM

−1K Cv −CaM
−1C

]
, w(t) =

[
0
M−1

]
f(t),

and v(t) = CaM
−1f(t) + ṽ(t), where the model order is n = 2m. When sampled at discrete time instants t = kτ, where

τ is the time step and k is an integer, the resulting discrete-time state space model is given by [25]

xk+1 = Asysxk + wk, (5)
yk = Csysxk + vk, (6)

where xk = x(kτ) ∈ R2m are the discrete states and Asys = exp
(
Asys

c τ
)
∈ R2m×2m is the state transition matrix. Note

that the index (·)sys indicates here that the respective parameter refers in particular to the structural system, which is
distinguished from the periodic part denoted by (·)per later on in the paper. The discrete process noise wk and output
noise vk are assumed to be zero-mean white noise vectors with finite fourth order moments. For simplicity, assume in
addition that they are Gaussian. Their covariance matrix is given by

E
([

wk

vk

] [
wl vl

])
=

[
Q S
S T R

]
δkl ≥ 0.

Matrices Asys and Csys are of particular interest since they are used to identify the modal parameters of the structure.
They can be estimated from data {yk} with subspace identification methods, based on the column space of an adequate
projection of the data sequences [14, 20]. The i-th natural frequency f sys

i , damping ratio ζsys
i and mode shape ϕsys

i of
the underlying structural system are related to the eigenvalue λsys

i and eigenvector φsys
i of Asys by

f sys
i =

|λ
sys
ci |

2π
, ζ

sys
i =

−<(λsys
ci )

|λ
sys
ci |

, ϕ
sys
i = Csysφ

sys
i , (7)

where the i-th eigenvalue λsys
ci of the continuous-time system yields exp

(
λ

sys
ci τ

)
= λ

sys
i .
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2.2. Impact of mixed random and periodic excitation on the state-space model
In this section, the influence of unmeasured periodic excitation on the classical formulation of the state-space

model (5)–(6) and its parameters is developed and illustrated on a numerical example.
Assume that a deterministic periodic force u(t) acts on the system in addition to the random noise input w(t). For

simplicity of notation let this periodic force be one-dimensional, i.e., u(t) ∈ R, and let su ∈ Rm be an index vector
containing 0’s and 1’s, indicating at which degree(s) of freedom the periodic force acts on the structure. Denote the
resulting states as xsys

k , containing the displacements and velocities at the DOFs of the structure under both unknown
noise and periodic forces. Then, the continuous-time state space model (3)–(4) becomes

ẋsys(t) = Asys
c xsys(t) + bu(t) + w(t), (8)

y(t) = Csysxsys(t) + du(t) + v(t), (9)

where

b =

[
0
M−1

]
su ∈ R2m, d = CaM

−1su ∈ Rr.

Since the periodic force u(t) is unmeasured, it is the goal to eliminate it from the state space model and include
its effects in the system matrices and in the state vector. Assuming that the periodic force contains h frequency
components of the shape

u(t) =

h∑
i=1

ai sin(ωit + gi), (10)

where ai, gi, ωi ∈ R are (unknown) amplitude, shift and circular frequencies of the periodic input components, then
these components can become part of a combined state vector in order to eliminate the periodic input component in
model (8)–(9), as follows. Define

xper(t) =



a1 sin(ω1t + g1)
a1 cos(ω1t + g1)

...
ah sin(ωht + gh)
ah cos(ωht + gh)


∈ R2h, thus ẋper(t) =



ω1a1 cos(ω1t + g1)
−ω1a1 sin(ω1t + g1)

...
ωhah cos(ωht + gh)
−ωhah sin(ωht + gh)


.

The relationship between ẋper(t) and xper(t) follows as

ẋper(t) = Aper
c xper(t), where Aper

c = diag(H1, . . . ,Hh) and Hi =

[
0 ωi

−ωi 0

]
, (11)

and the relationship between u(t) and xper(t) is given by u(t) = shxper(t), where sh = [1 0 . . . 1 0] ∈ R1×2h. Thus,
defining Ab

c = bsh ∈ R2m×2h and Cper = dsh ∈ Rr×2h, the state space model (8)–(9) containing the unmeasured periodic
input u(t) can be equivalently rewritten as a combined state space model without the periodic input as[

ẋsys(t)
ẋper(t)

]
=

[
Asys

c Ab
c

0 Aper
c

] [
xsys(t)
xper(t)

]
+

[
w(t)

0

]
, (12)

y(t) =
[
Csys Cper

] [xsys(t)
xper(t)

]
+ v(t), (13)

where the model order is n = 2(m + h). Note that due to the upper right block structure of the state matrix, the
eigenvalues of the combined system are the combined sets of eigenvalues of Asys

c and of Aper
c . While the eigenvectors

of the combined state matrix regarding the structural part become [φsys
i

T 0]T , the resulting mode shapes are ϕsys
i , as in

system (8)–(9).
Sampling model (12)–(13) at discrete time instants t = kτ yields the combined discrete-time state-space model[

xsys
k+1

xper
k+1

]
=

[
Asys Ab

0 Aper

] [
xsys

k
xper

k

]
+

[
wk

0

]
(14)

yk =
[
Csys Cper

] [xsys
k

xper
k

]
+ vk, (15)

4



where the combined system matrix yields[
Asys Ab

0 Aper

]
= exp

([
Asys

c Ab
c

0 Aper
c

]
τ

)
.

Recall that the first 2m components of the process noise are related to the ambient excitation of the system, while the
deterministic periodic excitation is translated into the states xper

k as shown above.
The eigenvalues of Asys and Aper are denoted by λsys

i , λ
sys
i , i = 1, . . . ,m, and λper

i , λ
per
i , i = 1, . . . , h, respectively.

The eigenvalues of the structural system yield |λsys
i | < 1, while the eigenvalues of the periodic part of the system are

situated on the unitary circle, i.e., |λper
i | = 1. Hence both kinds of modes can be distinguished in the combined state

matrix. Moreover, the periodic excitation (10) corresponds to undamped modes of the periodic part of the continuous-
time system as can be seen in Equations (11) and (12), i.e.,<(λper

ci ) = 0.
These properties are illustrated in the context of a system subjected to mixed random and periodic excitation in

the following section.

2.3. Illustrative example

Consider a 6 DOF mass-spring chain system that, for any consistent set of units, is modeled with spring stiffness
k1 = k3 = k5 = 100 and k2 = k4 = k6 = 200, mass of each element mi = 1/20 and a proportional damping matrix such
that each mode has a damping ratio of ζsys

i = 3%. The system is subjected to white noise excitation in all DOFs and
sampled with a frequency of 50 Hz for 2000 seconds. An additional sinusoidal excitation with a frequency of 8.69
Hz, close to the third natural frequency of the system, is applied at all DOFs. This excitation is devised to mimic a
periodic input from, e.g., an engine rotating at a constant speed. The resulting acceleration responses are obtained at
DOFs 1, 2 and 5. Gaussian white noise with 5% of the standard deviation of the output is added to the response at
each channel.

The modal parameters of the combined system model including the periodic part are depicted in Table 1. The
resulting eigenvalues of the discrete-time system and the respective continuous-time system are shown in the complex
plane in Figure 1. It can be seen that the periodic and the system poles can indeed be distinguished in the complex
plane. This fact will be used to estimate the periodic states and consequently the periodic subsignal of the output with
the method proposed in this paper.

Table 1: Exact modal parameters of the chain system, and properties of the periodic excitation.

Natural frequency (Hz) Damping ratio (%)

f sys
1 f sys

2 f sys
3 f sys

4 f sys
5 f sys

6 f per
1 ζ

sys
1 ζ

sys
2 ζ

sys
3 ζ

sys
4 ζ

sys
5 ζ

sys
6 ζ

per
1

1.93 5.62 8.68 14.49 15.85 17.01 8.69 3 3 3 3 3 3 0

Figure 1: Discrete-time and continues-time poles of the system from (12) and (14) respectively.
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Figure 2: Two largest singular values of PSD matrix from output data of the system subjected to random (left) and mixed random and periodic
(right) excitation.

Figure 3: Estimates of natural frequency and damping ratio from one simulation. Model order 12 (left) and 14 (right).

Furthermore, the presence of periodic poles can be seen in the Power Spectral Density (PSD) of the data [26].
Figure 2 shows the two largest singular values of the PSD matrix constructed from the structural responses with and
without the periodic excitation. It can be observed that the fundamental frequency of the periodic excitation manifests
as a sharp spike in the output power spectra. However, since its frequency is close to a system pole, both poles cannot
be easily distinguished visually from the PSD plot.

The next example illustrates the estimation of the natural frequencies and damping ratios by a Monte Carlo exper-
iment with 1000 simulations. The output-only data driven subspace-based system identification with the unweighted
principal component (SSI-UPC) [14, 15] is deployed, using 30 time lags for the data Hankel matrix and estimating
the system matrices at model orders of 12 and 14. For both model orders, the respective sets of modes are tracked in
each simulation. The estimates of the natural frequency and damping ratio from one simulation are depicted in Figure
3. Based on all simulations, Figures 4 and 5 show the histograms of the natural frequencies and the damping ratios of
the mode closest to the periodic frequency for both model orders of 12 and 14.

Recall that model order 12 corresponds to the structural system, and model order 14 corresponds to the combined
system with the periodic mode. When the mode close to the periodic mode is estimated at model order 12, it can be
observed in the left parts of Figures 3–5 that its frequency and damping ratio estimates are in between the structural
mode (at 8.68 Hz and 3% damping) and the periodic mode (at 8.69 Hz and 0% damping). When estimating the mode
at model order 14, the mean values of the histogram of the natural frequency and the damping ratio in the right parts of
Figures 4 and 5 are close to the exact values. This infers that by augmenting the exact model order to account for the
periodic pole, both the system and periodic parameters are consistently estimated, which agrees with the state-space
model proposed in (14) and (15) in the previous section. This fact is used in the method proposed in the following
section.
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Figure 4: Histograms of the natural frequency of the third mode identified with model order 12 (left) and 14 (right).

Figure 5: Histograms of the damping ratio of the third mode identified with model order 12 (left) and 14 (right).

3. Subspace-based system identification under mixed periodic and random excitation

As shown in the previous section, the exact model order of the structural system can be increased by the number of
periodic poles that are present in the data. Using output-only stochastic subspace identification, consistent estimates
of both structural and periodic poles can be obtained [23], and the latter can be rejected from the modal estimates as
illustrated on the theoretical example in the previous section. However, the exact model order is unknown in practical
applications and the periodic excitation may coincide with a natural frequency of the structure, or it may be of high
energy that masks the system response to the random part of the input. In these cases, it is desirable to discard the
periodic excitation from the data and without additional knowledge of, e.g., tachometer measurements. In this section,
a scheme for the removal of the periodic subsignal is proposed, based on three steps:

1. Estimation of the periodic poles by subspace-based system identification from the raw output data,

2. Estimation of the periodic subsignal using the Kalman filter,

3. Projection of the row space of the raw output data onto the orthogonal complement of the row space of the
periodic subsignal estimate.

Based on the projected signal, any further signal processing can be carried out for the analysis of the structural
system response, where the nuisance from the periodic inputs is removed. In particular, subspace-based system
identification can be used to estimate only the structural system modes, which is detailed in the remainder of this
section.

In the following, it is assumed that the first step has already been carried out and that the periodic modes are
selected, including the modes corresponding to the harmonics, for example based on indicators developed in [27, 28].
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In practical applications, the selection of periodic poles can be done with simple indicators like kurtosis [27, 28],
entropy [29] or damping ratios [30].

3.1. Estimation of periodic subsignal
The periodic subsignal is estimated based on the Kalman filter. Note that the eigenvalues of the periodic subsystem

are situated on the unitary circle, thus the considered combined system (14)–(15) is not a classical stable system.
Moreover, the periodic part does not have process noise. Nevertheless, the Kalman filter can be applied and is stable,
as detailed in [23, 31].

For the estimation of the periodic subsignal the Kalman filter states are retrieved in the modal basis in order to
distinguish the states referring to the periodic poles. For this, the Kalman filter states are obtained first in an arbitrary
basis, namely in the basis corresponding to estimates of the system matrices {A,C,Q,R, S } of the combined system
corresponding to (14)–(15). These system matrices can be estimated from data using for example the SSI-UPC method
described in [14]. Then, the Kalman filter states are converted to the modal basis, and the modal states corresponding
to the periodic modes are selected to estimate the periodic subsignal. This procedure is detailed in the following.

With the Kalman filter, unbiased and minimum variance estimates x̂k+1 of the states xk+1 are obtained. In this
work, the non-steady state Kalman filter is used that accounts for the correlation between process and output noise,
based on [32]. The initial state estimate is assumed to be x̂0 = 0 ∈ Rn, and the initial error covariance matrix is
assumed as P0 = In ∈ Rn×n. Then, the recursive filter equations are

Kk = (APkCT + S )(R + CPkCT )−1, (16)
x̂k+1 = (A − KkC)x̂k + Kkyk, (17)

Pk+1 = APkAT + Q − Kk(APkCT + S )T , (18)

where Kk ∈ Rn×r is the gain matrix, which converges to the steady state gain K ∈ Rn×r for increasing k. Consequently,
defining the innovations ek = yk −Cx̂k ∈ Rr, the Kalman filter states and system outputs yield

x̂k+1 = Ax̂k + Kkek, (19)
yk = Cx̂k + ek, (20)

which is the state-space model in innovation form. The states are not unique since for any invertible matrix V ∈ Rn×n

the linear transformations
x̂V

k = V−1 x̂k, AV = V−1AV, CV = CV, KV
k = V−1Kk (21)

yield the state-space model

x̂V
k+1 = AV x̂V

k + KV
k ek,

yk = CV x̂V
k + ek

that is equivalent in terms of outputs, eigenvalues and mode shapes. Without loss of generality, the modal basis is
chosen for the transformation in order to distinguish the states that are corresponding to the periodic part of the system.
More precisely, matrix V is chosen based on the eigenvectors of A as follows. Recall that φsys

i and φ
sys
i , i = 1, . . . ,m

and φper
i and φ

per
i , i = 1, . . . , h, are the pairs of conjugated complex eigenvectors of A corresponding to the structural

system and to the periodic part, respectively. Analogously, λsys
i and λ

sys
i , i = 1, . . . ,m and λper

i and λ
per
i , i = 1, . . . , h,

are the respective eigenvalues. Applying the transformation defined by

V =
[
<(Ψ) =(Ψ)

]
, where Ψ =

[
φ

sys
1 . . . φ

sys
m φ

per
1 . . . φ

per
h

]
∈ C2(m+h)×(m+h), (22)

yields the state-space model with real-valued system matrices in the modal basis with

AV =

[
<(Λ) =(Λ)
−=(Λ) <(Λ)

]
, CV =

[
<(Φ) =(Φ)

]
,

where Λ = diag(λsys
1 , . . . , λ

sys
m , λ

per
1 , . . . , λ

per
h ) and Φ = CΨ = [ϕsys

1 . . . ϕ
sys
m ϕ

per
1 . . . ϕ

per
h ] contain one element of each

complex conjugated pair of eigenvalues and mode shapes, respectively.
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Note that it is impossible to obtain the system matrices and the Kalman filter states in the same state basis as in
(14)–(15) when estimated from data. However, the previous transformation of the system matrices into the modal
basis {AV ,CV ,KV

k } yields a canonical format when the system matrices are identified in an arbitrary basis. Moreover,
the states corresponding to the system and to the periodic parts are decoupled in the state vector x̂V

k . Subsequently,
the states corresponding to the periodic part can be selected from the respective entries of x̂V

k and the periodic output
subsignal related to these states estimated. For this, define a selection matrix S with

S =


0m×m

Ih

0m×m

Ih

 ,
where the identity matrices Ih refer to the entries of the state vector that are related to the periodic modes. Conse-
quently, the estimation of the output data contribution due to the periodic modes writes as

ŷper
k = CVS x̂V

k , (23)

which is the desired estimate of the periodic subsignal.
In practice only the estimates of CV , AV and KV

k are available, which are computed on data of finite length, e.g.,
after [14]. Consequently, an approximate Kalman state is used in (23) to estimate the periodic subsignal.

3.2. Removal of the periodic subsignal by orthogonal projection
The estimate of the periodic subsignal can be decoupled from the row space of output data by using an adequate

projection. Different projection methods exist and are often used in the context of subspace-based system identi-
fication, e.g., see [14, 20]. In the following, an orthogonal projection of the raw output data onto the orthogonal
complement of the estimated periodic subsignal is carried out. It is proved that the resulting signal indeed represents
only the structural system, and the periodic part of the combined state-space system is canceled out.

In these projections, Hankel matrices of the respective signals are used, which are defined as follows.

Definition 1. Let the samples k = i, . . . , j + N − 1 of a discrete signal ak ∈ Rb×1 be given with i ≤ j. Then the
corresponding block Hankel matrixAi| j is defined as

Ai| j =


ai ai+1 . . . ai+N−1

ai+1 ai+2 . . . ai+N
...

...
. . .

...
a j a j+1 . . . a j+N−1

 ∈ R( j−i+1)b×N .

Analogously to subspace methods, Hankel matrices are built from the signals with a ‘past’ and ‘future’ time
horizon. Let p be a parameter that defines the time lags for the past and future horizons. Based on the raw output data
yk (e.g., see (15) or (20)), the past and future data Hankel matrices are defined as

Y−raw = 1
√

N
Y0|p−1, Y

+
raw = 1

√
N
Yp|2p−1. (24)

Similarly, the past and future data Hankel matrices of the estimated periodic subsignal ŷper
k (see (23)) are defined as

Y−per = 1
√

N
Ŷ

per
0|p−1, Y

+
per = 1

√
N
Ŷ

per
p|2p−1. (25)

Furthermore, denote the past and future block-row matrix of Kalman filter states in the modal basis x̂V
k (see (21)) as

X− = 1
√

N
X̂V

0|0, X
+ = 1

√
N
X̂V

p|p.

The rows of X−,X+ ∈ R2(m+h)×N corresponding to the system part are denoted as X−sys,X
+
sys ∈ R2m×N , and corre-

sponding to the periodic part as X−per,X
+
per ∈ R2h×N , respectively. The past and future Hankel matrices based on the

innovations ek (see (19)–(20)) are defined as

E− = 1
√

N
E0|p−1, E

+ = 1
√

N
Ep|2p−1.

9



Finally, the extended observability matrix of the combined system writes in the modal basis as

Γ =


CV

CV AV

...
CV (AV )p−1

 ,
and let Γsys and Γper be its columns corresponding to the system and to the periodic part, respectively. With this
notation, the data Hankel matrices of the raw data and of the estimated periodic subsignal can be expressed in terms
of the states and the innovations by recursion of the innovation state-space model (19)–(20) as follows.

Corollary 2 (Matrix output-only innovation state-space equations). It holds

Y−raw = ΓX− +KE− + E−
K
, Y+

raw = ΓX+ +KE+ + E+
K
, (26)

Y−per = ΓperX
−
per, Y+

per = ΓperX
+
per, (27)

where KE− and KE+ are related to the innovation terms with K ∈ Rpr×pr being defined based on the steady state
Kalman gain K, and E−

K
and E+

K
are remainder terms that are related to the difference to the actual non-steady state

Kalman gain Kk, with

K =


Ir 0 0 . . . 0
CK Ir 0 . . . 0

CAK CK Ir . . . 0
. . . . . . . . . . . . . . .

CAp−2K CAp−3K CAp−4K . . . Ir

, Kl =


Ir 0 0 . . . 0

CKl Ir 0 . . . 0
CAKl CKl+1 Ir . . . 0
. . . . . . . . . . . . . . .

CAp−2Kl CAp−2Kl+1 CAp−3Kl+2 . . . Ir

,
where the l-th columns of E−

K
and E+

K
are, respectively,

[E−
K

]l = (Kl−1 − K)[E−]l, [E+
K

]l = (Kl−1+p − K)[E+]l. (28)

These remainder terms converge to zero as l grows since the non-steady state Kalman gain Kl converges to the steady
state gain K during the transient phase, which is necessary due to possible errors in the initial estimates x̂0 and P0.
Note that the transient aspect of the non-periodic part of these remainder terms could be neglected since the respective
part of the gain converges to its steady state limit fast, namely at exponential rate. However, since the periodic part
converges only at a linear rate [33], they cannot be neglected without further analysis.

Equations (26) and (27) are required for the analysis of projections of the data Hankel matrices. In particular, the
terms ΓX− and ΓX+ in the raw data in (26) contain both system and periodic parts, yielding ΓX− = ΓsysX

−
sys + ΓperX

−
per

and ΓX+ = ΓsysX
+
sys +ΓperX

+
per. In the proposed method the raw data matrix is projected on the orthogonal complement

of the data matrix of the estimated periodic subsignal in order to remove the periodic part from the raw data. To this
end, the projection matrices

Y−pro = Y−raw/Y
−
per
⊥ = Y−raw − Y

−
rawY

−
per

T (Y−perY
−
per

T )†Y−per, (29)

Y+
pro = Y+

raw/Y
+
per
⊥ = Y+

raw − Y
+
rawY

+
per

T (Y+
perY

+
per

T )†Y+
per (30)

are defined. With these projections, the periodic parts of the terms ΓX− and ΓX+ in the raw data in (26) are removed
asymptotically, as shown in the following theorem.

Theorem 3. The orthogonal projection of the raw data matrix onto the orthogonal complement of the data matrix of
the estimated periodic subsignal yields the decomposition

Y−pro = ΓsysX
−
sys +KE− + E−

K
+ o(1),

Y+
pro = ΓsysX

+
sys +KE+ + E+

K
+ o(1),

where o(1) is a matrix whose norm converges almost surely to zero when N → ∞.
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Proof: See Appendix C.

Hence, the orthogonal projections (29)–(30) provide a reconstructed output signal where the periodic system parts
are (asymptotically) removed. The samples ŷpro

k of this signal can be recovered from the block rows of Y−pro or Y+
pro.

Based on these signals, the subspace-based system identification can be used to estimate only the structural system
modes, as detailed in the following section.

3.3. Output-only subspace identification of the system part from Ypro

In SSI-UPC [14], a projection of the future output data matrix onto its past yields the factorization into the observ-
ability matrix of the system and a Kalman filter state sequence. From the observability matrix, the system matrices A
and C are obtained, and subsequently the modal parameters.

In the following, the modal parameters of the structural system are obtained from a projection of the data matrices
Y+

pro and Y−pro analogously to the UPC method, namely

H = Y+
pro/Y

−
pro. (31)

To investigate the properties of this projection with respect to the identification of the structural system, define the
matricesY+

sys = ΓsysX
+
sys +KE+ andY−sys = ΓsysX

−
sys +KE−. These matrices would contain the outputs of the structural

system without the contribution of the periodic excitation, see Appendix A. Note that they are not actually computed
on data, nor do they contain the contribution of the transient part of the non-steady Kalman filter since it decays with
N. With these definitions, the proposed subspace procedure in (31) yields the same projection as Y+

sys onto Y−sys, as
shown in the following theorem.

Theorem 4. The projection of the future projected data matrix Y+
pro onto its past Y−pro yields the factorization

H = Y+
pro/Y

−
pro = Y+

sys/Y
−
sys + o(1) = ΓsysX

+
sys/Y

−
sys + o(1),

from where an estimate of the observability matrix Γsys of the system part can be obtained.

Proof: See Appendix D.

Estimates of the system parameters from matrixH are shown to be consistent in the following corollary.

Corollary 5. The subspace method using H in Theorem 4 is consistent for the estimation of the system matrices
and subsequently of the modal parameters of the structural system, i.e., they converge to the true parameters of the
structural system for N → ∞.

Proof: See Appendix E.

The estimates of Asys and Csys and subsequently the estimates of modal parameters can be computed fromH in a
classical way after Appendix B and (7).

Remark 6. Projections are a common tool for system identification with subspace methods. In the proposed approach,
the orthogonal projections (29)–(30) were used to reconstruct an output signal, where the periodic parts are removed
(Theorem 3), and which can be used for consistent system identification (Theorem 4 and Corollary 5). A similar result
can be achieved by subtracting the estimated periodic subsignal from the raw data, instead of the proposed orthogonal
projection. Defining Y−diff = Y−raw − Y

−
per and Y+

diff = Y+
raw − Y

+
per yields a similar decomposition as in Theorem 3

thanks to properties (26)–(27), and analogous results as in Theorem 4 and Corollary 5 can be proven for consistent
identification usingH = Y+

diff/Y
−
diff .
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3.4. Numerically efficient implementation
The projections to obtain Y−pro, Y+

pro and H in (29), (30) and (31) may be costly in computational efforts. An
efficient numerical implementation that avoids the explicit computation of these projections is described in this section.
The LQ decomposition of the stacked Yper and Yraw writes

Y−per
Y+

per
Y−raw
Y+

raw

 =


L11 0 0 0
L21 L22 0 0
L31 L32 L33 0
L41 L42 L43 L44



QT

1
QT

2
QT

3
QT

4

 =

[
L12,12 0
L34,12 L34,34

] [
QT

12
QT

34

]
. (32)

The combined projected data matricesY−pro andY+
pro from (29)–(30) can also be (asymptotically) expressed as follows,

and plugging in (32) yields[
Y−pro
Y+

pro

]
=

[
Y−raw
Y+

raw

] / [Y−per
Y+

per

]⊥
= (L34,12QT

12 +L34,34QT
34)

(
I − Q12L

T
12,12

(
L12,12QT

12Q12L
T
12,12

)−1
L12,12QT

12

)
= (L34,12QT

12 +L34,34QT
34)

(
I − Q12QT

12

)
= L34,34QT

34 =

[
L33 0
L43 L44

] [
QT

3
QT

4

]
. (33)

The projection from (31) yields thus

H = Y+
pro/Y

−
pro = (L43Q

T
3 +L44Q

T
4 )Q3L

T
33(L33L

T
33)−1L33Q

T
3 = L43Q

T
3 .

Since the observability matrix Γsys is estimated from the column space of H (see Appendix B) and since Q3 is an
orthogonal matrix, L43 can directly be used to estimate Γsys, without explicitly performing the projection in (31). The
proposed scheme is summarized in Algorithm 1.

Remark 7. When the number of sensors is bigger than the number of periodic modes, i.e., r > 2h, the estimated
periodic subsignal from (23) contains r − 2h redundant responses and rank

(
Yper

)
= 2h(p + 1). Consequently L12,12

becomes rank deficient, while full rank is needed to obtain (33). In such a case, the periodic states selected directly
from the rows of x̂V

k can substitute the estimation of the periodic subsignal from (23) by

ŷper
k = x̂V,per

k . (34)

This leads to a reduction of the dimensions of Y−per and Y+
per without changing the projected matrices Y−pro and Y+

pro,
and consequently (33) holds.

Algorithm 1: Removal of periodic subsignal and identification of structural system

Input : raw data yk of the system under ambient and periodic excitation;
model order n

Output: reconstructed time series ŷpro
k without periodic subsignal;

modes of structural system
1 build data matrices Y−raw and Y+

raw from yk in (24) and compute Â, Ĉ at selected model order n with subspace
system identification (Appendix B);

2 compute Kalman filter states x̂k in (16)–(18);
3 map periodic poles of Â and compute similarity transform ÂV , ĈV , x̂V

k in (21) and (22);
4 compute periodic sequence ŷper

k in (23) if r > 2h, or in (34) if r ≤ 2h, and fill data matricesY−per andY+
per in (25);

5 compute LQ decomposition of the stacked Y−per, Y
+
per, Y

−
raw and Y+

raw in (32);
6 reconstructed time series ŷpro

k can be obtained from Y−pro = L33Q
T
3 (see (33));

7 computation of Âsys, Ĉsys from L43 (Appendix B) and modal parameters in (7)
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4. Numerical validation

In this section the proposed method is deployed first to remove the periodic mode information from the simulation
of the chain system described in Section 2.3 and second to identify its structural modal parameters.

First, the adequacy of the combined state-space model (14)–(15), containing both system and periodic parts, is
illustrated by comparing the exact system states to their computed Kalman filter counterparts. For this, output data of
the mechanical system are simulated under both white noise and periodic excitation as well as output noise, using the
discrete-time version of model (8)–(9). Then, the exact system and periodic states of model (14)–(15) are computed
and transformed into the real-valued modal basis. To compare them to their estimates, the system matrices of the
combined model are estimated at model order 14 from the simulated outputs, and the non-steady state Kalman filter
states are computed with (16)–(18). To transform them into the modal basis of the exact states, an appropriate scaling
of the estimated eigenvectors is needed. These scaling factors are obtained by relating the identified mode shapes to
the theoretical ones.

In Figure 6, the exact states and computed Kalman states corresponding to the third structural mode of the chain
system are shown, which is the mode closest to the periodic mode. In Figure 7, the exact states and computed Kalman
states of the periodic mode are shown. It can be observed that the Kalman states of the structural mode are close to
the exact states after about 5 samples, and after approximately 80 samples for the periodic mode. This suggests that a
good approximation of the system states is obtained after a transient phase, where the non-steady state Kalman gain
from (16) converges. Note that the non-steady state Kalman filter is able to estimate the states of the periodic mode
accurately while the initial condition of those was not exact. This would not be possible using the converged steady
state Kalman gain whose periodic part is zero.

Next, Algorithm 1 for the removal of the periodic part is applied. In Figure 8 the two highest PSD singular values

Figure 6: Exact states and computed Kalman states corresponding to the structural mode closest to the periodic mode.

Figure 7: Exact states and computed Kalman states corresponding to the periodic mode.
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Figure 8: Two largest singular values of PSD matrix from raw data yk (left) and from projected data ŷpro
k after removal of the periodic subsignal

(right).

Figure 9: Estimates of natural frequencies and damping ratios from raw data yk (left) and from projected data ŷpro
k after removal of the periodic

subsignal (right) for the complete Monte Carlo simulation.

are shown that are computed from the raw data yk (left) and from the time series ŷpro
k that is reconstructed from the

projected data matrix Y−pro after (29) (right). From Figure 8 it can be seen that the sharp peak corresponding to the
periodic frequency at 8.69 Hz in Figure 8 (left) is cancelled in Figure 8 (right), and the resultant PSD plot resembles
the reference case where no periodic inputs are present in Figure 2. Therefore it can be conjectured that the periodic
information is removed from the raw data.

This is also verified in a Monte Carlo simulations, where the modal parameters are estimated first from the raw
data and second from the projected data after removal of the periodic part with Algorithm 1. In Figure 9 the plots of the
estimated frequencies versus damping ratios are shown for all the simulations. The periodic mode visible in Figure 9
(left) is identified with a low damping ratio and can easily be distinguished from modes of the structural system for the
removal procedure. It can be observed that the periodic mode is indeed rejected in Figure 9 (right), and the estimates
of natural frequencies and damping ratios are centered around the exact values from the model. Furthermore, it can
be seen that the estimation uncertainties of the proposed method are similar as in the classical SSI-UPC, since the
scattering of the estimated modal parameters is of the same magnitude before and after the rejection of the periodic
subsignal.
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5. Application

In this section, two experimental cases are depicted to illustrate the performance of the proposed method. The
first example is a plate subjected to a mix of random and periodic excitation in laboratory conditions. The second
example is a full-scale test of a ship excited by random environmental load with interference from rotating machinery
on-board.

5.1. Plate with harmonics
The experimental setup and the geometry of the plate are shown in Figure 10. Periodic excitation is applied by a

shaker with a sinusoidal signal of 370 Hz continuously throughout the experiment. The measurements are sampled
with 4096 Hz over a 120 seconds interval. The same experiment is also carried out without the periodic excitation in
order to compare the modal parameter estimates with and without periodic excitation.

The frequency of the periodic signal is close to the first natural frequency of the plate, which is a particular
challenge for system identification of experimental data [34]. In this context, the stochastic subspace identification of
the raw data containing the responses to mixed random and periodic excitation is carried out with p = 20 and model
orders ranging from nmin = 10 to nmax = 40. In Figure 11 the resulting stabilization diagram of natural frequencies is
shown. It can be seen that the periodic mode at 370 Hz and the close structural mode at 341 Hz cannot be identified
below model order 20, since they are not separated. Other structural modes can already be identified at lower model
orders, which suggests that the first structural mode may be perturbed by the periodic mode.

The frequency and damping ratio alignment of the periodic mode are presented in Figure 12 (left). It can be
observed that its damping ratio is indeed small. The periodic mode estimate at model order 40 is then selected to
estimate the periodic subsignal, used in the orthogonal projection in (29)–(30). In Figure 12 (right) the two largest
PSD singular values are shown from the raw, the estimated periodic and the reconstructed system output data. It can

Figure 10: The experimental setup: plate with 16 acceleration channels, shaker, acquisition system (left). The plate model with 16 acceleration
channels in ARTeMIS Modal Pro 6.0 (right).

Figure 11: Stabilization diagram of the natural frequency estimates from the raw measurements of the plate containing both structural and periodic
modes.
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Figure 12: Left: Stable modal alignments of the natural frequency and damping ratio estimates of the periodic mode of the plate. Right: Two
largest singular values of PSD from raw measurements (top), and estimated periodic signal and projected data (bottom).

Figure 13: Stabilization diagram of the natural frequency estimates from measurements of the plate after the removal of the periodic subsignal.

be seen that the peaks of the PSD from the estimated periodic signal (blue line) match well with the periodic peaks of
the PSD from the raw measurements.

Finally, the system identification results with the proposed method are presented after the removal of the periodic
subsignal, corresponding to Algorithm 1. The corresponding stabilization diagram is shown in Figure 13. It can be
observed that the periodic mode is no longer part of the estimated modes. In addition, the first natural frequency at
341 Hz is better estimated, namely already for much lower model orders compared to Figure 11, after the periodic
part is removed.

A detailed comparison of the modal alignments for the natural frequencies and the damping ratios of the first
mode estimated before and after the removal of the periodic subsignal is shown in Figure 14, where the results are
also compared to the reference estimates from the plate experiment with only random and no periodic excitation. The
estimated modal parameters are close to their counterparts estimated from the random response. While the estimated
natural frequency and damping ratio are closer to their equivalent random response estimates after the removal of
the periodic subsignal in Figure 14 (right) than before (left), the change in frequency towards its reference value is
very small (0.05% of the value) and may not be significant. The change in damping ratio towards its reference value,
however, is more significant (14% of the reference value), indicating a less biased damping estimate of the first mode.
For both the frequency and damping ratio, the alignments of the first mode after the removal of the periodic subsignal
are more stable and start at a lower model order in Figure 14 (right) than before (left).

In Table 2 the alignment means of the first six modes are shown for the different experimental cases. With
respect to the reference estimates from the random response, the frequency estimates before and after the removal of
the periodic subsignal show very small differences that are of the same order for all modes. The differences in the
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Figure 14: Modal alignments of the natural frequency and damping ratio estimates for the first structural mode from measurements before (left)
and after (right) the removal of the periodic subsignal.

Table 2: Modal parameters of the plate without periodic excitation, and with periodic excitation estimated before and after removal of the periodic
subsignal.

Data type/Mode 1 2 3 4 5 6

random (reference) f [Hz] 341.04 472.12 688.34 837.03 933.62 1382.04
ζ [%] 0.563 0.494 0.757 0.453 0.569 0.971

mixed random and periodic f [Hz] 341.23 472.34 688.80 837.90 933.61 1381.62
ζ [%] 0.459 0.482 0.840 0.406 0.517 0.756

mixed random and periodic after removal of the
periodic subsignal in (29)

f [Hz] 341.06 472.49 688.91 837.79 932.81 1381.08
ζ [%] 0.537 0.466 0.721 0.392 0.503 0.841

damping estimates are naturally larger, and it can be seen that the estimates after the removal are either close to the
values before the removal, or closer to the reference values.

From these results it can be concluded that the removal of the periodic subsignal leads to more stable alignments
of the structural mode close to the periodic one, and the damping estimates of some of the modes (in particular of the
mode close to the periodic one) are closer to the reference values.

5.2. Ship in operation

The considered structure is a roll-on roll-off ship on a test trail [35] that is subjected to random wind and wave
loads interfered with periodic excitation from the propellers and the engine. Output accelerations are measured with
16 channels and are sampled with 128 Hz for 5400 seconds. The geometry of the ship with the measured degrees of
freedom is illustrated in Figure 15. Prior to the analysis the data are decimated to 8 Hz.

Figure 15: The ship at the Flensburg shipyard (left). The geometry of the ship with 16 acceleration channels in ARTeMIS Modal Pro 6.0 (right).
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Figure 16: Stabilization diagram of the natural frequency estimates from the raw measurements of the ship containing both structural and periodic
modes.

Figure 17: Left: Stable modal alignments of the natural frequency and damping ratio estimates of the periodic mode at 2.05 Hz. Right: Two largest
singular values of PSD from raw measurements (top), and estimated periodic signal and projected data (bottom).

Similar to the plate example from the previous section, the modal parameters are estimated from the data subjected
to the mixed random/periodic excitation first. For this purpose the UPC algorithm is used with p = 25 and model
orders ranging from nmin = 10 to nmax = 50. The resulting stabilization diagram of natural frequencies is shown in
Figure 16. It can be observed that the periodic frequency at 2.05 Hz is close to a structural mode of the ship whose
estimation is possibly perturbed by the periodic mode.

A zoom on the modal alignment of the periodic mode is presented in Figure 17 (left). It can be observed that the
damping ratio estimates of the periodic mode are low, which distinguishes it from the structural modes. Subsequently,
the periodic mode at the model order 50 is selected for the removal of the periodic subsignal with (29). In Figure
17 (right) the two largest PSD singular values are shown of the raw, the estimated periodic and the reconstructed
structural system output data. It can be observed that the peak of the PSD from the estimated periodic subsignal
coincides well with the peak of the periodic mode from the raw measurements. Moreover the reconstructed output
data contain no high energy frequency content at 2.05 Hz, suggesting that the periodic mode information is removed.

Subsequently, results from the system identification with the proposed method are presented in Figure 18 after the
removal of the periodic subsignal. They clearly illustrate that the periodic mode at 2.05 Hz is successfully removed
from the data. A detailed comparison of the modal alignments of the close structural mode estimated from the
measurements before and after the removal of the periodic subsignal is shown in Figure 19. Deviation of both natural
frequencies and damping ratio estimates from the mean values of their modal alignments is lower when the periodic
information is removed, suggesting that the proposed approach is beneficial in a practical modal analysis application.
Moreover, the structural mode is already identified at lower model orders after the removal.
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Figure 18: Stabilization diagram of the natural frequency estimates from measurements of the ship after the removal of the periodic subsignal.

Figure 19: Modal alignments of the natural frequency and damping ratio estimates for the second structural mode (close to the periodic mode) from
measurements before (left) and after (right) the removal of the periodic subsignal.

6. Conclusion

In this paper, a subspace framework has been derived for the estimation of the structural modes of a mechanical
system under both ambient and periodic excitation. This approach consists of three steps, starting with a classical
output-only SSI that provides initial estimates of the system matrices. These matrices are used in the second step to
compute a sequence of non-steady Kalman states in the modal basis in order to estimate the periodic subsignal from
the periodic modes. In the final step, the raw output data is projected onto the orthogonal complement of the estimated
periodic signal, yielding a new subspace method for the identification of the structural modes while rejecting the
periodic modes from the data.

Besides the development of the algorithmic procedure, a few theoretical results have been proved. First, it has
been shown that the considered mechanical model under both ambient and periodic excitation is equivalent up to
a similarity transform to the stationary modeling proposed in [23], where the stochastic and periodic subsystems
are decoupled. This validates the first step of the developed method and yields stability properties of the Kalman
state estimates. Second, the rejection of the periodic information from the raw signal has been explicitly formulated.
Using the resulting signal for a UPC-like projection of its future time horizon onto its past, the factorization into the
observability matrix and Kalman states of the structural system – without any periodic parts – has been proved to hold
asymptotically. Consequently, consistency of the proposed SSI method has been shown.

Both the modeling and the removal of the periodic subsignal have been validated on simulations of a chain system,
and the consistency of the identification was illustrated on Monte Carlo simulations. Furthermore, the proposed
method was demonstrated on experimental data under both ambient and periodic excitation, namely on an aluminum
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plate excited by a shaker in the lab and on a ship in operation excited by the combination of environmental load and
the interference from the rotation of engine and propellers. In both cases the periodic frequency was close to a natural
frequency of the structure. The results illustrate that the periodic subsignal has been removed successfully, and that it
led to more consistent modal parameter estimates of the structural modes with modal alignments that stabilize from a
lower model order. Future work includes the uncertainty analysis of the algorithm.
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Appendix A. Theoretical innovation model and stability of Kalman filter

In the following it is shown that the considered combined state-space model (14)–(15) corresponds to the theoret-
ical innovation model [

zs
k+1

zd
k+1

]
=

[
As 0
0 Ad

] [
zs

k
zd

k

]
+

[
K
0

]
ek, (A.1)

yk =
[
Cs Cd

] [zs
k

zd
k

]
+ ek. (A.2)

This model was analyzed in [23], where observability of the pair (Cd, Ad) is required, as well as observability and
controllability of the stochastic subsystem. The theoretical innovation ek has finite fourth order moments. Under these
conditions, stability of the Kalman filter is given, and finite fourth order moments of the states can be assumed.

First it is shown that there exists an invertible matrix T , such that

T−1
[
Asys Ab

0 Aper

]
T =

[
Asys 0

0 Aper

]
, with T =

[
I T12
0 I

]
, T−1 =

[
I −T12
0 I

]
.

Matrix T12 ∈ R2m×2h (and thus matrix T ) is constructed by multiplying out the left expression, leading to the necessary
condition AsysT12−T12Aper+Ab = 0. This Sylvester equation has a unique solution since the eigenvalues of Asys (inside
the unitary circle) are distinct from the eigenvalues of Aper (on the unitary circle). The solution is given through
[(I2h ⊗ Asys) − (AperT ⊗ I2m)]vec(T12) = −vec(Ab), where ⊗ denotes the Kronecker product and vec(·) the column
stacking vectorization operator. Pre-multiplying (14) by T−1 leads to the transformed state-space model[

x̃sys
k+1

x̃per
k+1

]
=

[
Asys 0

0 Aper

] [
x̃sys

k
x̃per

k

]
+

[
wk

0

]
, (A.3)

yk =
[
Csys (CsysT12 + Cper)

] [x̃sys
k

x̃per
k

]
+ vk, (A.4)

with the transformed states [
x̃sys

k
x̃per

k

]
= T−1

[
xsys

k
xper

k

]
=

[
xsys

k − T12xper
k

xper
k

]
.

Note that the process noise term in (A.3) remains the same after the similarity transform. Finally, assuming that
the stochastic subsystem is observable and controllable by the noise, and assuming that the periodic subsystem is
observable, the theoretical innovation model corresponding to (A.3)–(A.4) is indeed given by (A.1)–(A.2). Thus,
following [23], the Kalman filter applied to data from the considered combined state-space model (14)–(15) is stable,
and the fourth moments of the Kalman filter states and innovations are bounded [31]. Due to the stability of the
Kalman filter, the same holds also when applying the non-steady state Kalman gain.

Note that regarding the states, (A.3) shows that there is a state space basis in which the periodic states xper
k (or

equivalently x̃per
k ) are decoupled from the structural states x̃sys

k , unlike the physical structural states xsys
k of the mechan-

ical model in (14)–(15). Due to the block diagonal structure of the state transition matrix in (A.3), this is also the case
for the modal basis.
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Appendix B. Subspace system identification

Assume the matrix Ĥ enjoys (asymptotically) the factorization property into H = ΓX where Γ ∈ R(p+1)r×n is
defined as

Γ =


C

CA
...

CAp

 ,
and X are the system states which are dependent on the chosen projection algorithm [14]. In practice, the estimate of
the observability matrix Γ is computed from the SVD ofH estimated from the measured data sequences

Ĥ =
[
U1 U2

] [D1 0
0 D2

] [
VT

1
VT

2

]
,

where an estimate of Γ is taken as Γ̂ = U1D1/2
1 . Matrices U1 and V1 are the left and right singular vectors corresponding

to first n non-zero singular values D1 and U2 with V2 are the left and right kernel of Ĥ where D2 −→ 0. The estimates
Â and Ĉ can be computed in a least-square sense from the shift invariance property of Γ̂.

Appendix C. Proof of Theorem 3

The first projection in Theorem 3 yields

Y−pro = Y−raw/Y
−
per
⊥

=
(
ΓsysX

−
sys + ΓperX

−
per +KE− + E−

K

)
/Y−per

⊥

= ΓsysX
−
sys/Y

−
per
⊥

+ ΓperX
−
per/ΓperX

−
per
⊥︸                 ︷︷                 ︸

=0

+KE−/Y−per
⊥

+ E−
K
/Y−per

⊥
, (C.1)

where the second term cancels out since an orthogonal projection yieldsA/A⊥ = 0 for any matrixA. The analysis of
the last two terms requires a deeper insight into the properties of the estimated innovations and Kalman filter states.
First, E−X−per

T
→ 0 is shown to simplify the third term, and second, E−

K
X−per

T
→ 0 is shown for the fourth term. For

this we suppose that yk and x̂k have uniformly bounded fourth order moments, which is justified in Appendix A.
Finally, the first term is simplified by showing X−sysX

−
per

T
→ 0.

1. Proof of E−X−per
T
→ 0

First a few mathematical notations: Consider the σ−algebra Fk generated by the observations y1, . . . , yk. The
collection of σ−algebra Fk is increasing, i.e., Fk ⊂ Fk+1. The innovation ek at time k is Fk measurable, whereas x̂k is
Fk−1 measurable. Since E(ek | Fk−1) = E(ek | Y1, . . . ,Yk−1) = 0, the innovations are uncorrelated with the past Kalman
states (and also with the past outputs) [14], i.e.,

E(ek x̂T
k− j) = 0, ∀ j ≥ 0, (C.2)

which holds since E(ek x̂T
k− j) = E(E(ek x̂T

k− j | Fk−1)) = E(E(ek | Fk−1)x̂T
k− j) = E(0.x̂T

k− j) = 0. Then, considering
supk E(‖ek‖

4 + ‖x̂k‖
4) < C < ∞ , by Theorem 2.8 in [36],

E−X−
T

=
1
N



e0 e1
... eN−1

e1 e2
... eN

...
...

...
...

ep−1 ep
... ep+N−2




x̂T

0
x̂T

1
...

x̂T
N−1

 =


1
N

∑
el x̂T

l
1
N

∑
el+1 x̂T

l
...

1
N

∑
el+p−1 x̂T

l

 −→ 0
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with probability 1, in particular E−X−per
T

= o(1). It follows E−Y−per
T

= E−X−per
T
Γper

T = o(1). Since (Y−perY
−
per

T )† =

(ΓT
per)
†(X−perX

−
per

T )−1(Γper)† is bounded due to the distinct periodic eigenvalues and the resulting independence of the
periodic state components, the third term in (C.1) yields

KE−/Y−per
⊥

= KE− − KE−Y−per
T (Y−perY

−
per

T )†Y−per = KE− + o(1)Y−per. (C.3)

Since the signal has bounded moments of order 4, it holds o(1)Y−per = o(1).

2. Proof of E−
K
X−per

T
→ 0

With (28) it holds

E−
K
X−per

T
=

1
N

N−1∑
l=0

(Kl − K)


el

el+1
...

el+p−1

 x̂per
l

T =
1
N

N−1∑
l=0

p−1∑
j=0

[Kl − K] jel+ j x̂
per
l

T

where [Kl−K] j indicates the ( j+1)-th block column of matrix (Kl−K). Recall that the Kalman gain is deterministic
and independent of the observations. It converges linearly in the periodic part [33] and exponentially for the other
components [37], thus ||Kl − K|| = O(1/l).

Denote ẽl, j = [Kl − K] jel+ j. Since the innovations have bounded fourth order moments, this is also the case for
ẽl, j. Analogously to part 1 of the proof, it follows with [36] that 1

N
∑

l ẽl, j x̂
per
l

T = o(1) for j ≥ 0, finally E−
K
X−per

T
= o(1)

and thus E−
K
Y−per

T
= E−

K
X−per

T
Γper

T = o(1). Thus the fourth term in (C.1) yields

E−
K
/Y−per

⊥
= E−

K
− E−

K
Y−per

T (Y−perY
−
per

T )†Y−per = E−
K

+ o(1)Y−per. (C.4)

3. Proof of X−sysX
−
per

T
→ 0

The columns of matrices X−sys and X−per are the components of the Kalman states x̂V
k corresponding to the system

and periodic parts, respectively, in the real-valued modal basis after similarity transform (21) with V defined in (22).
Denote these parts by x̂V,sys

k and x̂V,per
k , respectively.

For simplicity of notation we carry out the proof in the complex-valued modal basis defined by Vc =
[
Ψ Ψ

]
(cf. (22)), thus AVc = V−1

c AVc = diag(Λ,Λ). Then, the system and periodic parts of the states x̂Vc
k = V−1

c x̂k relate to
x̂V,sys

k and x̂V,per
k by

x̂V,sys
k = T−1

m x̂Vc,sys
k , x̂V,per

k = T−1
h x̂Vc,per

k , Ta =
1
2

[
Ia −iIa

Ia iIa

]
, (C.5)

where m and h are the number of system and periodic mode pairs (see Section 2.2). Denote the i-th component
of vector x̂Vc,sys

k by x̂Vc,sys
k,i , and the j-th component of vector x̂Vc,per

k by x̂Vc,per
k, j . In the following, it is shown that

1
N

∑
k x̂Vc,sys

k,i x̂Vc,per
k, j → 0 for any i, j, from where X−sysX

−
per

T
→ 0 follows with (C.5).

From the state equation it follows

1
N

N−1∑
k=0

x̂Vc,sys
k+1,i x̂Vc,per

k+1, j =
1
N

N−1∑
k=0

(λsys
i x̂Vc,sys

k,i + KVc,sys
k,i ek)(λper

j x̂Vc,per
k, j + KVc,per

k, j ek)

=
1
N

N−1∑
k=0

(λsys
i λ

per
j x̂Vc,sys

k,i x̂Vc,per
k, j + λ

sys
i x̂Vc,sys

k,i eT
k KVc,per

k, j
T

+ λ
per
j x̂Vc,per

k, j eT
k KVc,sys

k,i
T

+ KVc,sys
k,i ekeT

k KVc,per
k, j

T
)

where KVc,sys
k,i is the i-th row of the system part of the Kalman gain KVc

k , and KVc,per
k, j is the j-th row of its periodic part.

Then

(1 − λsys
i λ

per
j )

1
N

N−1∑
k=0

x̂Vc,sys
k,i x̂Vc,per

k, j +
1
N

x̂Vc,sys
0,i x̂Vc,per

0, j −
1
N

x̂Vc,sys
N,i x̂Vc,per

N, j

=
1
N

N−1∑
k=0

λ
sys
i x̂Vc,sys

k,i eT
k KVc,per

k, j
T

+
1
N

N−1∑
k=0

λ
per
j x̂Vc,per

k, j eT
k KVc,sys

k,i
T

+
1
N

N−1∑
k=0

KVc,sys
k,i ekeT

k KVc,per
k, j

T
. (C.6)
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The first term on the right hand side goes to zero since x̂sys
k and ek are independent. The second term goes to zero

in a similar manner. The third term is a mean of the independent process Lk = KVc,sys
k,i ekeT

k KVc,per
k, j

T
since ek is an

independent Gaussian process. Let νk = E(Lk) = KVc,sys
k,i QkKVc,per

k, j
T

, where Qk is the innovation covariance at k that
is bounded since the fourth moment of the innovation is bounded. Thus, it holds

∑
E(Lk − νk)2/k2 < ∞. Then

[38, Theorem 3.7] (or [39, Theorem 5.4.1]) can be applied, yielding 1
N

∑
Lk −

1
N

∑
νk = o(1), and since

∥∥∥ 1
N

∑
νk

∥∥∥ ≤
1
N

∑
‖KVc,sys

k,i ‖ ‖Qk‖ ‖K
Vc,per
k, j ‖ ≤ supk ‖Qk‖

O(1)
N

∑N−1
k=0 O(1/k) = o(1), the third term on the right hand side of (C.6) goes to

zero. The remaining terms on the left hand side yield 1
N x̂Vc,sys

0,i x̂Vc,per
0, j − 1

N x̂Vc,sys
N,i x̂Vc,per

N, j → 0 by the Chebyshev inequality
and Borel Cantelli Lemma, since the moments are bounded. Finally, X−sysX

−
per

T
= o(1) and

X−sys/Y
−
per
⊥

= X−sys + o(1)Y−per. (C.7)

4. End of the proof
Plugging (C.3), (C.4) and (C.7) into (C.1) yields

Y−pro = ΓsysX
−
sys +KE− + E−

K
+ o(1)Y−per. (C.8)

Analogously, the relation for Y+
pro = Y+

raw/Y
+
per
⊥ is obtained as

Y+
pro = ΓsysX

+
sys +KE+ + E+

K
+ o(1)Y+

per, (C.9)

To conclude the proof, since Y−perY
−
per

T and Y+
perY

+
per

T are bounded, the norm of the remainder term is o(1).

Appendix D. Proof of Theorem 4

Since Y−pro = Y−raw − Y
−
raw/Y

−
per, the projection in (31) yields

H = Y+
pro/Y

−
pro = Y+

pro

(
Y−raw − Y

−
raw/Y

−
per

)T (
Y−proY

−
pro

T
)†
Y−pro︸                ︷︷                ︸

=W1

=

Y+
proY

−
raw

T︸      ︷︷      ︸
=P1

−Y+
proY

−
per

T︸      ︷︷      ︸
=P2

(Y−perY
−
per

T )†Y−perY
−
raw

T︸                        ︷︷                        ︸
W2

W1 (D.1)

1. Preliminaries
The components ofY−raw are observations of the considered linear system. Thus, the moments ofY−raw derive from

the moments of the underlying state and innovations. Analogously to (C.2), it holds E(ekyT
k− j) = 0 ∀ j > 0, since

E(ekyT
k− j) = E(E(ek | Fk−1)yT

k− j) = 0 and it can be proved that E+Y−raw
T → 0 and E+

K
Y−raw

T → 0 similarly to Appendix
C.

2. Asymptotic formulations for P1 and P2

Plugging (C.9) into P1 and P2 yields

P1 = ΓsysX
+
sysY

−
raw

T
+KE+Y−raw

T
+ E+

K
Y−raw

T
+ o(1)Y+

perY
−
raw

T

P2 = ΓsysX
+
sysY

−
per

T
+KE+Y−per

T
+ E+

K
Y−per

T
+ o(1)Y+

perY
−
per

T

The matrix Y+
perY

−
per

T is bounded since it is filled by covariances of the signal Yper, which are bounded since the
signal has bounded moments of order 4. Thus o(1)Y+

perY
−
per

T
= o(1). The matrix Y+

perY
−
raw

T is bounded too, since a
Cauchy Schwartz inequality relates Y+

perY
−
raw

T to Y+
perY

+
per

T and Y−rawY
−
raw

T which are both covariance matrices and
thus bounded because the signalsYper andYraw have moments of order 4. Recall that E+Y−per

T
→ 0 and E+

K
Y−per

T
→ 0,

and that E+Y−raw
T
→ 0 and E+

K
Y−raw

T
→ 0. Then, P1 and P2 simplify to

P1 = ΓsysX
+
sysY

−
raw

T
+ o(1), P2 = ΓsysX

+
sysY

−
per

T
+ o(1).
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3. Asymptotic expression of the UPC projection

Subsequently the projection in (D.1) yields

H = Y+
pro/Y

−
pro = ΓsysX

+
sys

(
Y−raw

T
− Y−per

T
W2

)
W1 + o(1)W1 + o(1)W2W1

MatrixW2 is the product of bounded matrix (Y−perY
−
per

T )† (see Appendix C, part 1) and Y−perY
−
raw

T , which can also
be proved to be bounded similarly to Y+

perY
−
raw

T . Next we show that Y−proY
−
pro

T is of full rank. With (C.8) it follows

Y−proY
−
pro

T
= ΓsysX

−
sysX

−
sys

T
ΓT

sys +KE−E−
T
KT + E−

K
E−
K

T
+L +LT + (cross terms) × o(1) (D.2)

where L = ΓsysX
−
sysE

−T
KT + ΓsysX

−
sysE

−
K

T
+KE−E−

K

T . The term E−
K
E−
K

T in (D.2) is the diagonal covariance of E−
K

,
whose norm is decreasing as the gain converges, so this goes to zero. Thus, the third term of L also goes to zero by
Cauchy Schartz inequality. The first two terms of L are o(1) analogously to Appendix C. All the cross terms in (D.2)
are bounded, hence

Y−proY
−
pro

T
= ΓsysX

−
sysX

−
sys

T
ΓT

sys +KE−E−
T
KT + o(1).

The first matrix is positive semi-definite, and since E−E−T is positive definite and K is of full rank, the smallest

singular value of matrix Y−proY
−
pro

T is bounded from below for N large enough. Thus
(
Y−proY

−
pro

T
)†

is bounded and

H = ΓsysX
+
sys

(
Y−raw

T
− Y−per

T
W2

)
W1 + o(1)Y−pro. (D.3)

4. Relation of UPC projection to Y−sys and end of proof

Since Y−pro = Y−raw
T
− Y−per

T
W2, it follows from (D.3)

H = ΓsysX
+
sysY

−
pro

T
(
Y−proY

−
pro

T
)−1
Y−pro + o(1)Y−pro (D.4)

where Y−pro = Y−sys + E−
K

+ o(1)Y−per, and define Y−sys = ΓsysX
−
sys +KE−. Then

(
Y−proY

−
pro

T
)†

= (Y−sysY
−
sys

T
+ o(1))−1 =

(Y−sysY
−
sys

T )−1 + o(1) by the matrix inverse sensitivity, and the bounds proved previously. Finally,

X+
sysY

−
pro

T
= X+

sys(Y
−
sys + E−

K
+ o(1)Y−per)

T

= X+
sysY

−
sys

T
+ X+

sysE
−
K

T
+ X+

sysY
−
per

T o(1) = X+
sysY

−
sys

T
+ o(1)

and thus
X+

sysY
−
pro

T (Y−proY
−
pro

T )−1Y−pro = X+
sysY

−
sys

T (Y−sysY
−
sys

T )−1Y−sys + O(1)E−
K

+ o(1)Y−per

where E−
K
E−
K

T
= o(1). Then it follows with (D.4), since E−

K
Y−per

T
= o(1) with Appendix C, and other cross-terms are

bounded,

H = ΓsysX
+
sys/Y

−
sys + o(1) = Y+

sys/Y
−
sys + o(1), (D.5)

since E−Y−sys
T

= o(1), and the proposed method yields the same formulation as the SSI-UPC approach computed on
the so-called virtual structural system, which concludes the proof.

Appendix E. Proof of Corollary 5

The main challenge in the asymptotic study ofH – and thus the consistency of A and C that are estimated from its
column space – is the fact that the number of columns of H grows with the number of samples N. By evaluating the
asymptotic properties of the “square” matrix HHT , which has the same column space as H but whose dimensions
are finite and non-increasing, the consistency of A and C can be analyzed [16, 20].
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DefineH1 = ΓsysX
+
sys/Y

−
sys. Then it follows from (D.5)

HHT = (H1 + o(1))(H1 + o(1))T = H1H
T
1 + (H1 + o(1))o(1)T + o(1)HT

1

= H1H
T
1 + o(1),

since it can be proved that ‖H1‖ is bounded similarly to Appendix D. In consequence, it holds

HHT = ΓsysX
+
sys/Y

−
sys(ΓsysX

+
sys/Y

−
sys)

T + o(1).

This matrix satisfies Condition 1 of [16], and its consistency results from [16], Section 4.A, where the assumptions
of Theorem 1 in [16] have been verified. It follows that the estimates of (A,C) from HHT are consistent. Since the
estimates of (A,C) fromHHT andH coincide [20], the estimates of (A,C) fromH are consistent too. This finishes
the proof.
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