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Motivations

Better small–scale representation : have explicit formulations and
interpretations (v.s. parametrization with ad hoc tuning)

Physical consistency : respect a set of conservation laws (e.g. energy,
circulation) (v.s. arbitrary Gaussian forcing)

Useful in uncertainty quantification (UQ) : provide more reliable
ensemble forecasts (EF) and more effiecient spread for ensemble data
assimilation (v.s. perturbations of initial condition (PIC) )
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Location Uncertainty (LU) Principles

Stochastic flow :

dXt = w(Xt, t)dt︸ ︷︷ ︸
large–scale / resolved

+ σ(Xt, t)dBt︸ ︷︷ ︸
small–scale / unresolved

Functional processs :

σ(x, t)dBt =

∫
Ω

σ̆(x,y, t)dBt(y)dy

Bt is a cyclindrical Wiener process of infinite dimension (in some
Hilbert space) and σ̆ is deterministic symmetric kernel
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Location Uncertainty (LU) Principles

Covariance operator :

Q(x,y, t, s) = E
[
σ(x, t)dBt

(
σ(y, s)dBs

)T]
= δ(t− s)dt

∫
Ω

σ̆(x, z, t)σ̆T (y, z, s)dz

Variance tensor (per unit of time) :

a(x, t) =
Q(x, t)

dt
= σσT (x, t)

Turbulent Kinetic Energy (TKE) :

TKE =
1

2

tr(a)

dt
(m2 ·s−2 )
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Stochastic Reynolds Transport Theorem (SRTT)

We assume that ∇·σ = 0 in the following.

Rate of change of a scalar process θ within a volume transported by
the stochastic flow :

d

∫
V(t)

θ(x, t)dx =

∫
V(t)

(Dtθ + θ∇·w?)dx

Stochastic transport operator :

Dtθ
4
= dtθ + (w−1

2
∇· a︸ ︷︷ ︸

w?

) ·∇ θdt+ σdBt ·∇ θ︸ ︷︷ ︸
multiplicative noise

−∇·(a
2
∇θ)dt︸ ︷︷ ︸

subgrid diffusion

w? : corrected drift – effect of statistical inhomogeneity of the
small-scale flow component; generalization of the Stokes drift
[Bauer, Chandramouli, Chapron, Li & Mémin 2019a]
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Conservation Laws

We assume that ∇·w? = 0 in the following.

Conservation of extensive scalar :

Dtθ = 0

Conservation of tracer energy : [Resseguier, Memin & Chapron, 2017a]

d

∫
Ω

1

2
θ2 =

∫
Ω

θdtθ +
1

2
d〈θ〉t

=

∫
Ω

1

2
θ2∇· (w?dt+ σdBt)= 0

Energy decomposition of mean and variance fields :

0 =
d

dt

∫
Ω

1

2
(E[θ])2 +

d

dt

∫
Ω

1

2
Var[θ]
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Stochastic Barotropic Vorticity Equation (SBVE)
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Stochastic Barotropic Vorticity Equation (SBVE)

Forced–dissipative advection of the potential vorticity (PV) q with
source process :

Dtq = (S1 + F +D)dt+ S2dBt

S1 =
1

2

∑
i,j=1,2

∂2ij(∇⊥aij · u), S2dBt = −tr
(
∇⊥(σdBt)

T∇uT
)

Kinematic relationship between PV and stream function ψ :

q = ∇2ψ + f, u =∇⊥ψ

Conservation of kinetic energy in the absence of D and F : [Bauer,

Chandramouli, Chapron, Li & Mémin 2019a]

d

dt

∫
Ω

1

2
‖∇ψ‖2 = 0
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Parametrizations of Noise

Homogeneous in space Stationary in time : [Resseguier, Memin & Chapron, 2017b]

Homogeneous Non-stationary : [Resseguier, Li, Jouan, Derian, Mémin & Chapron, 2019]

Based on estimation of the absolute diffusivity spectral density
(ADSD).
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Parametrizations of Noise

Heterogeneous Stationary : [Chandramouli, Mémin, Chapron & Heitz 2019b]

Based on snapshot proper orthogonal decomposition (POD) method
from data
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Parametrizations of Noise
Heterogeneous Non-stationary [Li, Bauer, & Mémin 2019] : On-line learning
’Pseudo-observations’ from effective resolution
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Long-term Diagnosis of Time–Statistics

Results predicted by DNS simulation :
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Long-term Diagnosis of Time–Statistics
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Long-term Diagnosis of Time–Statistics

Long Li (Fluminance) A Consistent Stochastic Modeling September 12, 2019 18 / 28



Long-term Diagnosis of Time–Statistics
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Long-term Diagnosis of Time–Statistics
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Short-term Verification of Ensemble Forecasts
Observed samples are the filtered DNS PV at each grid point; Ensemble simulations are
performed with 30 particles from t = 0 to t = 30, starting from the (perturbed) filtered
DNS.
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Ensemble Spreads
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Reliability of Ensemble Forecasts

Rank histogram

( How well does the ensemble spread of the forecast represent the true
uncertainty of the observations )

Flat : ensemble represent well the observed probability distribution;

U-shaped : ensemble spread too small, many observations falling
outside the extremes of the ensemble;

Dome-shaped : ensemble spread too large, most observations falling
near the center of the ensemble;

Asymmetric : ensemble contains bias.

Long Li (Fluminance) A Consistent Stochastic Modeling September 12, 2019 24 / 28



Reliability of Ensemble Forecasts
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Reliability of Ensemble Forecasts

The mean squared error (MSE) of the ensemble mean forecasts is identical to the
average intra-ensemble sample variance (VAR), multiplied by an ensemble-size N –
dependent inflation factor :

(qo − Ê[q])2
x

=
N + 1

N
V̂ar[q]

x
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Other UQ metrics [Resseguier, Li, Jouan, Derian, Mémin & Chapron, 2019] : Continuous ranked
probability score (CRPS), Energy score, Variogram score.
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Conclusions

Better eddy representation based on stochastic tranport;
Capture better on a coarse mesh the correct long-term time-statistics;
Spread is more accurate compared to PIC.

Work on ...

Strong interest in ensemble data assimilation with particle filter coupled
with LU.
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Thanks for Your Attention!
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