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Incompatibility boundaries for properties of
community partitions

Arnaud Browet, Julien Hendrickx, Alain Sarlette

Abstract—We prove the incompatibility of certain desirable
properties of community partition quality functions. Our results
generalize the impossibility result of [Kleinberg 2003] by consid-
ering sets of weaker properties. In particular, we use an alterna-
tive notion to solve the central issue of the consistency property.
(The latter means that modifying the graph in a way consistent
with a partition should not have counterintuitive effects). Our
results clearly show that community partition methods should
not be expected to perfectly satisfy all ideally desired properties.
We then proceed to show that this incompatibility no longer holds
when slightly relaxed versions of the properties are considered,
and we provide examples of simple quality functions satisfying
these relaxed properties. An experimental study of these quality
functions shows a behavior comparable to established methods
in some situations, but more debatable results in others. This
suggests that defining a notion of good partition in communities
probably requires imposing additional properties.

I. INTRODUCTION

In the rich literature about defining communities in graphs,
two major and complementary approaches are the proposal of
specific criteria defining communities and the identification of
axioms that should reasonably be satisfied by such criteria,
in particular by value functions that the optimal partition
should maximize. When confronting the two approaches, the
popular clustering criteria all fail to satisfy at least one of
the reasonable axioms. For instance, the popular modularity
criterion [14] is neither local (i.e. the optimal partitioning
of a subset of nodes does depend on the whole graph) nor
consistently improving (i.e. an optimal community partitioning
for a given graph can lose its optimality when strengthening
intra-community links and weakening inter-community links).

In fact Kleinberg [10] has proved that it is impossible for a
function F' associating a community partition to any weighted
graph' to simultaneously satisfy the three following properties,
although getting two of them separately is easy:

« Richness: given any partition of the nodes 3, there exists
at least one graph for which F returns ¥ as the unique?
associated partition;

o Scale-invariance: given any graph, multiplying all the
edge weights by a constant does not change the partition
returned by F’;
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'This was in a framework where nodes are separated by a “distance”,
as opposed to nodes being connected by edges with a certain weight as
considered here. The two frameworks are equivalent provided all weights are
positive and self-loops can be discarded; it suffices then to take the inverse
of the weights as distances.

2Uniqueness is necessary to avoid trivial multi-valued functions associating
for example all partitions to all graphs.

« Consistency: if F' returns a partition X for a graph G, then
it also returns X for any graph G’ obtained by increasing
the weight of intra-communities edges and decreasing the
weight of inter-communities edges with respect to 2.

Despite its natural formulation, this last property is actually
debatable [19], and we will see in Section II that it has
counterintuitive consequences.

Other recent approaches have run into similar barriers,
e.g. the hierarchy-based axioms in [5] would not admit scale
invariance; the various subgraph-based alternatives in [15]
and [9] do not return a single partition per graph, and in fact
for any graph they return among others the single community
encompassing the entire node set, hence failing richness.
More examples will be covered later.

In this paper, we begin by presenting two generalizations
of the result of [10] in a more flexible framework where
a value function evaluates the quality of each community
partition for a graph (as opposed to considering a function
that directly associates a community partition to each graph).
The “best” partition associated to a graph can then be obtained
by optimizing this value function over all possible partitions,
but “sufficiently good” partitions can also be computed when
an exact solution to this generally hard optimization problem
is out of reach. This approach is followed in [19], and is con-
sistent with many well-known community partition methods,
as those listed in Table 1 in the supplementary material.

Our first main result (Section III) shows the impossibility
of satisfying richness, scale-invariance and (together with a
continuity assumption about the value function) a weaker
form of consistency than in [10], which we argue appears
more natural. Our second impossibility result removes the
consistency requirement altogether and replaces it by a locality
axiom, forbidding modifications in one part of a graph to affect
the (relative) quality of communities in a disjoint part.

We further add some insight to these impossibility results.
The problem can be pinpointed to the request, for richness,
to make both the unique “all-encompassing” partition optimal
for some graph, and the “all-singletons” partition optimal for
some other graph. If we drop the all-singletons partition from
the richness requirement, then value functions satisfying all the
axioms can be constructed, as we show by providing actual
examples (Section IV). It turns out that in previous papers
which try to circumvent Kleinberg’s impossibility result, this
distinction is made implicitly. For instance in [1], the authors
propose to circumvent Kleinberg’s impossibility by imposing
similar axioms on a value function for partitions instead of
directly on the “clustering function” F'. Our variant of the



impossibility theorem precisely shows that this does not re-
solve the impossibility. However, the value function proposed
in [1] is undefined for the “all-singletons” partition, and we
identify that this is the key relaxation. In [2], the authors
discuss and compare alternatives by incidentally restricting
themselves to k-clustering, and [20] considers the special case
of bi-partitions. In the light of our result, fixing & is just a way
to satisfy the sufficient relaxation, i.e. excluding either the all-
singletons or the all-encompassing partition (and many others).
In all those cases, this simple implicit relaxation of excluding
the all-singleton partition is in fact sufficient and the key step
towards satisfying Kleinberg’s set of axioms. In this sense,
the present paper establishes a clear and possibly relevant
way to circumvent the impossibility. Another point is that
Kleinberg’s impossibility refers to graphs without self-loops.
Some previous investigations, like [19], let self-loops play an
instrumental role. This gives more options for constructing
optimal graphs towards richness. We can in fact state that our
example value functions, proposed in Section IV, satisfy all
the axioms of Kleinberg if we allow self-loops.

We stress that this paper implies no value judgment about
clustering criteria which fail to satisfy some of the proposed
axioms (including the assumption about no self-loops). To the
contrary, the impossibility results clarify that it is hopeless
to look for value function-based criteria satisfying all the
axioms. It is hence unavoidable to select a subset of axioms,
and one reasonable selection criterion is to get the most
useful results — why not, to exclude some partitions as a
priori irrelevant, e.g. partitions containing almost only isolated
nodes. Along this line, we analyze, in Section V, the partitions
obtained using one of our proposed value functions which
satisfy all the axioms except strict richness for partitions
involving singletons. Although these value functions turn
out to have strong similarities with the sum of community
strengths and especially with the modular density, introduced
respectively in [13], [12], they satisfy stronger axiomatic
properties. Moreover, we allow some additional flexibility in
the way of normalizing the contribution of each community.
The conclusion of our experimental investigation is that only
particular tuning of our value function parameters leads to
results that are compatible with expectations on benchmark
problems. Hence, satisfying the “standard” axioms considered
here is not a guarantee for more relevant results.

Towards the future, our results hence not only clarify that
the set of historically proposed axioms cannot be kept in
its most general form; they also highlight the need to add
compatible axioms that would isolate a most useful set of
value functions, since our own examples satisfy a minimally
relaxed set of axioms, yet they still leave a design freedom
among which far from all choices behave as intuitively desired.

II. PROPERTIES OF QUALITY FUNCTIONS

As mentioned in the introduction, there are different ways
of specifying what a good partition in communities is, see e.g.
[71, [17] . One can for example directly specify the properties
that the (best) partition should have, or the algorithm to obtain

it, as in the framework of [14]. We follow here the popular and
more flexible option of defining a quality measure of a given
partition for any given weighted graph. The best partition into
communities is then the one maximizing the quality function
[19]. This optimization problem is often computationally chal-
lenging [3], but the use of a quality function defined for all
partitions allows using heuristic methods to compute relatively
good partitions.

More formally, we consider weighted symmetric graphs
G = (V,W) without self-loops, where V' = {1,..., N} is the
set of nodes, N the number of nodes , and W the set of weights
Wi = Wj; > 0 (with W;; = 0). When W;; > 0, we say that
i and j are connected or that (4,j) = (4,4) is an edge, and it
will sometimes be convenient to refer to the set F/ of edges,
which is entirely determined by W. A partition ¢ of V into
communities corresponds to an assignment of each node ¢ € V'
to a community label o; € {1,...,n.}, where n. depends on
the partition o. The partition induces communities ¢, . .., cy,
defined by ¢, = {i|o; = k} and whose cardinality, i.e. the
number of nodes within the community, is denoted |cg|. We
sometimes use the Kronecker delta 6 (0;,0;) =1 if 0; = 0,
and O otherwise, to express whether ¢ and j belong to the
same community. We denote by si"t = 3" jev Wij 0(0i,05)
(resp. s¢%t = > jev Wij (1—=10(0i,0;))) the internal (resp.
external) strength of node i, i.e. the sum of edge weight
connecting node ¢ to nodes in the same (resp. in any other)
community, s; = >,y Wiy = 5§ + si"" the total strength
of node i, and m = ZiEV s; the sum of all total strengths,
which equals twice the total weight of the graph.

We then consider a value (or quality) function f(W, o),
that represents the quality of the community partition o on
the graph G. A classical example is Newman’s Modularity
[14], defined for a weighted undirected graph as Q(W, o) =
1 EV (Wi; — %22) 6 (04,0;), which measures the differ-

2
encej Ebetween the actual fraction of edges falling inside the
communities and the expected fraction of such edges under
the configuration null model with respect to the partition.

Following the approach of [19], we now list some proper-
ties that are considered desirable for value functions. These
properties are either taken or adapted from [19]. The first
property is relatively natural towards ensuring robustness of
conclusions with respect to the data, and towards providing
favorable settings for community-finding algorithms.

Property 1 (Continuity). For any community partition o, the
value function f is continuous with respect to the weights W.

Thus property 1 excludes quality functions that would
heavily rely on the presence or absence of an edge without
considering its weight. Strictly speaking, the impossibility
proofs later in the paper only require continuity “at potential
optimal W, o combinations”. As this is difficult to guarantee a
priori and questionable for practical purposes, we here require
full continuity.

The second property requires that only the ratio of weights
on different edges is relevant towards partition decisions.

Property 2 (Scale invariance). For any graph G = (V, W),



community partitions o,0’ of V and T > 0, the following
implication holds:

fW,0) > f(W,0") = f(W,0) > f(7W,0"), ()

or equivalently’ f(W,o) > f(W,o') = f(tW,o) >
fEW, o).

Scale-invariance induces that the communities should not
depend on an exogeneous threshold value for individual edge
weights. Value functions like the adaptive scale modular-
ity [19], or the constant Potts model [18] are therefore not
scale invariant.

The next property represents the fact that the community
partition of one part of the graph should not be affected by
the structure of other parts of the graph. It is notably not
satisfied by the modularity, which suffers from the well-known
resolution limit [8], [18], or in general when the clustering
is influenced by the average weight in the graph. Different
notions of locality can be proposed and we use the following.

Property 3 (k-locality). Given k € {0,1}, consider two
graphs Gy = (V,WW) and Gy = (V,W®)) whose restric-
tion to a subset of nodes Vyy and its neighbors at distance k is
identical, that is: Wi(jl) = Wi(f) foralli,j € Vyand, ifk =1,
for all i,j for which either © or j belongs to Vy. Consider
then a community partition o for which Co = {i|i € Vp}
is a community, and another community partition o’ exactly
identical to o except that the community Cy is split in two
communities Co1 and Coo. Then it holds

fWW,0) > fwW,o') & (W, 0) > F(WE, ")
@)

Zero-locality thus means that the decision of splitting a
community Cj into two communities only depends on the
weights of edges incident to nodes within Cy. The weaker
notion of 1-locality would allow this decision to also depend
on the edges incident to one node of Cjy and one node outside
Cy. A similar case appears in the definition of “locality” in
[19] for instance. In the definition of [19], however, G; and
G5 are allowed to have different node sets v v and
Cy might be split in an arbitrary way in both o and ¢’. One
could also request {Wi(jl) cjevy} = {Wi(f) 1 ev@y
for each ¢ € Cp, without requiring that the endpoints j of
each edge match in G; and Gs. Such locality notions would
impose condition (2) on a larger class of situations with
respect to our definition of Property 3. Thus our definition is a
weaker property, easier to satisfy, hence providing a stronger
impossibility result. When proposing cost functions that do
satisfy locality in Section IV, we will show that they actually
satisfy stronger notions of locality.

The next property excludes value functions for which some
“relevant” partitions would never be optimal, independently

3In both statements, if we have an equality on the left hand side then o
and o’ can be swapped, so we also need equality on the right hand side.
From this, the second statement readily implies the first. Furthermore, by
redefining W/ = 7W and 7/ = 1 /T, we can reverse the first statement so
equality on the right hand side also must imply equality on the left hand side,
i.e. inequality on the left can only be associated to inequality on the right.
Thus the first statement implies the second one.

of the graph. At this stage, we abstractly define the set X
of relevant partitions, which would typically depend on the
application.

Property 4 (Richness, with respect to a set of partitions X).
For any partition o € X of a set V of nodes, there exists
a graph G = (V,W), for which o is a strictly optimal
community partition: f(G,o) > f(G,0’) Vo' € ¥\ {o}.

Again, a stronger property could be stated by comparing to
all partitions ¢’ instead of only those in Y. This makes no
real difference for our results since our impossibility results
in Section III consider ¥ to be the set of all partitions, and
the proposed value functions in section IV would also satisfy
this stronger version of Property 4.

The properties introduced so far do not imply that nodes
inside a community should be more connected to each other
than to those outside of the community, which corresponds
to the general intuitive idea of community partition. In order
to formalize this idea, we introduce the notion of consistent
improvement as in [19]. Consider a graph G = (V, W) and
a community partition o. We say that G' = (V,W’) is a
consistent improvement of G with respect to o if Wi’j > Wi
for all 7,j for which o; = o;; and VVz’7 < Wy; for all 4, j
for which o; # ;. Compared to G, the graph G’ thus has
links that are stronger inside the communities defined by o
and weaker between these communities.

Even with this notion, it turns out to be non-trivial to
formalize the fact that the dependence of partitions on weights
should be consistent with our intuitive idea of communities.

A natural formulation would be that an optimal partition
should remain optimal for all consistent improvements of the
graph with respect to this partition. This “absolute consis-
tency” requirement is the one used in Kleinberg’s impossibility
result [10]. But this condition actually has counterintuitive
consequences, as illustrated on Figure 1. Consider indeed a
graph G with a clique of four nodes {1,2, 3,4} all mutually
connected by edges of similar weights. Intuitively, one would
want to consider this clique as a community in the optimal
partition o. Now any graph obtained by strongly increasing
the weights of the edges (1,2) and (3,4) is a consistent
improvement of G with respect to this partition. If these
weights are sufficiently increased however, we argue that
partitioning those four nodes into two communities {1, 2} and
{3,4} would be more natural. This would however not be
allowed by “absolute consistency” (see Fig.1 top), which re-
quires the community {1, 2, 3,4} to remain optimal under this
consistent improvement. The impossibility proof by Kleinberg
in fact relies precisely on this fact: if a partition belongs to
the richness set, then none of its sub-partitions can ever be
optimal.

There is however a natural improvement of this definition
when using value functions: a consistent improvement should
increase the value of a graph partition, but nothing forbids
that the quality of another graph partition, consistent with
the same improvement, increases even more and supplants
the initial partition. On the example of Figure 1, since the
graph modification proposed on the top right is a consistent
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Figure 1. Illustration of the difference between (top) “absolute” consistency
requirement [10] and (bottom) “relative” consistency requirement (Property
5). Symbol “>" denotes that the left partition is better than the right one.

improvement for both the partition using {1,2,3,4} and the
one using two separate communities {1,2} and {3,4}, this
would impose no condition on their ordering. Therefore, in
this paper, we only require that the ordering between partition
qualities is preserved when a graph modification makes a bad
partition less consistent and a good partition more consistent,
as illustrated on the bottom right of Figure 1. This weaker
requirement is similar to the relative monotonicity in [19] and
we hence call it “relative consistency”.

Property 5 (relative consistent improvement). Consider two
graphs G = (V,\W), G' = (V,W') and two partitions o,0’
of V. Suppose that

(i) F(W.0) > (W, 0",

(ii) G' is a consistent improvement of G with respect to o,

(iii) G is a consistent improvement of G' with respect to o’';
then f(W' o) > f(W', o).

In the following sections, we establish strict results about the
impossibility to define quality functions which satisfy all the
above properties. Table 1 in the supplementary material lists
how those properties are satisfied by some quality functions
proposed in the literature. Note that some proposals for
community partitioning involve more complex constructions
than optimizing a value function. A simple variation is e.g. in-
troducing constraints on admissible partitions in the spirit
of [15], which could be reformulated with value functions
violating continuity and restricting richness. Other examples
can be more difficult to (minimally) fit in the value function
framework, and for the sake of simplicity we choose to not
include them in the table.

Remark: To conclude this section, we would like to insist
on two points about the freedom allowed by the introduced
properties.

R1. All our properties (with the exception of continuity)
essentially state that the ordering of partitions according to
increasing values of f must be invariant under some graph
transformations, but say nothing about the actual values of
f when the graph changes. This does not preclude that

e.g. referring to property 3 (locality) the change in value
from f(W,o0) to f(W,o’) depends on weights outside Cj
and its neighbors, as long as this dependence does not affect
the ordering f(-,0) > f(-,0’). This ordering-based approach
allows more flexibility in the expression of the accepted value
functions. One could of course consider analog but stronger
properties about the values of f. In particular, one can verify
that the following properties are sufficient but not necessary
for satisfying their weaker order-based counterpart:

[value-scale invariance] For any W, o and 7 > 0, we have
f(*W,0) = a(1) f(W, o) for some monotonically increasing
function a(7) > 0.

[value-k-locality] Consider two graphs G; = (V, W)
and Gy = (V,W(?)) whose restrictions to a subset of nodes
are identical as in Property 3; and partitions o, ¢’ which are
identical except possibly on Cj and for both of which Cj is
a union of communities. Then f(W) o) — fF(WM) ¢/) =
f(W(2)7 U) - f(W(2)7 OJ)'

[value-consistent improvement] Let G = (V,W’) be a
consistent improvement of G = (V, W) with respect to a
community partition o, then f(W’, o) > f(W,0).

R2. We do not impose invariance under permutation of the
nodes as in [19]. This means that the value functions could
depend on the particular labels of the nodes, which does
allow using prior knowledge on the community partition.
For instance, to reinforce the value of having two particular
nodes 1,2 in the same community, we can define f,(W, o) =
J(W', o) where Wi, = pW;, for some p > 1 and
W ; = W, ; for all other 4, j. If f satisfies some of the above
properties, then the same properties are satisfied by f,(W, o).

In the sequel, our impossibility results in Section III allow
all this freedom, while the value functions which we introduce
as feasibility examples in Section IV do satisfy the stronger
value-based properties of R1 and are independent of node
labels. In this sense, the distinction of the “extra freedom”
in R1 and R2 allows no extra margin in the impossibility and
possibility results proposed in the present paper.

III. IMPOSSIBILITY RESULTS

We now provide two extensions to Kleinberg’s result [10]
about incompatible axioms for community partition based
on optimizing a cost function. Our first result replaces the
absolute notion of consistency used in [10] by our relative
one, Property 5 (together with the continuity assumption of
Property 1, related to the quality-function based framework
we use). Our second result shows that even when dropping the
axiom of consistent improvement, it is impossible to satisfy
all the other axioms if O-locality is required.

In Section IV, we will further identify richness as a central
culprit for these impossibilities. Indeed, we will provide
explicit value functions which show that the axioms can all
be satisfied if richness is required with respect to all except a
few particular partitions. Furthermore, we will see that these
value functions satisfy all the axioms, including full richness,
if the latter is allowed to exploit graphs with self-loops.
The impossibility result a la Kleinberg indeed applies to the



setting without self-loops.

The next lemma, stating that graphs for which a partition
is strictly optimal can always be assumed to have positive
weights W;; > 0 on all pairs of nodes, will be useful in
the sequel. The proof is available in Appendix A in the
supplementary material.

Lemma 1. Let f be a value function satisfying Property 1
(continuity with respect to W), and let G = (V,W) be a
graph for which a partition o is strictly optimal: f(W, o) >
f(W,c') for all ¢’ # o. Then there exists a 6 > 0 such that
o is also strictly optimal for any graph G = (V,W') with
\Wi; — Wiz <0 for all i, j.

In particular, there exists an open set of graphs G* =
(V, W) for which o is also strictly optimal and for which
WJ > 0 for all i # j.

Continuity is required only through this essential implica-
tion in the two main results presented in this Section.

A. Generalizing Kleinberg’s impossibility result

Theorem 1. There is no value function satisfying properties
1 (continuity), 2 (scale invariance), 4 (richness) with respect
to all partitions, and 5 (relative consistent improvement). This
holds true even if the value function is only required to be
defined for a specific number of nodes N > 1.

More particularly, we prove the impossibility if the richness
set X must contain both the partition in one community to
which all nodes belong, and the partition in N singleton
communities.

Proof. We consider any set V of N > 1 nodes and any
value function satisfying the four properties mentioned in the
statement of the result, and derive a contradiction.

Let 09 be a partition in one community to which all
nodes belong, and ¢° a partition in /V singleton communities.
Let then G9 = (V,W9) and G* = (V,W*) be graphs
for which the respective partitions o9 and ¢° are optimal;
these graphs exist from the richness Property 4. In particular
fWs,0%) > f(W3,09) and f(W9,09) > f(W9, 0%).
Moreover, we can assume W5, W > 0 for all i, thanks
to Property 1 (continuity) which implies Lemma 1. There
exists thus a p > 1 such that pW7 > Wigj for all ¢ # j.
By scale invariance, f(W?®,0%) > f(W?#, 09) implies then
that f(pW?*,0°) > f(pW?,09).

Since pW}; > Wigj for all ¢ # j, observe that pW?* is a
consistent improvement of W9 for o9, since it corresponds
to increasing the weights of edges which are all trivially
within the unique community of ¢9. Similarly, WY is a
consistent improvement of pW?* for the partition o° into
N singleton communities, as it corresponds to decreasing
the weights of edges between these communities. It follows
then from f(pW?*,0°) > f(pW?*,09) and Property 5 that
f(W9, 0%) > f(W9,09), in contradiction with the optimality
of 09 for W9 ie. f(W9,09) > f(W9,0%). O

Note that Theorem 1 does not mention any locality re-
quirement. Before trying to find a value function satisfying
locality, we must anyways first relax some of the other axioms.
Possibilities in this direction are outlined in Section IV. Yet
before this we present an impossibility result with another set
of properties.

B. Impossibility due to locality instead of consistent improve-
ment

In the light of the impossibility result of the previous
section, it is relevant to relax some assumptions or replace
them by weaker or alternative versions. One candidate property
could be the consistent improvement. We have indeed seen that
absolute consistency can have problematic consequences, and
it could be that our version of relative consistency is still too
restrictive. Besides, it is not satisfied by some famous com-
munity partition methods such as the modularity maximization
(see Table 1 in the supplementary material).

This section however highlights a new impossibility, inde-
pendent of any requirement related to consistent improvement,
and that would therefore need to be taken into account for any
property replacing consistent improvement. We remark that as
consistent improvement is the only property of Section II that
imposes the partition to correspond to our intuitive notion of
communities, this impossibility result is actually relevant for
any arbitrary notion of value-based partition.

Theorem 2. There is no value function satisfying properties
1 (continuity), 3 for k = 0 (0-locality), 2 (scale invariance)
and 4 (richness) with respect to all partitions. This holds true
even if the value function is only required to be defined for a
specific number of nodes N > 1.

More particularly, we prove the impossibility if the richness
set ¥ must contain a partition where two nodes form one
community and a partition where these same two nodes form
two singleton communities.

Proof. We will again show that the properties mentioned in
the statement of the theorem imply a contradiction, for any
set V of N > 1 nodes.

Consider two partitions 0%, ¢ that are identical except
that nodes 1 and 2 form one community in ¢® and form
two separate singleton communities in ¢®. By the richness
property, there exist two graphs G* = (V,W?) and G® =
(V,W?) such that o is the unique optimal partition for G°
and o the unique optimal partition for G®. In particular,
fWe g% > f(We, 0% and f(W° %) > fF(W?, 09).

It follows from the continuity property and thus Lemma 1
that the weights W, and W), of the edge connecting 1 and
2 in G* and G’ respectively can both be assumed positive,
so that p = Wy/W{, > 0 is well defined. By the scale-
invariance property, f(W¢%,0%) > f(W% o°) implies then
F(We, o) > f(pWe,a®).

By definition of p, the restriction to {1,2} of the graphs
defined by pWe and W are identical. Besides, remember
that o® is obtained from o by only splitting the community



{1,2} in two singleton communities. Then because of the 0-
locality property, the inequality f(pW?, o) > f(pWe, o)
implies f(W?° 0%) > f(W" %), in contradiction with the
strict optimality of o® for G®(V, W?). O

IV. NEW VALUE FUNCTIONS

We have seen that none of the main value functions
available in the literature satisfy all the desirable properties of
Section II, and that it is actually impossible to simultaneously
satisfy their strict versions. We now show that slightly weaker
versions of these properties are not mutually incompatible,
by providing examples of value functions satisfying them. At
this point we do not claim that these value functions lead
to practically relevant community partitions; we only design
them to show the possibility of simultaneously satisfying
the properties of Section II, when richness excludes a few
specific partition types.

We first note that, when trying to follow a common ap-
proach in which the quality of a partition is computed by
summing the individual contributions of all edges or of all
edges inside communities, it appears necessary to introduce
non-trivial scalings in order to simultaneously satisfy scale-
invariance, locality and significant richness properties. For
example, in the general framework introduced by Reichardt
and Bornholdt [16], the quality function is expressed as
f(VV,O’) = Zi,j(Wij — Nij)é((fi,(fj) where Nij is the
expected value of W;; in a given null model. This encourages
grouping nodes in a community if they are joined by an edge
whose weight exceeds the threshold N;;. Now if this threshold
depends on exogenous parameters (e.g. a constant), then the
value function f will typically not be scale-invariant. On the
other hand if the N;; are determined endogenously involving
global graph properties (like say the average node strength,
as e.g. in the modularity [14]), then f is typically non-local:
a modification in any part of the graph can change the value
of NN;; and therefore affect the decision of having 4 and j
in a same community or for instance as isolated nodes. This
only leaves the possibility to compute N;; from the weights of
edges incident on ¢ and j. A simple example of such quality
function would be modularity density as defined in [12]:
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This is a Reichardt-Bornholdt-like version of the adaptive scale
modularity from [19] with M = 0, satisfying scale-invariance
and 1-locality. It is not difficult to prove that if o is a partition
with two isolated nodes, then f,,; can always be increased by
grouping these nodes.

In the following, we show that by cleverly using
community-size-dependent scalings in variations of f;,4, one
can obtain a class of quality functions with stronger locality or
larger richness set than f,,4 and than all the proposed quality
functions we are aware of.

We refer the reader to Section V for an experimental
investigation of the partitioning behavior with those value
functions.

A. Sum of “average” internal strengths

Our first new value function is a re-scaled version of the sum
over all communities of the internal strength of their nodes:
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fa(W,o) =

where R is any nonnegative normalization function satisfying
the following conditions: (i) R is strictly increasing, and (ii)
R(a)/a is nonincreasing. The class of possible R includes all
functions R(a) = a® for 8 € (0,1]. For 8 = 1 we are just
summing the average internal strengths of the communities.

Theorem 3. The value function fa defined in (4) satisfies
Properties 1 (continuity), 2 (scale-invariance), 3 for k = 0
hence also k = 1, Property 4 (richness) for the set ¥ of
partitions with at most one singleton community, and Property
5 (relative consistent improvement).

More precisely, f4 satisfies the stronger properties of value-
scale invariance, value-consistent improvement and value-0-
locality mentioned in Remark R1. The locality property may
in fact be extended like in [19] to graphs G) and G(?)
with different node sets and to o, ¢’ both containing arbitrary
partitions of Cj.

Proof. For a fixed o, the value of f4 (W, o) is a linear combi-
nation with positive coefficients of the weights W;; of edges
inside the communities. It is therefore clearly continuous with
respect to W and scale invariant, as f4(7W, o) = 7fa(W, o).

Regarding consistent improvement, consider weights W’
for which Wi’j > W;; whenever o; = o; and Wi’j < Wi
otherwise. Then it holds

faW' o) = Z PIPIL
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This proves value-consistent improvement as defined in Re-
mark R1, which is a sufficient condition for Property 5.
Regarding locality, it is straightforward to see that the
following value-locality property from Remark R1 holds and
is sufficient to imply O-locality: Given two graphs G; =
(V, WMD) and Gy = (V,W®) with W(l) W(Q) for all
i,j € Cp C V, take any partition o for Wthh Co 1s a union
of communities. Consider ¢’ exactly equal to o except that
Cy might be partitioned differently into communities. Then

faWD o) = faW WD o) = fa(WP o) — fa(WD, 0.

There remains to prove that f4 is rich for the set ¥ of
partitions containing no more than one singleton community.
For any such partition o*, we define a graph consisting of
disjoint cliques corresponding exactly to the communities:
Wiy = 1if o} = a;-‘ (and i # j) and W;; = 0 else. The
strict optimality of o* for this graph is shown in Appendix B
in the supplementary material. By Lemma 1 this automatically



implies that the partition X* is strictly optimal for an open set
of values of . O

In terms of satisfying the properties of Section II, fa is
at least as good as the modular density f,,q4; in particular,
as fa only comprises a positive term for each edge present
inside a community, it satisfies the stronger property of O-
locality in conjunction with all the other axioms. This might
appear surprising, considering e.g. Radicchi’s proposal [15]
that a community is expected to have stronger inside links
than external links (the latter does not appear in f4 and seems
to almost exclude O-locality). Now, the academic properties
satisfied by f4 do not guarantee its practical relevance, which
we further investigate in Section V. The existence of f4
probably hints at an insufficiency of the listed properties
towards guaranteeing relevant quality functions for community
detection.

B. Penalizing external strength

From an axiomatic viewpoint, the shortcoming of f, intro-
duced in Section IV-A is that a partition with several singleton
communities is never strictly optimal. It could however be
relevant in practice to have several singleton communities.
The intuitive reason for the restricted richness of f4 is the
following: suppose that we want nodes 1 and 2 to form two
singleton communities in a partition o. Their internal strength
would by definition be 0, so the contribution of {1,2} C V
to fa(W,o) would be 0. On the other hand, if we join
them in a two-nodes community to get the partition ¢’, then
their internal strength would be W75, and the contribution of
{1,2} C V to fa(W,o’) would be 2W75. Hence we get
fa(W,0") > fa(W,o) for any W, such that o cannot be
strictly optimal.

To palliate this issue, we add in this section an incentive
to keep certain weakly connected nodes in separate singleton
communities. More precisely, we will penalize every edge
connecting a node ¢ to other communities, with a penalization
weight that depends on the size of the community to which @
belongs.

Formally, for some fixed parameter o > 0, we define the
value function

F5(W.0) = 3 gy 30 (s — o] = D)
k P€ECk
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where we remind that the normalization function is any pos-
itive increasing function for which R(a)/a is nonincreasing.
The factor (|cx| — 1) for the penalization of external edges
is not the unique one that works for our proof below. It
is designed to be less severe with small communities; in
particular, the penalty is O if the community only contains a
single node. One can also understand this choice as penalizing
an external edge by exactly the number of internal connections
that the node could have made in the given partition.

The next theorem shows that this penalization allows fp
to be richer over a larger set X than f4, and than the modular
density f,,q which is similar to fp but just with uniform
penalization weight 1. With respect to f4 this richness is
however achieved at a cost, since fp only satisfies 1-locality
(as fmmaq does), while f, satisfies O-locality. By Theorem 1,
irrespective of locality concerns, a further extension of the
richness set X is not possible unless other properties are further
relaxed.

Theorem 4. The value function fp defined in (5) satisfies
Properties 1 (continuity), 2 (scale-invariance), 3 (locality) with
k = 1, Property 4 (richness) with respect to the set % of
partitions containing at least one community with more than
one node, and Property 5 (relative consistent improvement).

More precisely, f4 satisfies the stronger properties of value-
scale invariance, value-consistent improvement and value-1-
locality mentioned in Remark R1. The locality property may
in fact be extended like in [19] to graphs G and G(?)
with different node sets and to o, ¢’ both containing arbitrary
partitions of Cj.

Proof. Once the partition o is fixed, f(W,o) is a linear
function of the weights W;;, it is hence trivially continuous
in W and scale-invariant as fg(7W,0) = 7fg(W,0).

Regarding consistent improvement, consider weights W' for
which W;; > W;; for all i, j in the same communities and
Wi'j < W;; for other pairs 4, j. Then for all ¢ we have
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Referring to the definition (5) this straightforwardly proves
value-consistent improvement as defined in Remark R1, which
is a sufficient condition for Property 5.

Regarding locality, it is straightforward to see that the
following value-locality property from Remark R1 holds and
is sufficient to imply 1-locality: Given two graphs G; =
(V, W) and Gy = (V,W®) with Wi(jl) = Wi(f) for all
1,7 € Co C V and for all 4, j for which ¢ or j belongs to Cj,
take any partition o for which Cy is a union of communities.
Consider ¢’ exactly equal to o except that Cp might be
partitioned differently into communities. Then

5D o)~ fpWW o) = fp(WP, o) - fr(WP, o).

There remains to prove the richness property of fz. We do
this in two steps. For a given partition ¢ € X of the node
set V, let V* C V be the set of nodes that do not belong
to a singleton partition in ¢ and ¢* the partition of V*
corresponding to o. First, we prove that the same construction
as for f4, applied to the weights W* between nodes in V'*,
makes the partition o* of V* optimal for fp, i.e. : for any
ie Vi let Wi = 1if of = o7 and W;; = ¢ otherwise,
with a small > O selected by continuity. Second, we add (if
necessary) the nodes of V'\ V* to this construction by taking
W;; = ¢ forall i € V\V* and we show that for ¢ > 0



sufficiently small this W makes o strictly optimal. Details are
given in Appendix B in the supplementary material. O

Remark: Before moving to further considerations, we must
mention that both fa and fp would satisfy all the axioms, in-
cluding richness for all possible partitions of the graph nodes,
if the graph was allowed to contain self-loops. Linearity, scale-
invariance and locality indeed remain trivially true if self-loops
are added into W. Consistent improvement also still holds with
the same proof. Regarding richness, we know that particular
graphs, in which all self-loops have zero weight, already allow
to make a large set of partitions strictly optimal. To make
a partition with several isolated nodes optimal, it suffices to
construct the optimal weights for the partition without those
nodes, and then complete the graph by adding those nodes
with each a strong self-loop and a very weak connection to
any other node in the graph.

C. Relaxing consistent improvement

In Theorem 2 we have shown that even if consistent im-
provement is dropped, then it is still not possible to satisfy all
the other criteria including 0-locality and richness with respect
to all partitions. If richness is relaxed, then f4 shows how also
consistent improvement can be included. As a complement, the
following value function shows that it is possible to be rich
with respect to all partitions and satisfy 1-locality instead of
O-locality: fo(W, o) =

1 .
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One can show that for graphs on N > 3 nodes, f¢ satisfies
properties 1 (continuity), 3 with k = 1(1-locality), 2 (scale
invariance) and 4 (richness) with respect to all partitions
provided o > 1, while it then (unavoidably, from Theorem 1)
fails to satisfy Property 5 (relative consistent improvement).

We do not provide a formal proof here because, before
claiming any usefulness for f¢, it should be shown to satisfy
some accepted criterion which would distinguish community
partitions from arbitrary partitions; in the absence of such
property, fc is left with the status of curiosity. *

Accordingly, the main idea in the construction of fc,
namely enlarging the penalty term to the minimum over
all edges connected to the community, both internal and
external, is motivated by technical richness arguments and
not by intuitive community characteristics. Essentially, we
observe that fg(W,0°) = fo(W,0%) = 0 for all W for o*
the all-singletons-partition. However, thanks to the modified
penalty in fo, with W;; = 1 for all 7,j € V we have
feW,0) = > (Jex] —1)(1 —a) < 0 for all o # o, hence
the strict optimality of the all-singletons partition in that case.

4This curiosity, however, shows that the intuition on the two-nodes graph,
that a single scale-invariant edge cannot serve to distinguish whether the nodes
should be merged or not, does not carry any further to N > 2.

Invariance to symmetries

To conclude this Section, let us mention that the value
functions fa, fp and fc are all independent of node labels,
see Remark R2. They hence trivially satisfy permutation
invariance as defined in [19], i.e.: if GG features some isometries
then defining o’ by applying one of the associated isometries
to an initial partition o implies f(W,o’) = f(W,0).

The following Section experimentally investigates how use-
ful the proposed value function f4 and fp might be in
practical clustering applications.

V. EXPERIMENTS

Benchmark and methods

We have investigated the behavior of our value functions by
optimizing them for typical graphs generated using a weighted
version of the popular LFR benchmark model [11]. This
planted partitions method first defines “prior communities”
on a set of nodes, and then generates a graph with edges
preferentially inside these prior communities. It further ensures
power-law degree and community size distributions consistent
with realistic networks. We have considered graphs with
N = 1000 nodes, an average degree k = 25 and community
size in [10,100]. Two additional parameters allow tuning
the significance of the prior communities and therefore the
difficulty of extracting them: p,, the expected proportion of the
strength of each node connecting it to nodes outside its prior
community, and y; the expected proportion of edges (without
taking their weight into account) connecting a node to nodes
outside its prior community.

We optimize our values functions f4 and fp with R(x) =
2P, for different values of B € [0,1]. For this purpose, we
use the local optimization algorithm introduced in [4]. The
latter requires self-loops at intermediate steps, which our value
functions accommodate naturally, although our theoretical
analysis is made without self-loops.

We evaluate the partitions extracted by optimizing our
quality functions in several ways. First, we compute their
normalized mutual information (NMI) [6] to the ‘“ground
truth”, which we define as being the planted partition drawn
by the LFR benchmark model to generate the graph. Recall
that this “ground truth” is only meaningful when the method
wires, on average, more edges inside the communities, i.e.
ue < 1, and assigns significantly larger weight to edges
inside communities, i.e. for p, < py; strictly speaking it
is never 100% “true” except in trivial cases. In fact we are
precisely seeking to better define communities in (almost all)
non-trivial cases, and we are optimizing cost functions locally.
So, although the quantitative results do most often agree with
intuitive decisions about “visually reasonable or unreasonable”
partitions, this comparison to ground truth must be taken with
the usual grain of salt. Therefore, in complement, we have
computed two indicators of stability for the partitions, namely
the number of communities found n, and the sum-of-squares
of the sizes of those communities ), lewl.
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Figure 2. (color online) Quality and stability of the partitions returned by fa as a function of 8 (continuous curve). The plots on the first row show the
normalized mutual information (NMI) of the partitions extracted using f4 with respect to the “ground truth” partition planted by the LFR benchmark model
(solid line), compared to that obtained with the modularity (dashed line). The second row shows the number of communities (red, increasing with ) and their
sum-of-square size (green, decreasing in ). The value of those criteria for the planted partition is also provided (dashed line). The difficulty of extracting
communities increases from left to right (different 4 and fu,, values in the LFR graph generator, see main text). For easy (left column) and medium (middle
column) difficulty graphs, f4 consistently outperforms modularity. For difficult graphs (right column), it is necessary to tune [ in a precise range in order to
obtain, with our function f 4, results comparable to the modularity. This good range of 3 values depends on the graph (not shown), which shows a limitation

of our value function.

In summary, the parameters for the LFR benchmark in our
experiments are: number of nodes: 1000; average degree: 25;
max degree: 100; min community size: 10; max community
size: 100. We use three “types of graph” from which it is more
ore less obvious to extract communities. The corresponding
parameters are, for easy: p; = 0.3, py, = 0.1; medium: p; =
0.6, tyy = 0.4; hard: u; = 0.8, py = 0.6.

Results

Figure 2 presents the results for f4 as a function of f
and compares it to those obtained with the well-established
modularity criterion[14].

For easy to detect communities (u; = 0.3 and g, = 0.1,
first column in Figure 2), sub-partitions of the planted commu-
nities are almost always found except for very small values of
(. The planted communities are moreover exactly recovered
for a wide range of values of S smaller than 0.5. Selecting
any value of 8 should thus be expected to yield good results
in such cases.

Reasonable results are also observed for planted commu-
nities of “medium” difficulty (4, = 0.6 and p,, = 0.3,
second column of Figure 2). The extracted communities do
not correspond exactly to the planted one, but the results
outperform those obtained with the modularity criterion ([14],
see Table 1 in the supplementary material) for almost all values
of B. This could be explained by the fact that modularity
is known to hit a “resolution limit” which prevents it from
correctly extracting communities in this situation. Our cost
function f4 appears not to suffer from this problem.

The limitations of f4 appear more clearly for graphs with
harder-to-find communities (; = 0.8 and p,, = 0.6, third

column of Figure 2). Only a very narrow range of /3 values
give reasonable and more or less stable results — i.e. an a
priori selected value of 8 would almost surely fail. This is
complementary to the modularity, which precisely handles this
situation well.

In conclusion, the function f4 which was proposed on
purely academic grounds appears to give reasonable partitions
in many cases, but of course not always. An issue is the choice
of 3, which can strongly affect the quality of the partitions
produced. Acceptable results appear not too difficult to obtain
by scanning different values and analyzing the evolution of
certain stability measures, i.e. selecting for example values of
B for which these measures appear “reasonable” and stable
with respect to small variations of 3. Such strategies would
however not be compatible with our axiomatic approach.
Indeed, when $3 is not fixed a priori, the property of locality
would almost surely be lost, and consistent improvement
would not be a priori guaranteed either (those are the two
properties where different graphs must be compared). There
might be “soft” tuning strategies which preserve the axiomatic
properties, e.g. letting S depend on the number of nodes or
replacing R(|ck|) by some slightly more complicated depen-
dence function. Such explorations however go beyond the
main purpose of the present paper.

Similar observations apply to fp, see Figure 3. Reasonable
results are obtained for appropriate tuning of both « and S,
but the “good” tuning values depend on the graph. Since such
tuning departs from our axiomatic approach, we do not include
more extensive experimental results about fp in this paper.
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Figure 3. (color online) Quality of the partitions obtained using fp, as a
function of g for different values of c. As previously, the quality is measured
using the normalized mutual information (NMI) of the partitions extracted
with respect to the “ground truth” partition (solid line). The NMI obtained
by the partition extracted using the modularity is also provided (dashed line).
The columns correspond respectively to easy, medium and hard graphs as in
Figure 2. The quality obtained by f4 (i.e. @ = 0) can be outperformed with
a fine tuning of the parameter « but the performance is highly sensitive to
this parameter.This includes interdependencies between o and S as can be
seen in the third column.

VI. CONCLUSION

We have considered an axiomatic approach towards defining
communities as the optimum of a value function. We show that
without relying on self-loops, it is not possible to satisfy a
complete set of standard properties. Our main message is that
this impossibility remains even when replacing Kleinberg’s
very strong consistent improvement requirement by a weaker
and seemingly more natural form of consistency. We further
show, by explicit construction, that by slightly restricting the
set of a priori expected communities — e.g. excluding the
case of all isolated nodes — it becomes possible to satisfy
all the axioms, and reach in some situations a performance
comparable to modularity. Furthermore, our constructions do
satisfy the complete set of axioms when self-loops can be
used to satisfy richness. These two points clarify precisely
how some previous papers were able to circumvent Kleinberg’s
impossibility result.

This points towards several options for future research. First
comes the necessity to select a subset of the standard axioms;
excluding a set of a priori uninteresting partitions has been
identified as one economical way to do this, but there might
be others. Second and maybe more importantly, while our
experimental investigations show good performance for certain
parameter values, they also return extremely poor partitions
for other parameter values, even though the corresponding
functions still satisfy all the axioms. This demonstrates that
our set of axioms is by no means sufficient to single out
useful value functions, and new properties should therefore be
defined. A third direction would be to extend or circumvent
our impossibility result in a framework departing from value
functions.

Finally, the experimental investigations with our simple
value functions provide results that might be of independent
interest for community partitioning. Indeed, despite their sim-
plicity, our value functions outperform modularity in several
cases and for well-chosen parameter values. This suggests an
adaptive tuning procedure for the value function parameters.
Note that the axioms would no longer necessarily be satisfied
when introducing such adaptive tuning.
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