A. Al-mohy and N. Higham, Computing the action of the matrix exponential, with an application to exponential integrators, SIAM J. Sc. Comp, vol.33, issue.2, pp.488-511, 2011.

L. Bruzzone and M. Marconcini, Domain adaptation problems: A dasvm classification technique and a circular validation strategy, IEEE Trans. Pattern Anal. Mach. Intell, vol.32, issue.5, pp.770-787, 2010.

A. Barbe, M. Sebban, P. Gonçalves, P. Borgnat, and R. ,

F. Chung, The heat kernel as the pagerank of a graph, Proceedings of the National Academy of Sciences, vol.104, issue.50, pp.19735-19740, 2007.

N. Courty, R. Flamary, D. Tuia, T. Calders, F. Esposito et al., Domain adaptation with regularized optimal transport, Machine Learning and Knowledge Discovery in Databases, pp.274-289, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01018698

N. Courty, R. Flamary, D. Tuia, and A. Rakotomamonjy, Optimal transport for domain adaptation, IEEE Trans. Pattern Anal. Mach. Intell, vol.39, issue.9, pp.1853-1865, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01377220

M. Defferrard, L. Martin, R. Pena, and N. Perraudin, Pygsp: Graph signal processing in python, 2017.

Y. Deshpande, S. Sen, A. Montanari, and E. Mossel, Contextual stochastic block models, NeurIPS 2018, pp.8590-8602, 2018.

R. Flamary and N. Courty, Pot python optimal transport library, 2017.

D. K. Hammond, Y. Gur, and C. R. Johnson, Graph diffusion distance: A difference measure for weighted graphs based on the graph laplacian exponential kernel, GlobalSIP, pp.419-422, 2013.

P. W. Holland, K. B. Laskey, and S. Leinhardt, Stochastic blockmodels: First steps, Social networks, vol.5, issue.2, pp.109-137, 1983.

L. Kantorovich, On the translocation of masses, Doklady of the Academy of Sciences of the USSR, vol.37, pp.199-201, 1942.

N. M. Kriege, F. D. Johansson, and C. Morris, A survey on graph kernels, Applied Network Science, vol.5, issue.1, p.6, 2020.

H. P. Maretic, M. E. Gheche, G. Chierchia, and P. Frossard, GOT: an optimal transport framework for graph comparison, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02150008

H. P. Maretic, M. E. Gheche, M. Minder, G. Chierchia, and P. Frossard, Wassersteinbased graph alignment, 2020.

G. Monge, Mémoire sur la théorie des déblais et des remblais. Histoire de l'Académie royale des sciences de, 1781.

F. Mémoli, Gromov-wasserstein distances and the metric approach to object matching, Found. Comput. Math, vol.11, issue.4, pp.417-487, 2011.

A. Ortega, P. Frossard, J. Kova?evi?, J. Moura, and P. Vandergheynst, Graph signal processing: Overview, challenges, and applications, Proceedings of the IEEE, vol.106, issue.5, pp.808-828, 2018.

G. Peyré and M. Cuturi, Computational Optimal Transport. arXiv, 2018.

G. Peyré, M. Cuturi, and J. Solomon, Gromov-wasserstein averaging of kernel and distance matrices, Int. Conf. on Machine Learning, vol.48, pp.2664-2672, 2016.

I. Redko, E. Morvant, A. Habrard, M. Sebban, and Y. Bennani, Advances in Domain Adaptation Theory, p.187, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02286281

D. Thanou, X. Dong, D. Kressner, and P. Frossard, Learning heat diffusion graphs, IEEE Trans. on Sig. and Info. Proc. over Networks, vol.3, issue.3, pp.484-499, 2017.

N. Tremblay, G. Puy, R. Gribonval, and P. Vandergheynst, Compressive Spectral Clustering. In: 33rd Int. Conf. on Machine Learning, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01320214

A. Tsitsulin, D. Mottin, P. Karras, A. Bronstein, and E. Müller, Netlsd: Hearing the shape of a graph, ACM Int. Conf. on Knowledge Discovery & Data Mining, pp.2347-2356, 2018.

T. Vayer, N. Courty, R. Tavenard, L. Chapel, and R. Flamary, Optimal transport for structured data with application on graphs, Int. Conf. on Machine Learning, vol.97, pp.6275-6284, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02174322