R. Adh-+-19]-martin, L. Albrecht, G. Ducas, E. Herold, E. W. Kirshanova et al., The general sieve kernel and new records in lattice reduction, Advances in Cryptology -EUROCRYPT 2019 -38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, vol.11477, pp.717-746, 2019.

L. Babai, On lovász' lattice reduction and the nearest lattice point problem, Combinatorica, vol.6, issue.1, pp.1-13, 1986.

J. Boyar, Inferring sequences produced by a linear congruential generator missing low-order bits, Journal of Cryptology, vol.1, issue.3, pp.177-184, 1989.

, The FPLLL development team. fplll, a lattice reduction library, 2016.

A. M. Frieze, J. Hastad, R. Kannan, J. C. Lagarias, and A. Shamir, Reconstructing truncated integer variables satisfying linear congruences, SIAM J. Comput, vol.17, issue.2, pp.262-280, 1988.

A. M. Ferrenberg, D. P. Landau, and Y. Wong, Monte carlo simulations: Hidden errors from "good" random number generators, Phys. Rev. Lett, vol.69, pp.3382-3384, 1992.

A. Joux and J. Stern, Lattice reduction: A toolbox for the cryptanalyst, J. Cryptology, vol.11, issue.3, pp.161-185, 1998.

D. Knuth, Deciphering a linear congruential encryption, IEEE Transactions on Information Theory, vol.31, issue.1, pp.49-52, 1985.

D. E. Knuth, Seminumerical Algorithms, volume 2 of The Art of Computer Programming, 1998.

D. H. Lehmer, Mathematical methods in large-scale computing units, Proceedings of a Second Symposium on Large-Scale Digital Calculating Machinery, vol.26, pp.141-146, 1949.

D. Lemire, The fastest conventional random number generator that can pass Big Crush?, 2019.

L. Pierre, R. J. Ecuyer, and . Simard, Testu01: A C library for empirical testing of random number generators, ACM Trans. Math. Softw, vol.33, issue.4, 2007.

G. Marsaglia and . Xorshift-rngs, Journal of Statistical Software, vol.8, issue.14, pp.1-6, 2003.

M. Matsumoto and T. Nishimura, Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator, ACM Trans. Model. Comput. Simul, vol.8, issue.1, pp.3-30, 1998.

.. E. O'n14a]-melissa and . O'neill, Pcg, a family of better random number generators, 2014.

M. E. O'neill, Pcg: A family of simple fast space-efficient statistically good algorithms for random number generation, 2014.

R. L. Rivest, The RC5 encryption algorithm, Fast Software Encryption: Second International Workshop, vol.1008, pp.86-96, 1994.

J. K. Salmon, M. A. Moraes, R. O. Dror, and D. E. Shaw, Parallel random numbers: As easy as 1, 2, 3, SC '11: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, pp.1-12, 2011.

S. Van-der-walt, S. C. Colbert, and G. Varoquaux, The numpy array: A structure for efficient numerical computation, Computing in Science Engineering, vol.13, issue.2, pp.22-30, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00564007

S. Vigna, Further scramblings of marsaglia's xorshift generators, J. Comput. Appl. Math, vol.315, pp.175-181, 2017.

. John-von-neumann, Various techniques used in connection with random digits, National Bureau of Standards Applied Mathematics Series, vol.12, pp.36-38, 1951.

S. Yilek, E. Rescorla, H. Shacham, B. Enright, and S. Savage, When private keys are public: results from the 2008 debian openssl vulnerability, Proceedings of the 9th ACM SIGCOMM Internet Measurement Conference, pp.15-27, 2009.

. Zml-+-16]-shuangyi, Y. Zhu, J. Ma, J. Lin, J. Zhuang et al., More powerful and reliable second-level statistical randomness tests for NIST SP 800-22, Advances in Cryptology -ASIACRYPT 2016 -22nd International Conference on the Theory and Application of Cryptology and Information Security, vol.10031, pp.307-329, 2016.