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On fixed-time parameter estimation under interval excitation
D. Efimov, S. Aranovskiy, A.A. Bobtsov, T. Raïssi

Abstract—The problem of estimation in the linear regression model
is studied under the hypothesis that the regressor may be excited on a
limited initial interval of time only. Then the estimation solution is based
on the framework of finite-time or fixed-time converging dynamical
systems. Two estimation algorithms are proposed. The robustness is
analyzed using the notion of short-time input-to-state stability property
with the use of a Lyapunov function. The performance of the estimators
is demonstrated in numerical experiments.

I. INTRODUCTION

One of the basic and the most popular problems in the theory of
identification and estimation is the parameter estimation in a linear
regression model:

y(t) = ω>(t)θ + w(t), t ∈ R,

where θ ∈ Rn is the vector of unknown constant parameters that
is necessary to find, ω : R→ Rn is the regressor function (usually
assumed to be bounded and known), y(t) ∈ R is the signal available
for measurements with a measurement noise w : R → R (here R
denotes the set of real numbers). There are plenty of methods to
solve this problem that need a complete statistics on the process
(in other words these tools are mainly oriented on estimation off-
line): the linear least squares, the maximum-likelihood estimation,
the Bayesian linear regression, the principal component regression
[1], [2], to mention a few. In the theory of adaptive control and
identification there exist also many methods for adaptive and on-
line estimation [3], [4], and applicability of many of them is based
on the condition of persistence of excitation [5], [6]. Consequently,
these approaches are also implicitly based on the asymptotic statis-
tics. Recently, several concepts have been proposed to relax the
requirement on the excitation [7], [8], [9], with improved estimation
algorithms [10], [11], [12], [13], [14], which require only an interval
estimation of the regressor ω(t).

Considering convergence on a finite interval, the amplitude of the
initial error becomes of great importance, since if this deviation is
not bounded, then it is complicated to ensure global convergence
of the estimates to their ideal values in a limited time. A notion
that overcomes this drawback has been proposed recently, and it
is called fixed-time or predefined-time stability/convergence [15],
[16], [17], [18]. In the present work we discuss several fixed-time
convergent algorithms solving the parameter estimation problem
in a linear regression model, which are independent in the initial
guesses for the values of parameters and regressor excitation1, and
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1In one of our previous studies [12] only a finite-time convergence has
been guaranteed, therefore, the synthesized algorithms use an upper bound
on the initial error.

whose robustness against the measurement noise is assessed using
the input-to-state stability (ISS) theory. Following [14], a notion
of fixed-time input-to-state stability on a short interval of time is
applied together with a Lyapunov function analysis. The considered
approach is based on the dynamic regressor extension and mixing
(DREM) method [19], [13], which allow the vector estimation
problem to be decoupled on a series of scalar ones. The obtained
solutions are illustrated by computer simulations.

Notation

• R+ = {x ∈ R : x ≥ 0}, where R is the set of real numbers.
• |x| denotes the absolute value for x ∈ R or a vector norm

for x ∈ Rn, and the corresponding induced matrix norm for a
matrix A ∈ Rn×n is denoted by ‖A‖.

• For a Lebesgue measurable and essentially bounded function
x : R → Rn denote ‖x‖∞ = ess supt∈R |x(t)|, and define
by L∞(R,Rn) the set of all such functions with finite norms
‖ · ‖∞; if ∫ +∞

−∞
|x(t)|2dt < +∞

then this class of functions is denoted by L2(R,Rn).
• A continuous function α : R+ → R+ belongs to the class K

if α(0) = 0 and the function is strictly increasing, a function
α ∈ K belongs to the class K∞ if it is increasing to infinity.
A function β : R+ × R+ → R+ belongs to the class KL if
β(·, t) ∈ K for each fixed t ∈ R+ and β(s, ·) is decreasing
and limt→+∞ β(s, t) = 0 for each fixed s ∈ R+; a function
β : R+×R+ → R+ belongs to the class GKL if β(s, 0) ∈ K,
β(s, ·) is decreasing and for each s ∈ R+ there is Ts ∈ R+

such that β(s, t) = 0 for all t ≥ Ts.
• The identity matrix of dimension n× n is denoted as In.
• Define e = exp(1). Define the Lambert function Lambert :

R→ R, also called the omega function or product logarithm, as
the branches of the inverse relation of the function f(z) = zez

for z ∈ R (in general it is introduced for z ∈ C, but it has also
two brances of solutions for z ∈ R).

• Denote dscα = |s|αsign(s) for any s ∈ R and α ∈ R+.

II. PRELIMINARIES

Consider a time-dependent differential equation:

dx(t)/dt = f(t, x(t), d(t)), t ≥ t0, t0 ∈ R, (1)

where x(t) ∈ Rn is the state vector, d(t) ∈ Rm is the vector of
external inputs and d ∈ L∞(R,Rm); f : Rn+m+1 → Rn is a
continuous function with respect to x, d and piece-wise continuous
with respect to t, f(t, 0, 0) = 0 for all t ∈ R. A solution of the
system (1) for an initial condition x0 ∈ Rn at time instant t0 ∈
R and some d ∈ L∞(R,Rm) is denoted as X(t, t0, x0, d), and
we assume that f ensures definiteness and uniqueness of solutions
X(t, t0, x0, d) in forward time at least on some finite time interval
[t0, t0+T ), where T > 0 may be dependent on the initial condition
x0, the input d and the initial time t0.



A. Stability definitions

Let Ω,Ξ be open neighborhoods of the origin in Rn, 0 ∈ Ω ⊂ Ξ,
then following [20], [12] introduce several stability notions:

Definition 1. At the steady state x = 0 the system (1) with d = 0
is said to be

(a) short-time stable with respect to (Ω,Ξ, T 0, Tf ) if for any
x0 ∈ Ω and t0 ∈ [−T 0, T 0], X(t, t0, x0, 0) ∈ Ξ for all t ∈ [t0, t0+
Tf ];

(b) short-finite-time stable with respect to (Ω,Ξ, T 0, Tf ) if it
is short-time stable with respect to (Ω,Ξ, T 0, Tf ) and finite-time
converging from Ω with the convergence time T t0,x0 ≤ t0 + Tf :

|X(t, t0, x0, 0)| = 0 ∀t ≥ T t0,x0 ,

for all x0 ∈ Ω and t0 ∈ [−T 0, T 0];
(c) globally short-finite-time stable for T 0 > 0 if for any

bounded set Ω ⊂ Rn containing the origin there exist a bounded
set Ξ ⊂ Rn, Ω ⊂ Ξ and Tf > 0 such that the system is short-
finite-time stable with respect to (Ω,Ξ, T 0, Tf );

(d) short-fixed-time stable for T 0 > 0 and Tf > 0, if for any
bounded set Ω ⊂ Rn containing the origin there exists a bounded
set Ξ ⊂ Rn, Ω ⊂ Ξ such that the system is short-finite-time stable
with respect to (Ω,Ξ, T 0, Tf ).

B. Robust stability definitions

Consider the following definition of robust stability for (1) with
d 6= 0 [12], [14]:

Definition 2. The system (1) is said to be
(a) short-finite-time ISS with respect to (Ω, T 0, Tf , D) if there

exist β ∈ GKL and γ ∈ K such that for all x0 ∈ Ω, all d ∈
L∞(R,Rm) with ‖d‖∞ < D and t0 ∈ [−T 0, T 0]:

|X(t, t0, x0, d)| ≤ β(|x0|, t− t0) + γ(‖d‖∞) ∀t ∈ [t0, t0 + Tf ]

and β(|x0|, Tf ) = 0;
(b) globally short-finite-time ISS for T 0 > 0 if there exist

β ∈ GKL and γ ∈ K such that for any bounded set Ω ⊂ Rn
containing the origin there is Tf > 0 such that for all x0 ∈ Ω, all
d ∈ L∞(R,Rm) and t0 ∈ [−T 0, T 0]:

|X(t, t0, x0, d)| ≤ β(|x0|, t− t0) + γ(‖d‖∞) ∀t ∈ [t0, t0 + Tf ]

and β(|x0|, Tf ) = 0 (the system is short-finite-time ISS with respect
to (Ω, T 0, Tf ,+∞));

(c) short-fixed-time ISS for T 0 > 0 and Tf > 0, if there exist
β ∈ GKL and γ ∈ K such that for all x0 ∈ Rn, all d ∈ L∞(R,Rm)
and t0 ∈ [−T 0, T 0]:

|X(t, t0, x0, d)| ≤ β(|x0|, t− t0) + γ(‖d‖∞) ∀t ∈ [t0, t0 + Tf ]

and β(|x0|, Tf ) = 0 (for any bounded set Ω ⊂ Rn contain-
ing the origin the system is short-finite-time ISS with respect to
(Ω, T 0, Tf ,+∞)).

The difference of global short-finite-time or short-fixed-time ISS
and a conventional (finite-time or fixed-time) ISS [21], [22] is that
in the former case the stability property is considered on a finite
interval of time [t0, t0 + Tf ] only.

Theorem 1. [14] Let the constants T 0 ≥ 0 and Tf > 0 be given.
Let the system in (1) possess a Lyapunov function V : R×Rn → R+

such that for all x ∈ Rn, d ∈ Rm and t ∈ [−T 0, T 0 + Tf ]:

α1(|x|) ≤ V (t, x) ≤ α2(|x|) α1, α2 ∈ K∞; (2)

V̇ (t, x) ≤ −u(t)
(
V 1−η(t, x) + V 1+η(t, x)

)
+ κ(|d|)

for κ ∈ K, η ∈ (0, 1) and a function u : R→ R+ satisfying∫ t+`

t

u(s)ds ≥ υ > 0, ` > 0

for all t ∈ [−T 0, T 0 +Tf ] . Then the system (1) is short-fixed-time
ISS for T 0 and Tf with

β(s, t) = α−1
1 (2η

−1

min{max{0, η
√
αη2(s)− η υ

4`
(t− `)},

1

η

√
α−η2 (s) + η υ

4`
(t− `)

}),

γ(s) = α−1
1 [2η

−1

(`κ(s) + max{(4`

υ
κ(s))

1
1−η , (

4`

υ
κ(s))

1
1+η })]

provided that

Tf ≥ 2(1 +
4

ηυ
)`.

Finally, let us formulate a useful lemma:

Lemma 1. [23] Let x, y ∈ R and p > 0, then for any κ1 ∈ (0, 1)
there exists κ2 > 0 such that

x dx+ ycp ≥ κ1|x|p+1 − κ2|y|p+1.

In particular, κ2 = max{1 + κ1,
κ1

(1−κ1/p
1 )p

}.

C. Dynamic regressor extension and mixing method

Consider the estimation problem as above:

x(t) = ω>(t)θ, t ∈ R, (3)

y(t) = x(t) + w(t).

Introduce the following hypothesis:

Assumption 1. Let ω ∈ L∞(R,Rn) and w ∈ L∞(R,R).

As it has been proposed in [19], in order to overcome the
limitations imposed by the condition that ω is PE and also to
improve the transient performance, the DREM procedure transforms
(3) to n new one-dimensional regression models, which allows
the decoupled estimates of θi, i = 1, n to be computed under
a condition on the regressor ω that differs from the persistent
excitation.

For this purpose n − 1 linear operators Hj : L∞(R,R) →
L∞(R,R) are introduced for j = 1, n− 1 (for instance an operator
Hj can be chosen as a stable linear time-invariant filter with the
transfer function Wj(s) =

αj
s+βj

, where s ∈ C is a complex
variable and αj 6= 0, βj > 0 are selected to filter the noise w in
(3); or it can realize the delay operation with the transfer function
Wj(s) = e−τjs for τj > 0). Note that y ∈ L∞(R,R) under
Assumption 1, then these operators are applied to the measured
output y(t) of (3), and using the superposition principles (the
operators Hj are linear) we obtain:

ỹj(t) = Hj(y(t)) = ω̃>j (t)θ + w̃j(t), j = 1, n− 1,

where ỹj(t) ∈ R is the j th operator output, ω̃j : R → Rn is
the j th filtered regressor function and w̃j(t) : R → R is the new
j th noise signal, which is composed by the transformation of the
noise w(t) by Hj and other exponentially converging components
related to the initial conditions of the filters. By construction ω̃j ∈



L∞(R,Rn) and w̃j ∈ L∞(R,R) for all j = 1, n− 1. Define new
vector variables

Ỹ (t) = [y(t) ỹ1(t) . . . ỹn−1(t)]> ∈ Rn,
W̃ (t) = [w(t) w̃1(t) . . . w̃n−1(t)]> ∈ Rn

and a time-varying matrix

M(t) = [ω(t) ω̃1(t) . . . ω̃n−1(t)]> ∈ Rn×n,

then stacking the original equation (3) with the n − 1 filtered
regressor models we construct an extended regressor system:

Ỹ (t) = M(t)θ + W̃ (t).

For any matrix M(t) ∈ Rn×n the following equality is true:

adj (M(t))M(t) = det (M(t)) In,

even if M(t) is singular, where adj (M(t)) is the adjugate matrix of
M(t) and det (M(t)) is its determinant. Recall that each element
of the matrix adj (M(t)),

adj (M(t))k,s = (−1)k+sMk,s(t)

for all k, s = 1, n, where Mk,s(t) is the (k, s) minor of M(t), i.e.,
it is the determinant of the (n − 1) × (n − 1) matrix that results
from deleting the kth row and the sth column of M(t). Define

Y (t) = adj (M(t)) Ỹ (t), W (t) = adj (M(t)) W̃ (t),

φ(t) = det (M(t)) ,

then multiplying from the left the extended regressor system by the
adjugate matrix adj (M(t)) we get n scalar regressor models of the
form:

Yi(t) = φ(t)θi +Wi(t) (4)

for i = 1, n. Again, by construction Y ∈ L∞(R,Rn), W ∈
L∞(R,Rn) and φ ∈ L∞(R,R). For the scalar linear regression
model (4) the conventional gradient estimation algorithm takes the
form:

˙̂
θi(t) = γiφ(t)

(
Yi(t)− φ(t)θ̂i(t)

)
, γi > 0 (5)

for all i = 1, n, where now the estimation processes for all
components of θ are decoupled, and the adaptation gain γi can
be adjusted separately for each element of θ. However, all these
estimation algorithms are dependent on the same regressor φ(t)
(determinant of M(t)).

Remark 1. The choice of the operators Hj is a degree of freedom
of the DREM procedure, where a poor choice may compromise the
excitation level of the original regressor ω and can yield a singular
matrix M . In [24] it is proposed to apply the Kreisselmeier’s
regressor extension of the form

Ṁ(t) = −λM(t) + ω(t)ω>(t)

and
˙̃Y (t) = −λỸ (t) + ω(t)y(t),

where λ > 0, and it is shown that under this choice the excitation
of ω is always preserved.

III. PROBLEM STATEMENT

Consider the static linear regression model (3) under Assumption
1, and suppose that the DREM method has been applied in order
reduce the initial problem of vector estimation to n scalar regressor
models in the form (4).

It is necessary to propose an algorithm generating an estimate
θ̂(t) ∈ Rn of the vector of unknown parameters θ ∈ Rn, and
for ‖W‖∞ = 0 providing the property of short-fixed-time stability
(see Definition 1) of the estimation error e(t) = θ− θ̂(t) dynamics
under assumptions 1 for some given T 0 and Tf . If ‖W‖∞ 6= 0
then short-fixed-time ISS for T 0 and Tf (see Definition 2) has to
be guaranteed.

Since by applying DREM method the problem is decoupled on n
independent ones, for brevity of notation, we will further omit the
index i in (4) by assuming that n = 1:

Y (t) = φ(t)θ +W (t), (6)

then θ ∈ R, Y ∈ L∞(R,R), W ∈ L∞(R,R) and φ ∈ L∞(R,R).

IV. DESIGN OF ESTIMATION ALGORITHMS CONVERGING IN

SHORT-FIXED-TIME

Two different solutions to the posed estimation problem are dis-
cussed in this section, whose difference consists in the requirements
imposed on excitation of φ(t) and on the guaranteed robustness
abilities with respect to W (t).

A. Algorithm 1

Consider an adaptive estimation algorithm proposed in [25], [26]:

˙̂
θ(t) = φ(t){γ1

⌈
Y (t)− φ(t)θ̂(t)

⌋1−α
(7)

+γ2
⌈
Y (t)− φ(t)θ̂(t)

⌋1+α
}

for γ1 > 0, γ2 > 0 and α ∈ [0, 1), with θ̂(t0) ∈ R, which admits
the following properties:

Proposition 1. [14] Let Assumption 1 be satisfied, and for given
T 0 > 0 and Tf > 0,∫ t+`

t

min{|φ(s)|2−α, |φ(s)|2+α}ds ≥ υ > 0 (8)

for all t ∈ [−T 0, T 0 + Tf ] and some ` ∈
(

0,
Tf
2

)
. Take

min{γ1, γ2} >
22+α

2

αυ
(
Tf
2`
− 1
) ,

then the estimation error e(t) = θ− θ̂(t) dynamics of (7) is short-
fixed-time ISS for T 0 and Tf .

Proof. The error dynamics for the estimation algorithm (7) can be
written as follows:

ė(t) = −φ(t){γ1 dφ(t)e(t) +W (t)c1−α

+γ2 dφ(t)e(t) +W (t)c1+α}.



Consider a Lyapunov function candidate V (e) = 0.5e2, whose
derivative has an upper estimate for some κ11, κ12 ∈ (0, 1) and
κ21, κ22 > 0 coming from Lemma 1:

V̇ (t) = −γ1e(t)φ(t) dφ(t)e(t) +W (t)c1−α

−γ2e(t)φ(t) dφ(t)e(t) +W (t)c1+α

≤ −γ1κ11|e(t)φ(t)|2−α − γ2κ12|e(t)φ(t)|2+α

+γ1κ21|W (t)|2−α + γ2κ22|W (t)|2+α

≤ −u(t)
(
V 1−α

2 (t) + V 1+α
2 (t)

)
+ σ(|W (t)|)

for any e(t) ∈ R and W (t) ∈ R, where

u(t) = min{21−α
2 γ1κ11|φ(t)|2−α, 21+α

2 γ2κ12|φ(t)|2+α},
σ(s) = γ1κ21s

2−α + γ2κ22s
2+α

is a function from class K∞. Note that

u(t) ≥ 21−α
2 min{γ1κ11, γ2κ12}min{|φ(t)|2−α, |φ(t)|2+α},

then under the imposed restrictions for φ, the system is short-
fixed-time ISS for T 0 and Tf due to Theorem 1 provided that the
constraint

Tf ≥ 2(1 +
22+α

2

αmin{γ1κ11, γ2κ12}υ
)`

is satisfied. The imposed restriction on min{γ1, γ2} guarantees that
there exist κ11, κ12 ∈ (0, 1) such that all trajectories converge to
the origin faster than Tf if ‖W‖∞ = 0.

B. Algorithm 2

And, finally, let us introduce a version of the algorithm (7),
which extends the nonlinear paradigm of the former by time-varying
powers:

˙̂
θ(t) = sign(φ(t)){γ1

⌈
Y (t)− φ(t)θ̂(t)

⌋α(t)
+γ2

⌈
Y (t)− φ(t)θ̂(t)

⌋ς+α(t)
} (9)

γ1 > 0, γ2 > 0, ς > 1, α(t) =
|φ(t)|

1 + |φ(t)| ,

where θ̂(t0) ∈ R. The idea of this design is that the power
α(t) is approaching zero together with the regressor φ(t), then the
contribution of the regressor in the adaptation rate is proportional to
|φ(t)|α(t), which is strictly separated with zero even for a convergent
regressor, the detailed proof of this fact is given below.

Proposition 2. [14] Let Assumption 1 be satisfied, and ϑ ∈
L∞(R,R+) where ϑ(t) = W (t)

φ(t)
. Then the estimation error e(t) =

θ − θ̂(t) dynamics of (9) is short-finite-time ISS for any T 0 ≥ 0
with the input ϑ.

Let additionally for given T 0 > 0 and Tf > 0,∫ t+`

t

|φ(s)|ςds ≥ υ > 0 (10)

for all t ∈ [−T 0, T 0 + Tf ] and some ` ∈ (0, Tf ), and

min{γ1, γ2} >
√

2
1 + φmax + 4`

(ς−1)υ

(Tf − `)g(xmin)
,

where φmax = maxt∈[−T0,T0+Tf ]
|φ(t)|, g(x) = x

x
1+x and

xmin = Lambert(e−1), then the estimation error e(t) = θ − θ̂(t)
dynamics of (9) is short-fixed-time ISS for T 0 and Tf with the input
ϑ.

Proof. The error dynamics for the estimation algorithm (9) can be
written as follows:

ė(t) = −sign(φ(t)){γ1 dφ(t)e(t) +W (t)cα(t)

+γ2 dφ(t)e(t) +W (t)cς+α(t)}.

Consider a Lyapunov function V (e) = 0.5e2 and observe that

ra(t)(t) ≥

{
ramin(t) r(t) ≥ 1

ramax(t) r(t) < 1
≥ min{1, ramax

min },

ra(t)(t) ≤

{
ramax(t) r(t) ≥ 1

ramin(t) r(t) < 1
≤ max{1, ramax

max }

for any r : R→ R+ and a : R→ R+ such that rmin = inft∈R r(t),
rmax = supt∈R r(t), amin = inft∈R a(t) and amax = supt∈R a(t)
for some rmin, rmax, amin, amax ∈ R+, then the time derivative of
V for the estimation error dynamics admits an upper estimate:

V̇ (t) = −sign(φ(t))e(t){γ1 dφ(t)e(t) +W (t)cα(t)

+γ2 dφ(t)e(t) +W (t)cς+α(t)}
= −γ1|φ(t)|α(t)e(t) de(t) + ϑ(t)cα(t)

−γ2|φ(t)|ς+α(t)e(t) de(t) + ϑ(t)cς+α(t)

≤ −γ1κ11|φ(t)|α(t)|e(t)|1+α(t) − γ2κ12|φ(t)|ς+α(t)|e(t)|1+ς+α(t)

+γ1κ21|φ(t)|α(t)|ϑ(t)|1+α(t) + γ2κ22|φ(t)|ς+α(t)|ϑ(t)|1+ς+α(t)

≤ −
√

2 min{γ1κ11, γ2κ12}g(|φ(t)|)[ξ1 (V (t))

+|φ(t)|ςξ2 (V (t))] + σ(‖ϑ‖∞),

where

ξ1(s) =

{
s0.5 s ≥ 1

s
0.5+φmax
1+φmax s < 1

, ξ2(s) =

s
1+ς
2 s ≥ 1

s
1+ς+

φmax
1+φmax
2 s < 1

,

σ(s) = [γ1κ21 max{1, φ
φmax

1+φmax
max }

+γ2κ22 max{1, φ
ς+ φmax

1+φmax
max }sς ]

×

{
s

1+2φmax
1+φmax s ≥ 1

s s < 1

and κ11, κ12 ∈ (0, 1), κ21, κ22 > 0 are from Lemma 1 (since φ(t)
is upper bounded in amplitude due to Assumption 1 such constants
exist). Note that g(0) = g(1) = 1 and

∂g(x)

∂x
=

(
1 + ln(x)

1

1 + x

)
g(x)

1 + x
,

∂2g(x)

∂x2
=
x2 ln2(x) + x(x+ 1)2

xg(x)(x+ 1)4
,

then ∂2g(x)

∂x2
≥ 0 for x ≥ 0, and the function g(x) has the only

minimum xmin ∈ [0, 1] that satisfies the equality:

1 + ln(xmin)
1

1 + xmin
= 0.

Solving this equation we obtain xmin = Lambert(e−1), then
g(xmin) ' 0.757. Therefore, the estimate for the Lyapunov function
can be represented as follows:

V̇ (t) ≤ −$[ξ1 (V (t)) + |φ(t)|ςξ2 (V (t))] + σ(‖ϑ‖∞)

≤ −$min{1, |φ(t)|ς}ξ (V (t)) + σ(‖ϑ‖∞),



where $ =
√

2 min{γ1κ11, γ2κ12}g(xmin) and

ξ(s) =

s
0.5 + s

1+ς
2 s ≥ 1

s
0.5+φmax
1+φmax + s

1+ς+
φmax

1+φmax
2 s < 1

.

By repeating the arguments of Theorem 1, the short-fixed-time and
the short-finite-time ISS [12] can be established (in the latter case
there is no restriction on excitation of φ(t) and even the conventional
results [27] can be used).

In order to check the restrictions on Tf for the case ‖W‖∞ = 0,
assume that V (t0) > 1, denote by T1, T2 > 0 the instants of time
such that V (t0 + T1) = 1 and V (t0 + T1 + T2) = 0, and use the
estimate

V̇ (t) ≤ −$max{V
0.5+φmax
1+φmax (t), |φ(t)|ςV

1+ς
2 (t)},

then since 0.5+φmax
1+φmax

∈ (0, 1) and 1+ς
2
> 1 we obtain

V
ς−1
2 (t) ≤ 1

V −
ς−1
2 (t0) + ς−1

2
$υ
4`

(t− t0 − `)

for all t ∈ [t0, t0 + T1], and

V
0.5

1+φmax (t) ≤ 1− 0.5

1 + φmax
$(t− t0 − T1)

for all t ∈ [t0 + T1, t0 + T1 + T2]. Hence, the upper bounds on
T1 and T2 follow (due to the properties of α(t) the time T2 is
independent in the excitation):

T1 ≤ `[1 +
8

(ς − 1)$υ
], T2 ≤ 2

1 + φmax

$
,

which give by resolving the inequality T1 + T2 ≤ Tf the required
restriction on γ1 and γ2.

Thus, the idea of the algorithm (9) consists in the utilization of
a nonlinearity such that the function g(|φ(t)|) becomes separated
with zero overcoming the absence of excitation in the system. The
price for that is the robustness with respect to a noise W with a
well-defined ratio W (t)

φ(t)
.

Remark 2. One of the most important features of estimation
algorithms, after estimation error convergence in the ideal case, is
their robustness with respect to measurement noises. In our case,
since the regressor φ(t) may converge to zero, the appearance of
W (t) 6= 0 additionally limit the time of convergence, since it is
reasonable to use the output Y (t) for estimation with t ∈ [t0, t0+T ]
only while

|Y (t)| > |W (t)|+ ε

for some ε > 0. If Y (t)| ≤ |W (t)| + ε (or |Y (t)| is almost
equal to |W (t)| for a sufficiently small ε), then the measured output
mainly contains the measurement noise, and it is ambiguous to ask
an algorithm to estimate θ due to a bad ratio between the signal
and the noise. In this sense, the requirement that the signal W (t)

φ(t)

is well-defined is not much restrictive. Roughly speaking, it merely
assumes that the ratio between the useful signal and the noise lies
in some reasonable limits.

If the regressor φ(t) is just asymptotically converging without
crossing zero, then the algorithms (7) and (9) can be applied for
any finite T > 0 and t0 ∈ R.
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Figure 1. Simulation results for the algorithms (7) and (9), estimation error
θ2−θ̂2(t) vs. time, seconds. The case of uniformly distributed measurement
noise

V. EXAMPLE

Consider a measured scalar signal y(t) that consists of two terms.
The first term is a harmonic oscillation, and the second term is a
decaying process:

y(t) = θ1 sin(t) + θ2
1

t+ 1
+ w(t),

where w(t) is a measurement noise, and θ1, θ2 are unknown
constant parameters. Since the second term decays, the parameter θ1
can be estimated asymptotically with a standard gradient estimator;
however, estimation of θ2 is more challenging. The signal y(t) can
be rewritten as (3), where the regressor ω(t) = [sin(t) 1

t+1
]>,

obviously, is not persistently exciting. Thus, standard gradient or
least-square approaches cannot guarantee an asymptotic estimation.
This section illustrates how θ2 can be estimated by the means of the
DREM procedure and the proposed fixed-time parameter estimation
algorithms.

First, the DREM procedure is applied to get a scalar linear
regression equation for θ2. To this end, choose the delay operator
H(u(t)) = u(t − τd), where τd > 0 is the tuning parameter, and
define

ω̃1(t) = H(ω(t)) = ω(t− τd), ỹ1(t) = H(y(t)) = y(t− τd).

Then the procedure described in subsection II-C yields

Y2(t) = φ(t)θ2 +W2,

where Y2, W2, and φ are computed as it has been explained above,
and

φ(t) =
sin(t)

1 + t− τd
− sin(t− τd)

1 + t

for t ≥ τd. Thus, the system is not persistently excited (the signal
φ(t) converges to zero) and the algorithm (5) cannot be applied.
However, since φ(t) decays only asymptotically, there exist ` and
υ such that (8) and (10) are satisfied on any finite interval of time.

For simulations, the algorithms (7) and (9) are tuned as follows:
γ1 = γ2 = 10, α = 0.25, and ς = 1.25. All algorithms are
initialized with θ̂2(0) = 0, while the true value is θ2 = −2. For all
algorithms no estimation is performed for t ∈ [0, τd], τd = 1 since
φ(t) is identically zero on this interval due to the DREM procedure.

Simulation results for the case when w(t) is a uniformly dis-
tributed noise, |w(t)| ≤ 0.2, are given in Fig. 1. As expected, all
algorithms provide finite-time parameter estimation. The algorithm
(7) has both small mean error and small error oscillations, where the
trade-off is the largest transient time for similar tuning parameters.



VI. CONCLUSIONS

The problem of estimation in the linear regression model has been
considered on a bounded interval of time. Two fixed-time converging
estimators are presented. In order to analyze the robustness of these
estimation algorithms, a short-time fixed-time input-to-state stability
property has been used. The obtained estimation algorithms are
compared in numerical experiments.
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