H. Farid, Photo tampering throughout history, 2011.

J. Thies, M. Zollhofer, M. Stamminger, C. Theobalt, and M. Nießner, Face2face: Real-time face capture and reenactment of rgb videos, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.2387-2395, 2016.

H. Kim, P. Carrido, A. Tewari, W. Xu, J. Thies et al., Deep video portraits, ACM Transactions on Graphics (TOG), vol.37, issue.4, p.163, 2018.

H. Averbuch-elor, D. Cohen-or, J. Kopf, and M. F. Cohen, Bringing portraits to life, ACM Transactions on Graphics (TOG), vol.36, issue.6, p.196, 2017.

S. Suwajanakorn, S. M. Seitz, and I. Kemelmacher-shlizerman, Synthesizing obama: learning lip sync from audio, ACM Transactions on Graphics (TOG), vol.36, issue.4, p.95, 2017.

J. Silbey and W. Hartzog, The upside of deep fakes, Md. L. Rev, vol.78, p.960, 2018.

R. Chesney and D. K. Citron, Deep fakes: A looming challenge for privacy, democracy, and national security. 107 california law review (2019, forthcoming); u of texas law, Public Law Research Paper, issue.692, pp.2018-2039, 2018.

K. Eichensehr, Don't believe it if you see it: Deep fakes and distrust, Jotwell: J. Things We Like, p.1, 2018.

S. Agarwal, H. Farid, Y. Gu, M. He, K. Nagano et al., Protecting world leaders against deep fakes, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.38-45, 2019.

E. Sabir, J. Cheng, A. Jaiswal, W. Abdalmageed, I. Masi et al., Recurrent convolutional strategies for face manipulation detection in videos, Interfaces (GUI), vol.3, p.1, 2019.

I. Amerini, L. Galteri, R. Caldelli, and A. D. Bimbo, Deepfake video detection through optical flow based cnn, Proceedings of the IEEE International Conference on Computer Vision Workshops, pp.0-0, 2019.

J. Stehouwer, H. Dang, F. Liu, X. Liu, and A. Jain, On the detection of digital face manipulation, 2019.

J. Fridrich and J. Kodovsky, Rich models for steganalysis of digital images, IEEE Transactions on Information Forensics and Security, vol.7, issue.3, pp.868-882, 2012.

A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies et al., Faceforensics++: Learning to detect manipulated facial images, 2019.

D. Cozzolino, G. Poggi, and L. Verdoliva, Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detection, Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, pp.159-164, 2017.

B. Bayar and M. C. Stamm, A deep learning approach to universal image manipulation detection using a new convolutional layer, Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security, pp.5-10, 2016.

N. Rahmouni, V. Nozick, J. Yamagishi, and I. Echizen, Distinguishing computer graphics from natural images using convolution neural networks, 2017 IEEE Workshop on Information Forensics and Security (WIFS), pp.1-6, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01664590

D. Afchar, V. Nozick, J. Yamagishi, and I. Echizen, Mesonet: a compact facial video forgery detection network, 2018 IEEE International Workshop on Information Forensics and Security (WIFS)
URL : https://hal.archives-ouvertes.fr/hal-01867298

, IEEE, pp.1-7, 2018.

Y. Wang, P. Bilinski, F. Bremond, and A. Dantcheva, G3AN: Disentangling motion and appearance for video generation, Conference on Computer Vision and Pattern Recognition (CVPR), p.2020

, G3AN: This video does not exist. disentangling motion and appearance for video generation, 2019.

, Imaginator: Conditional spatio-temporal gan for video generation, Winter Conference on Applications of Computer Vision (WACV), p.2020

R. Tolosana, R. Vera-rodriguez, J. Fierrez, A. Morales, and J. Ortega-garcia, Deepfakes and beyond: A survey of face manipulation and fake detection, 2020.

H. Xu, Y. Ma, H. Liu, D. Deb, H. Liu et al., Adversarial attacks and defenses in images, graphs and text: A review, 2019.

I. Goodfellow, J. Pouget-abadie, M. Mirza, B. Xu, D. Warde-farley et al., Generative adversarial nets, Advances in neural information processing systems, pp.2672-2680, 2014.

T. Karras, S. Laine, and T. Aila, A style-based generator architecture for generative adversarial networks, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.4401-4410, 2019.

P. Majumdar, A. Agarwal, R. Singh, and M. Vatsa, Evading face recognition via partial tampering of faces, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.0-0, 2019.

Y. Wang, A. Dantcheva, and F. Bremond, From attributes to faces: a conditional generative adversarial network for face generation, International Conference of the Biometrics Special Interest Group (BIOSIG), vol.17, 2018.

Z. Liu, G. Song, J. Cai, T. Cham, and J. Zhang, Conditional adversarial synthesis of 3d facial action units, Neurocomputing, vol.355, pp.200-208, 2019.

L. Jiang, W. Wu, R. Li, C. Qian, and C. C. Loy, Deeperforensics-1.0: A large-scale dataset for real-world face forgery detection, 2020.

Y. Li, M. Chang, and S. Lyu, In ictu oculi: Exposing ai generated fake face videos by detecting eye blinking, 2018.

P. Korshunov and S. Marcel, Speaker inconsistency detection in tampered video, 2018 26th European Signal Processing Conference (EUSIPCO), pp.2375-2379, 2018.

, Vulnerability assessment and detection of deepfake videos, The 12th IAPR International Conference on Biometrics (ICB), pp.1-6, 2019.

A. Khodabakhsh, R. Ramachandra, K. Raja, P. Wasnik, and C. Busch, Fake face detection methods: Can they be generalized, 2018 International Conference of the Biometrics Special Interest Group (BIOSIG), pp.1-6, 2018.

F. Chollet, Xception: Deep learning with depthwise separable convolutions, Proceedings of the IEEE conference on computer vision and pattern recognition, pp.1251-1258, 2017.

J. Thies, M. Zollhöfer, and M. Nießner, Deferred neural rendering: Image synthesis using neural textures, 2019.

J. Carreira and A. Zisserman, Quo vadis, action recognition? a new model and the kinetics dataset, proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.6299-6308, 2017.

K. Hara, H. Kataoka, and Y. Satoh, Can spatiotemporal 3d cnns retrace the history of 2d cnns and imagenet, Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp.6546-6555, 2018.

A. Bulat and G. Tzimiropoulos, How far are we from solving the 2d & 3d face alignment problem? (and a dataset of 230,000 3d facial landmarks), International Conference on Computer Vision, 2017.