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Espaces de splines réproduisant les polynômes à partir de
pavages de zonotopes

Résumé : Étant donné une configuration de points A, on explore une connexion entre les
espaces de splines reproduisant les polynômes sur certains sous-ensembles de conv(A) et les
pavages fins du zonotope Z(V ) associé à la configuration de vecteurs correspondante. Ce lien
généralise directement un résultat connu sur les configurations de Delaunay et inclut naturelle-
ment, grâce à son charactère combinatoire, le cas de points en répétés et affinement dépendants
en A. On prouve l’existence d’un processus de construction itératif général pour ces espaces.
Enfin, on tourne notre attention vers les pavages de zonotopes fins et réguliers, en spécialisant
nos résultats précédentes et en exploitant le graphe d’adjacence du pavage afin de proposer un en-
semble d’algorithmes utiles en pratique pour la construction et l’évaluation des fonctions splines
associées.

Mots-clés : spline multivariée, spline simplexe, base de splines, pavage de zonotope
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1 Introduction

Curves and surfaces based on piecewise-polynomial Bézier and B-spline functions [1, 2] have
long been invaluable tools in computer-aided design, computer graphics, machining and fabri-
cation and, more recently, numerical analysis of partial differential equations [3]. The feature
of reproducing all the polynomials over an interval up to a given degree underpins their use as
approximation and interpolation tools. In one dimension, many robust and efficient evaluation
schemes have become available to efficiently construct and evaluate these families of functions.
In two or more dimensions, spline functions can be constructed via tensor products of one-
dimensional B-splines, but this structure can be too rigid in some applications. For this reason,
much work has gone into the direct generalization of B-spline functions to a multivariate setting.
While natural generalizations of single B-spline functions have been found [4], current state-of-
the-art approaches for unstructured splines are still somewhat lacking: the main construction
algorithm [5, 6] is only proven to work in two dimensions, and has only recently [7] been shown
to converge for all degrees. Moreover, the current formulations fall short of treating the case
of repeated and affinely dependent knots, which is needed in many practical applications. No
simple and general evaluation scheme is known for multivariate spline spaces.

In this work, we set out to improve on some of these shortcomings by showing how these
bases can be recast in a more general combinatorial form, paving the way for their use in efficient
numerical schemes. We base our formulation on a connection between simplex spline spaces
and fine zonotopal tilings, whose combinatorial nature allows a unified treatment free of the
degenerate configurations that are typical of a purely geometrical approach. Furthermore, these
structures come equipped with a natural adjacency graph, which can be used to navigate between
splines in a basis and extend some aspects of the classical one-dimensional evaluation scheme to
higher dimensions. This removes, in our view, one important computational shortcoming that
prevented a more widespread use of these functions.

Finally, note that some (unrelated) connections between zonotopal tilings and box splines
have been drawn in the past, see e.g. [8].

1.1 Notation

We adopt some standard notation from combinatorial geometry. Specifically, given n ∈ Z+, we
define the range [n] := {1, . . . , n}. The union between two disjoint sets R and S is denoted by
R t S. Note that |R t S| = |R|+ |S|, where | · | denotes the cardinality of a set. We also borrow
some convenient notation from [9]. In particular, given a configuration of n ≥ d + 1 points
A := (a1, . . . , an) in Rd and a set of indices I ⊆ [n] such that the points (ai)i∈I are affinely
independent, we denote by det(I) the (d + 1) × (d + 1) determinant det((ai, 1)i∈I), with the
rows ordered so that det(I) > 0. Similarly, we denote by det( Ikj ) the result of replacing the row
corresponding to (aj , 1) in det(I) with (ak, 1) in the same position. Notice that det( Ikj ) is not
necessarily positive. Similarly, for x ∈ Rd, det( Ixj ) is obtained by replacing the row (aj , 1) in
det(I) with (x, 1).

Let now R(A) ⊂ Rd be any region obtained as the union of convex hulls of subsets of points
in A. A subdivision T of R(A) is a collection of d-dimensional polytopes ∆ with vertices in A
such that

⋃
∆∈T ∆ = R(A) and any two polytopes in T share a common face, possibly empty.

If all the polytopes are simplices, then T is a triangulation of R(A).
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4 Barucq, Calandra, Diaz, Frambati

1.2 Multivariate splines
Multivariate (unstructured) spline functions were introduced by Curry and Schoenberg [10].
The following useful recurrence formula was first derived by Micchelli [11]. Given a configuration
A = (a1, . . . , an) of points in Rd and a subset X ⊆ [n] of size |X| = k + d + 1, the normalized
multivariate spline functionM(x | (ai)i∈X) can be defined for x ∈ Rd via the recursive expression

M(x | (ai)i∈X) :=


d!

det(X)
1X(x) if k = 0,

k + d

k

∑
b∈B

det( Bxb )

det(B)
M(x | (ai)i∈B\{b}) otherwise,

(1.1a)

(1.1b)

where 1X(x) := 1conv({ai}i∈X)(x) is the indicator function of the convex hull of the points indexed
by X, and B is any subset B ⊆ X with |B| = d + 1 such that the points (ab)b∈B are affinely
independent. If no such B exists, then the affine rank of the points indexed by X is less than d+1
and the spline, supported on a zero-measure set, is set to zero everywhere by continuity. The
functions M(x | · ) are multivariate piecewise-polynomial functions of x ∈ Rd with regularity
Ck−1 if all the points are affinely independent, and with reduced regularity otherwise. Another
useful expression, also derived in [11], is the knot insertion formula. If |X| ≥ d+2 (i.e., if k ≥ 1),
we can select another index c ∈ X \B. We then have

det(B)M(x | (ai)i∈X\{c}) =
∑
b∈B

det( Bcb )M(x | (ai)i∈X\{b}). (1.2)

Just like (1.1b) relates splines of order k and k − 1, allowing for a recurrent evaluation scheme,
(1.2) relates splines with the same order k − 1.

1.3 Vector configurations and zonotopal tilings
We refer the reader to [12] or [13, Chapter 6] for a thorough introduction to these combinatorial
objects.

Let A = (a1, . . . , an) be a configuration of points ai ∈ Rd, not necessarily affinely independent
or even distinct, but which affinely span Rd. For each point ai, define its projective lift as
vi := (ai, 1) ∈ Rd+1, and let V := (v1, . . . , vn) be the associated vector configuration.

Given two subsets P , Q ⊂ Rd, their Minkowski sum is defined as the set P +Q := {x+ y ∈
Rd : x ∈ P, y ∈ Q}. The Minkowski sum of a set of segments is a special convex polytope known
as a zonotope. There is a natural zonotope Z(V ) ⊂ Rd+1 associated to each point configuration
V , defined as follows. For every index i ∈ [n], define the segment [0, vi] := {αivi ∈ Rd+1 : 0 ≤
αi ≤ 1}. Then Z(V ) is given by the Minkowski sum

Z(V ) :=

n∑
i=1

[0, vi]

Given two subsets of indices I, B ⊆ [n] with I ∩ B = ∅, |B| = d + 1 and det(B) > 0, the
parallelepiped ΠI,B ⊂ Rd+1 is defined as

ΠI,B :=
∑
i∈I

vi +
∑
b∈B

[0, vb] (1.3)

Notice that the (d + 1)-dimensional volume of the tile vold+1(ΠI,B) is equal to det(B), and
that only B determines the shape of ΠI,B , while I simply shifts its position. A collection P of

Inria
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parallelepipeds ΠI,B forming a polyhedral subdivision of Z(V ) is known as a fine zonotopal tiling
of Z(V ) (see [14] or [13, Chapter 6]). An example is shown in Figure 1. Notice that the set I of
each tile ΠI,B can be read off as the set of vectors in any shortest path connecting the origin to
the base of the tile. In the present work, we call |I| the order of the tile ΠI,B , and we denote by
P(k) for any integer k ≥ 0 the subset {ΠI,B ∈ P : |I| = k}.

The faces of a tile ΠI,B are themselves parallelepipeds that are obtained by setting αi equal
to 0 or 1 in some of the segments [0, vb] of (1.3). Clearly, if ΠJ,C is a face of ΠI,B then C ⊆ B
and I ⊆ J ⊆ I t B. If |C| = d then ΠJ,C is called a facet of ΠI,B . Since P is a subdivision, a
facet is either shared between exactly two tiles of P, or is an external facet of Z(V ). It is easily
checked that two tiles ΠI,B and ΠI′,B′ share a facet if and only if there are two indices b ∈ B,
b′ ∈ B′ such that B \ {b} = B′ \ {b′} = B ∩ B′ and either I = I ′, I = I ′ t {b′}, I ′ = I t {b} or
I t {b} = I ′ t {b′}. The shared facet ΠJ,C then satisfies C = B ∩B′ and J = I ∪ I ′.

Fine zonotopal tilings possess a number of remarkable properties. First, all such tilings of
Z(V ) are simply different arrangements of the same set of tile shapes.

Theorem 1.1 (Shephard [15]). Every zonotope Z(V ) admits a fine zonotopal tiling, and all fine
zonotopal tilings of Z(V ) have the same number of tiles, namely one full-dimensional tile for
each maximal linearly independent subset of V .

Moreover, one can remove a point ai corresponding to an index i ∈ [n] from A and consider
the corresponding zonotope Z(V \ {vi}). Then, any tiling P of Z(V ) induces a tiling P[n]\{i} of
Z(V \ {vi}), or indeed of any zonotope built on a subset of V , as follows.

Lemma 1.2. Let P be a fine zonotopal tiling of Z(V ). Then:

P[n]\{i} := {ΠI,B ∈ P : i 6∈ I tB} t
{

ΠI\{i},B : ΠI,B ∈ P, i ∈ I
}

(1.4)

is a fine zonotopal tiling of Z(V \ {vi}). Similarly, for any Q ⊆ [n],

P[n]\Q :=
{

ΠI\Q,B : ΠI,B ∈ P, B ∩Q = ∅
}
, (1.5)

is a fine zonotopal tiling of Z(V \ {vq}q∈Q).

Proof. For (1.4), see e.g. Proposition 4.3 of [16]; (1.5) follows from (1.4) by repeated application.

Since the tiles in P form a polyhedral subdivision of Z(V ), we can form its adjacency graph
G by associating to each tile ΠI,B a vertex in G and by connecting two tiles ΠI,B and ΠI′,B′ with
an edge if and only if the tiles share a facet.

2 Polynomial-reproducing spline spaces
The degree of approximation of a spline space is closely related to the maximal degree of polyno-
mials it contains in its linear span [17]. Such spaces are called polynomial-reproducing. Determin-
ing which spline spaces are polynomial-reproducing proved more challenging in d > 1 than in the
one-dimensional case. Many interesting spline spaces have been found on suitable triangulations
and subdivisions (see e.g. [18, 19]). We focus here on a recent approach by Neamtu [9] that
is not based on a pre-existing subdivision. In his work, Neamtu showed that spline functions
associated to Delaunay configurations of order k form indeed a polynomial-reproducing spline
space up to degree k. We introduce here briefly his results, before proposing a generalization.

First, let us recall the definition of the polar form of a polynomial (see e.g. [20]):

RR n° 9350
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ZpV q

0

a1 a2, a3 a4 a5 a6

v1

v2 v3
v4

v5
v6

v2

v3

v4

v5

v6

R

∅, t1, 2u

∅, t2, 6u

t2u, t1, 4u t2u, t4, 6u t6u, t2, 5u
t1, 2u, t3, 4u

t2, 4u, t1, 3u

t2, 4u, t3, 6u

t2, 6u, t4, 5u

t5, 6u, t2, 4u

t2, 3, 4u, t1, 6u t2, 4, 6u, t3, 5u

t1, 2, 3, 4u, t5, 6u
t2, 3, 4, 6u, t1, 5u

Figure 1: Left: a point configuration a1, . . . , a6 in R, with a2 = a3, their projective lifts v1, . . . , v6

and the zonotope Z(V ). Right: a fine zonotopal tiling of Z(V ), the subsets I,B associated to
each tile ΠI,B , and the adjacency graph G.

Definition 2.1. Let k ≥ 0 and let q(x), x ∈ Rd, be a d-variate polynomial of degree at most
k. Then there exists a unique function Q(x1, . . . , xk) of the d-dimensional variables (x1, . . . , xk)
that is symmetric under permutation of its arguments, affine in each of them, and that agrees
with q on the diagonal, i.e., Q(x, . . . , x) = q(x). Q is called the polar form of q.

Let A be an infinite set of points in Rd in general position, i.e., where no subset of d+1 points
is affinely dependent and no subset of d + 2 points is co-spherical, and with no accumulation
point. A Delaunay configuration XI,B of order k ≥ 0 is any disjoint couple of sets B, I ⊆ [n]
with |B| = d+1, |I| = k such that the sphere circumscribed to the simplex ∆B := conv({ab}b∈B)
contains in its interior the points {ai}i∈I and no other point of A. Notice that this definition
depends crucially on the points being in general position. To each such configuration, we can
associate through (1.1) the d-variate spline function of order k

M(x | XI,B) := M(x | {ai}i∈ItB).

Neamtu’s result can be stated as follows:

Theorem 2.2 (Neamtu [9]). Let q(x) be a polynomial of degree at most k. Then, for all x ∈ Rd,

q(x) =

(
k + d

d

)−1 ∑
XI,B∈Dk

Q((ai)i∈I) vold(∆B)M(x | XI,B),

where Q is the polar form associated to q and the sum is extended to the set Dk of Delaunay
configurations of A of order k.

Neamtu’s result is based upon some strong assumptions on A, notably the infiniteness of the
general position of points in A, which we are able to relax by using the combinatorial nature of
zonotopal tilings to our advantage.

Let now A = (a1, . . . , an) be any finite point configuration in Rd. Assume that the affine
span of the points in A is the whole Rd. Let V be the associated vector configuration and Z(V )
its associated zonotope, as in Section 1.3. Then the following, more general statement holds:

Inria
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Theorem 2.3. Let P be a fine zonotopal tiling of Z(V ), let 0 ≤ k ≤ n − d − 1 and let P(k) :=
{ΠI,B ∈ P : |I| = k}. Each tile ΠI,B ∈ P(k) can be associated via (1.1) to the d-variate spline
of degree k = |I|

M( · | ΠI,B) := M( · | (ai)i∈ItB). (2.1)

Then, for any polynomial q(x) of degree at most k,

q(x) =
k!

(k + d)!

∑
ΠI,B∈P(k)

Q((ai)i∈I) vold+1(ΠI,B)M(x | ΠI,B) for x ∈ convk(A),

where Q is the polar form of q(x) and

convk(A) =
⋂

S⊆[n]
|S|=n−k

conv({ai}i∈S)

is the intersection of the convex hulls of all subconfigurations of A of size n− k.

The generalization with respect to Neamtu’s result is twofold. First, for a given point con-
figuration A, many different fine zonotopal tilings of Z(V ) can be constructed. Each tiling then
yields a family of polynomial-reproducing spline spaces for all degrees up to n − d − 1. In fact,
Delaunay configurations can be seen as a special case of this construction, as discussed in the
next section.

A second generalization is that the point configuration A is allowed to contain affinely depen-
dent subsets and repeated points. In this case, some of the spline functions have reduced regular-
ity [11], and thus the spline spaces that can be constructed in this way are more generic. Observe
that, if all the vertices of conv(A) are repeated at least k+1 times in A, then convk(A) = conv(A).
We obtain therefore a multivariate generalization of the behavior of clamped (also called open)
knot vectors in one dimension:

Corollary 2.4. Assume that each vertex of conv(A) is repeated at least k+ 1 times in A. Then,
in the same conditions as Theorem 2.3, the splines M( · | ΠI,B) for ΠI,B ∈ P(k) reproduce
polynomials up to order k on the whole conv(A).

This is a highly desirable property in view of practical applications, as it allows the definition of
boundary conditions.

2.1 Proof of Theorem 2.3
Neamtu’s original proof of the fact that splines associated to Delaunay configurations are polynomial-
reproducing (Theorem 4.1 of [9]) rests on a crucial structural property regarding neighbouring
pairs of configurations, namely the edge matching property proved in Proposition 2.1 of [9]. This
property underpins also other formulations such as the algorithmic generalization proposed by
Liu and and Snoeyink [6] and the geometric description of Schmitt in terms of families of convex
Jordan curves [7]. We prove hereafter that a similar property also holds for zonotopal tilings.

Proposition 2.5. Let ΠJ,C be a facet of a tile ΠI,B ∈ P, with |J | = k. Then |I| = k or
|I| = k − 1, and exactly one of the following is true:

(i) ΠJ,C is shared between ΠI,B and exactly another tile ΠI′,B′ ∈ P, with either |I ′| = k or
|I ′| = k − 1. Moreover, if {b} = B \ B′ and {b′} = B′ \ B, the two points ab and ab′ are
separated by the hyperplane H := aff({ac}c∈C) if and only if |I| = |I ′|;

RR n° 9350



8 Barucq, Calandra, Diaz, Frambati

(ii) there exists an index b ∈ B such that, for a suitable orientation of the hyperplane H :=
aff({ac}c∈C), the points {ai}i∈I are in the positive closed halfspace of H, the points {ai}i∈ItB
are in the negative closed halfspace of H, and ab is in the positive open halfspace of H if
b ∈ J and in the negative open halfspace of H if b 6∈ J .

Proof. A facet ΠJ,C of a tile ΠI,B is obtained by choosing an index b ∈ B and setting the
corresponding coefficient αb of segment [0, vb] in (1.3) to either 0, in which case J = I, or 1, in
which case J = I t {b}. Thus, k := |J | = |I| or k := |J | = |I| + 1. Since the tiles in P form a
subdivision of Z(V ), ΠJ,C is either a shared facet between ΠI,B and exactly one other tile ΠI′,B′ ,
or is a boundary facet of Z(V ).

In the first case, C = B ∩ B′, and the previous argument also implies that either J = I ′ or
J = I ′ t {b′}, with {b′} = B′ \B and {b} = B \B′, and thus |I ′| = k or |I ′| = k− 1. Since both
parallelepipeds are convex polytopes, their interiors are separated by the hyperplane spanned
by their common facet, and we can choose a nonzero vector N ∈ Rd+1, normal to the facet,
satisfying 〈vc, N〉 = 0 for all c ∈ C = B ∩B′, and

〈z − z′, N〉 ≥ 0 (2.2)

for all z ∈ ΠI,B and z′ ∈ ΠI′,B′ . Notice that necessarily 〈vb, N〉 6= 0 and 〈vb′ , N〉 6= 0, since
the vectors in B and B′ must be linearly independent. The case |I| = |I ′| corresponds to either
I = I ′ or I t {b} = I ′ t {b′}. If I = I ′, then setting (z, z′) = (vb +

∑
i∈I vi,

∑
i∈I′ vi) in (2.2)

yields 〈vb, N〉 > 0, while choosing (z, z′) = (
∑

i∈I vi, vb′ +
∑

i∈I′ vi) yields 〈vb′ , N〉 < 0. Thus,

sign(〈vb, N〉) = − sign(〈vb′ , N〉).

If I t {b} = I ′ t {b′}, the same choices of (z, z′) lead to the same conclusion. The case |I| 6= |I ′|
is very similar, since it implies either I = I ′ t {b′} or I t {b} = I ′. In both cases, plugging the
couples (z, z′) = (

∑
i∈I vi,

∑
i∈I′ vi) and (z, z′) = (vb +

∑
i∈I vi, vb′ +

∑
i∈I′ vi) in (2.2) leads to

sign(〈vb, N〉) = sign(〈vb′ , N〉).

Thus, the hyperplane H = {x ∈ Rd : 〈N, (x, 1)〉 = 0} satisfies the first part of the proposition.
Suppose now that ΠJ,C is a boundary facet of Z(V ). Since Z(V ) is a convex polytope, all

points z ∈ Z(V ) lie in the same closed halfspace of ΠJ,C , and we can choose a nonzero vector
N ∈ Rd+1, normal to ΠJ,C , so that 〈vc, N〉 = 0 for all c ∈ C and

〈z −
∑
j∈J

vj , N〉 ≤ 0 (2.3)

for all z ∈ Z(V ). Plugging into (2.3), respectively, z = ve +
∑

j∈J vj with e 6∈ J and z =∑
j∈J,j 6=f vj with f ∈ J shows that

〈vc, N〉 = 0, 〈ve, N〉 ≤ 0, 〈vf , N〉 ≥ 0

for all c ∈ C, e 6∈ J and f ∈ J . Moreover, as before, 〈vb, N〉 6= 0, otherwise the vectors in B
would be linearly dependent. Therefore, 〈vb, N〉 > 0 if b ∈ J , and 〈vb, N〉 < 0 if b 6∈ J . Since
I ⊆ J ⊆ I t B, the hyperplane H = {x ∈ Rd : 〈N, (x, 1)〉 = 0} satisfies the second part of the
proposition.

Alternative (i) of Proposition 2.5 corresponds exactly to (a generalization of) essential and
non-essential faces between Delaunay configurations that are described in Proposition 2.1 of [9].
However, in Proposition 2.5 above, the underlying point set A is finite, leading to the additional

Inria
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case (ii). Notice that the points are not required to be in general position, and can even be
repeated multiple times in A.

Armed with this result, we are ready to establish the polynomial reproduction property for
spline functions associated to P. The proof is similar to that of Theorem 4.1 of [9]; nonetheless,
we give here the full derivation in order to point out the contribution of boundary facets. We
start by proving the case k = 0.

Proposition 2.6. Let P(0) := {Π∅,B ∈ P}. Then the set of simplices T (0) = {∆B :=
conv({ab}b∈B) : Π∅,B ∈ P(0)} triangulates conv(A).

Proof. The proof can be derived from equivalent statements in [21, 22] or [14, Chapter 9]. We
give here a short direct proof for convenience. First, for any tile Π∅,B ∈ P(0), the points {ab}b∈B
are affinely independent, and thus all the simplices in T (0) are non-degenerate. Let Π∅,B′ be a
distinct tile in P(0), and assume that there is a positive linear dependency∑

b∈B

βbvb +
∑
b′∈B′

γb′(−vb′) = 0 (2.4)

with βb, γb′ > 0. If we define C := max ({βb}b∈B ∪ {γb′}b′∈B′), then the point z :=
∑

b∈B βb/C vb =∑
b′∈B′ γb′/C vb′ lies in the interior of both Π∅,B and Π∅,B′ , which is impossible since P is a

polyhedral subdivision. Therefore, there cannot exist any positive linear dependency (2.4) and,
by Stiemke’s Lemma [23], there must be a vector N ∈ Rd+1 with 〈N, vb〉 ≥ 0 for all b ∈ B and
〈N, vb′〉 ≤ 0 for all b′ ∈ B′. The corresponding hyperplane {x ∈ Rd : 〈N, (x, 1)〉 = 0} separates
∆B and ∆B′ , proving that they have disjoint interiors.

Finally, let Π∅,C be the facet of Π∅,B obtained by setting, for a single b ∈ B, the coefficient αb

of the segment [0, vb] in (1.3) equal to zero. Then FC := conv({ac}c∈C) is a (d− 1)-dimensional
face of ∆B . By Proposition 2.5, either there is a unique tile Π∅,B′ with |B ∩B′| = d, i.e., there
is exactly one distinct simplex ∆B′ in T (0) sharing FC with ∆B , or FC lies on a hyperplane that
does not contain any point of A on its positive side, and therefore belongs to the boundary of
conv(A). This completes the proof.

The indicator functions of simplices in T (0) correspond exactly to degree-zero splines via
(1.1a). Proposition 2.6 then provides the root of the recurrence in the following proof.

Proof of Theorem 2.3. Similarly to the proof of Theorem 4.1 in [9], we simply have to prove that
the expression ∑

ΠI,B∈P(k)

Q((ai)i∈I) vold+1(ΠI,B)M(x | ΠI,B) (2.5)

can be rewritten in terms of the tiles in P(k−1) as

k + d

k

∑
ΠI′,B′∈P(k−1)

Q((ai)i∈I′ , x) vold+1(ΠI′,B′)M(x | ΠI′,B′). (2.6)

In fact, iterating until k = 0 directly leads to the expression(
k + d

k

) ∑
Π∅,B∈P(0)

Q(x, . . . , x) vold+1(Π∅,B′)M(x | Π∅,B′),

which is simply equal to (k+d)!/k! q(x) thanks to (1.1a), the definition of polar form (Definition
2.1), and the fact that the simplices defined by splines in P(0) triangulate conv(A) (Proposition
2.6).
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10 Barucq, Calandra, Diaz, Frambati

In order to prove that (2.5) is equal to (2.6), similarly to [9], we first apply the spline recurrence
formula (1.1b) to (2.5), obtaining

k + d

k

∑
ΠI,B∈P(k)

Q((ai)i∈I)
∑
b∈B

det( Bxb )M(x | ΠI,B\{b}), (2.7)

since vold+1(ΠI,B) = det(B). We can associate every term in (2.7) with a facet ΠI,B\{b} of P.
Following Proposition 2.5, there are three possibilities:

(i) The facet is shared with exactly one other tile ΠI′,B′ ∈ P(k), with I ′ = I, B′ \ {b′} =
B \ {b} = B ∩ B′ for some b′ ∈ B′, and with ab and ab′ lying on opposite sides of H :=
aff({vi}i∈B∩B′). Therefore det( Bxb ) = −det( B′

x
b′ ), and the two corresponding terms in

the sum cancel each other;

(ii) The facet is shared with exactly one other tile ΠI′,B′ ∈ P(k−1), with I ′t{b′} = I, B′\{b′} =
B \ {b} = B ∩ B′ for some b′ ∈ B′, and with ab and ab′ lying on the same side of
H := aff({ai}i∈B∩B′). After noticing that I tB \ {b} = I ′ tB′, the corresponding term in
(2.7) can be rewritten as

k + d

k
Q((ai)i∈I′t{b′}) det( B′

x
b′ )M(x | (ai)i∈I′tB′). (2.8)

(iii) The facet lies on the boundary of Z(V ). In this case the hyperplane H := aff({ai}i∈B\{b})
contains all the points {ai}i∈ItB\{b} in its positive closed halfspace, out of which at
most |I| = k are in its positive open halfspace. All other points of A lie in its nega-
tive closed halfspace. Consequently, if x is in the interior of convk(A), then necessarily
x 6∈ conv({ai}i∈ItB\{b}) and therefore

M(x | ΠI,B\{b}) = M(x | (ai)i∈ItB\{b}) = 0.

Focusing now on (2.6), and again similarly to [9], we rewrite x in barycentric coordinates
with respect to the simplex conv({ab′}b′∈B′) as

x =
∑
b′∈B′

det( B′
x
b′ )

det(B′)
ab′ , (2.9)

and since Q is multiaffine and vold+1(ΠI′,B′) = det(B′), using (2.9), we can rewrite (2.6) as

k + d

k

∑
ΠI′,B′∈P(k−1)

M(x | ΠI′,B′)
∑
b′∈B′

Q((ai)i∈I′t{b′}) det( B′
x
b′ ). (2.10)

Similarly as before, by Proposition 2.5, we can associate each term in (2.10) with a facet
ΠI′t{b′},B′\{b′} of P. If such a facet is shared with exactly one other tile ΠI,B ∈ P(k−1), then it
appears twice in the sum, and the two contributions cancel each other since I ′ t {b′} = I t {b},
I t B = I ′ t B′ and ab, ab′ are separated by H := aff({ai}i∈B∩B′). Terms corresponding to
facets on the boundary of Z(V ) again do not contribute to the sum, since the corresponding
hyperplane H := aff({ai}i∈B′\{b′}) separates at most the k points in I ′ t {b′} from the other
n− k points of A, and since b′ 6∈ I ′, the points {ai}i∈I′tB′ either lie on H or on the positive side
of H. Thus, if x ∈ convk(A), we have once more

M(x | ΠI′,B′) = M(x | (ai)i∈I′tB′) = 0.

The remaining terms correspond to facets shared with exactly one other tile ΠI,B ∈ P(k), and
they are equal to the terms (2.8), completing the proof.
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Polynomial-reproducing spline spaces from fine zonotopal tilings 11

Two examples of families of spline spaces associated to fine zonotopal tilings are shown in
Figure 2.
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Figure 2: Two possible fine zonotopal tilings of Z(V ) for the point configuration of Figure 1 and
their associated spline spaces of degrees k = 0, . . . , 4 for the standard one-dimensional B-spline
basis (top) and an alternative tiling (bottom).

2.2 Spline space construction

Algorithms for the construction of Delaunay configurations (or, rather, their dual higher-order
Voronoi diagrams) have been known for some time [24]. In the two-dimensional case, Liu and
Snoeyink [5, 6] have leveraged these results to propose an algorithm capable of iteratively con-
structing a large family of generalized Delaunay configurations of A with any order k ≥ 0, each
yielding a set of polynomial-reproducing spline spaces. Their algorithm is based on the concept
of the order-k centroid triangulation [6, 25–27], which is a triangulation of the point set A(k)

whose elements are the averages of k-element subsets of A. The order-1 centroid triangulation is
simply an (arbitrary) triangulation of A, and an order-k centroid triangulation is obtained from
an order-(k − 1) centroid triangulation by a subdivision of the polygonal neighborhood of every
vertex (its link region), with complete freedom in the choice of triangulation for each polygon.
Every triangle obtained in this way is then assocated to a spline function of degree k.

In the two-dimensional case, this algorithm has been proven to converge for degrees k ≤ 3 [6]
and later for all degrees k ≥ 0 by Schmitt [7]. However, one major hurdle for the extension to
dimensions d > 2 lies in the existence of non-convex regions that do not admit any triangulation,
such as Schönhardt’s polyhedron [28]. If such a region is encountered, the algorithm cannot
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12 Barucq, Calandra, Diaz, Frambati

continue, and there is no known condition under which the link regions are all guaranteed to be
triangulable. Moreover, the case of affinely dependent and/or repeated points is excluded from
the proofs and treated with symbolic perturbation, which creates ambiguous cases and does not
allow to extend the proofs of convergence easily. This problem becomes even harder to address
as the number of space dimensions grows.

Given a fine zonotopal tiling P of Z(V ), we prove in this section that there exists a construc-
tion algorithm similar to Liu and Snoeyink’s, with a suitable choice of triangulations, that is
able to iteratively construct P. This result rests on a natural definition of the link region R(I)
associated to each subset I ⊂ [n] (Definition 2.7), which generalizes naturally Liu and Snoeyink’s
notion of vertex link.

2.3 Relationship with centroid triangulations
Denoting by Hr the hyperplane Hr := {x ∈ Rd+1 : xd+1 = r}, the intersection

Q(r) := Z(V ) ∩Hr

corresponds to the set Q(r) := {
∑

v∈B [0, vb] : B ⊆ [n], |B| = r}, which is just the convex hull
of the points V (r) := {

∑
ai∈B(ai, 1), B ⊆ A, |B| = r}. The region Q(r) is also known as (a

multiple of) the r-set polytope of A [29, 30]. Just as vectors in V can be interpreted projectively
as points in A, vectors in V (r) can be projectively reduced to the set A(r) of all possible averages
of r points in A. The intersection P ∩Hr of a zonotopal tiling of Z(V ) with Hr then produces
a subdivision of V (r) [16, 31] with (projective) vertices in A(r), which corresponds to a centroid
subdivision in the sense of [6, 25–27].

According to (1.3), the intersection of a tile ΠI,B , |I| = k with the hyperplane Hr is an
affine transformation of the hypersimplex ∆d+1,r−k, which has a positive dimension if and only
if k < r < k+ d+ 1. Translated in the language of spline spaces, this means that the cells in the
r-th centroid subdivision induced by P are slices of tiles associated via (2.1) to the basis splines

SP(r) := {M( · | ΠI,B), r − d− 1 < k := |I| < r}.

For d = 2, only two types of cells appear in each r-th centroid triangulation for r > 1, corre-
sponding to splines of degree k = r−1 and k = r−2. The corresponding hypersimplices ∆3,1 and
∆3,2 are just triangles, and therefore the subdivision is a so-called bicolored triangulation. This
fact is widely known in the context of centroid triangulations [6, 24–27], where the corresponding
triangles are called type-I and type-II triangles, respectively. In dimension d > 2, the induced
subdivision is no longer a triangulation, and the splines of all orders r−d+ 1 ≤ k ≤ r−2 appear
in the r-th centroid subdivision as hypersimplices, e.g., octahedra for d = 3, k = r − 2.

2.4 Link regions
We define the link region of a subset I ⊆ [n] as follows:

Definition 2.7. Given a fine zonotopal tiling P of Z(V ) and a subset Q ⊆ [n], |Q| = k, the
regions E(r)(Q), r ≥ 0, are defined as the union of simplices

E(r)(Q) :=
⋃

ΠI,B∈E(r)(Q)

conv({ab}b∈B), (2.11)

with
E(r)(Q) :=

{
ΠI,B ∈ P(r) : B ∩Q = ∅, I ⊆ Q

}
. (2.12)

The link region R(Q) of Q is defined as R(Q) := E(k)(Q).
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An example of link region, and its relation to the regions (2.11), is shown in Figure 3. Notice
that E(k)(Q) = {ΠI,B ∈ P : I = Q} and that E(r)(Q) = ∅ for r > k. It can be easily checked,
though we will not do it explicitly here, that in two dimensions the above defined link region
coincides with the interior of a vertex link as used in [5–7]. However, Definition 2.7 is more
straightforward, more general, and can be applied to all point configurations in any dimension,
allowing to easily prove some important properties, as we do presently.

Proposition 2.8. For any subset Q ⊆ [n], define

convQ(A) := conv({ai}i 6∈Q)

and let r ≥ 0. Then, the following holds:

(i) The set of simplices T (r)(Q) := {conv({ab}b∈B) : ΠI,B ∈ E(r)(Q)} forms a triangulation of
E(r)(Q);

(ii) The regions E(r)(Q) form a subdivision of convQ(A);

(iii) The union of all simplices
⋃

r≥0 T (r)(Q) triangulates convQ(A);

(iv) The simplices T (k)(Q) triangulate the link region R(Q).

Proof. Obviously, (i) implies (iv) via Definition 2.7. Notice also that (iii) implies both (ii) and
(i), since it is clear from (2.12) that E(r)(Q)∩ E(s)(Q) = ∅ if r 6= s. Therefore, the triangulation
of convQ(A) decomposes into disjoint triangulations of the subregions E(r)(Q), r = 1, . . . , k.

Let now P(Q) be the induced tiling of Z(V \{vq}q∈Q) via (1.5). Comparing (2.12) with (1.5)
shows that the tiles {ΠI,B ∈

⊔
r≥0 E(r)(Q)} are in bijection with the tiles {Π∅,B ∈ P(Q)} =:

P(0)(Q). Therefore, by Proposition 2.6, the simplices {conv({ab}b∈B) : Π∅,B ∈ P(0)(Q)} form a
triangulation of convQ(A), proving (iii).

Based on these facts, we can replace Definition 2.7 of the link region of Q, |Q| = k, with

R(Q) := convQ(A) \

(
k−1⋃
r=0

E(r)(Q)

)
, (2.13)

which is preferred from an algorithmic standpoint because it expresses R(Q) only in terms of
the tiles ΠI,B ∈ Pr with r < k. Given that the simplex conv({ab}b∈B) is non-degenerate for any
tile ΠI,B , Proposition 2.8 implies that the region R(Q) := E(k)(Q) is empty if and only if its
triangulation contains no simplices, i.e., if and only if E(k)(Q) is empty. We have therefore the
following corollary:

Corollary 2.9. R(Q) is nonempty if and only if there is a tile ΠI,B ∈ P with I = Q.

Proposition 2.8 and Corollary 2.9 together imply that any fine zonotopal tiling P of Z(V ),
and therefore the associated family of spline spaces, can be obtained iteratively by triangulating
the link region associated to each set I for every tile ΠI,B through some choice of triangulation,
similarly to Liu and Snoeyink’s algorithm in two dimensions. This statement can be made precise
as follows:

Theorem 2.10. For every fine zonotopal tiling P of Z(V ) there exists a choice of triangulations
TI , one for every link region R(I) associated to each subset {I ⊆ [n] : ΠI,B ∈ P for some B},
such that P (and its associated spline spaces at all orders 0 ≤ k ≤ n− d− 1) can be constructed
as follows:
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14 Barucq, Calandra, Diaz, Frambati

(i) Let I(0) = {∅};

(ii) For every 0 ≤ k ≤ n − d − 1 and for every I ∈ I(k), let R(I) be the link region computed
via (2.13), and let TI be its triangulation. Denoting the simplex ∆B := conv({ab}b∈B), the
subset of tiles P(k) := {ΠI,B ∈ P : |I| = k} is given by

P(k) = {ΠI,B : I ∈ I(k), ∆B ∈ TI};

(iii) Let
I(k+1) = {I t {b} : ΠI,B ∈ P(k), b ∈ B, R(I t {b}) 6= ∅} (2.14)

(iv) Repeat (ii) and (iii) until k = n− d− 1, I(k+1) = ∅. Then P =
⊔n−d−1

k=0 P(k).

Proof. Item (iv) of Proposition 2.8 directly states that the tiles ΠI,B ∈ P(k) (i.e., splines of degree
k) are in bijection with the simplices conv({ab}b∈B) of a triangulation of the link region R(I).
Furthermore, due to Corollary 2.9, all the tiles ΠI,B ∈ P(k) are associated with a nonempty link
region, which is always triangulable since Proposition 2.8 exhibits one such triangulation. The
only thing left to determine is the set {I : ΠI,B ∈ P}.

Notice that I ∈ I(0) implies I = ∅, and by (2.13), R(∅) = conv(A). Therefore, the tiles
Π∅,B (i.e., splines of degree 0) are in bijection with the simplices of a triangulation of conv(A),
in accordance with Proposition 2.6.

Assume now that we have obtained all the tiles ΠI,B ∈ P(r) for r = 0, . . . , k, and we want to
determine the set I(k+1) := {I : ΠI,B ∈ P(k+1)}.

Let Q ⊂ [n], |Q| = k + 1 be a set of indices such that R(Q) 6= ∅, let {∆f , f = 1, . . . , F} be
the F boundary facets of R(Q), and for every f = 1, . . . , F , let ΠQ,Bf

and bf ∈ Bf be a tile in
P(k+1) such that ∆f = conv({ai}i∈Bf\{bf}). By Proposition 2.6, this tile is unique. Suppose that
all the facets {ΠQ,Bf\{bf}, f = 1, . . . , F} lie on the boundary of Z(V ), let |∆f | be the volume of
∆f and let Nf ∈ Rd be its normalized normal vector. Without loss of generality, we can choose
either all inward or all outward normal vectors so that

∑F
f=1 |∆f |

〈
Nf , abf

〉
≤ 0. Since R(Q) is

a nonempty, bounded polyhedral region, we know that
∑F

f=1 |∆f |Nf = 0, and we can therefore
write the following linear dependency with positive coefficients |∆f |f=1,...,F , and 1:

F∑
f=1

|∆f |
(
Nf ,−

〈
Nf , abf

〉)
+ (0,

F∑
f=1

|∆f |
〈
Nf , abf

〉
) = 0. (2.15)

Fix a point aq with q ∈ Q. If, for all f = 1, . . . , F , aq were separated from abf by the hyperplane
conv({ai}i∈Bf\{bf}), then we would have

(aq, 1) ·
(
Nf ,−

〈
Nf , abf

〉)
=
〈
Nf , aq − abf

〉
< 0,

(aq, 1) · (0,
F∑

f=1

|∆f |
〈
Nf , abf

〉
) =

F∑
f=1

|∆f |
〈
Nf , abf

〉
≤ 0.

(2.16)

By Stiemke’s Lemma [23], (2.15) and (2.16) cannot both be true. Therefore, there must be an
index f such that the facet ΠQ,Bf\{bf} does not lie on the boundary of Z(V ). Observe also that
ΠQ,Bf\{bf} cannot be shared with another tile ΠI′,B′ ∈ P(k+1), since otherwise I ′ = Q and ∆f
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would not be a boundary facet of R(Q). Therefore, by Proposition 2.5, there must be a tile
ΠI,B ∈ P(k) with Bf \ {bf} = B \ {b} = Bf ∩ B and Q = I t {b} for some b ∈ B. We conclude
that

I(k+1) ⊆ {I t {b} : ΠI,B ∈ P(k), b ∈ B}.
After filtering out the sets {I t {b} : R(I t {b}) = ∅}, we are left exactly with (2.14).

Finally, when |Q| = n − d, the set convQ(A) only contains d points, and therefore the link
region R(Q) has an empty interior. Therefore, I(n−d) = ∅, and the process stops.

This theorem states essentially that any fine zonotopal tiling of Z(V ) can be built using a
version of Liu and Snoeyink’s algorithm, provided that we know in advance which triangulation
needs to be applied to each subset {I : ΠI,B ∈ P}. In other words, it proves that their algorithm
is a universal way of constructing fine zonotopal tiling over Z(V ) and their associated spline
spaces. However, this result stops short of providing a fully-formed construction algorithm, as
it does not guarantee that any given choice of triangulations leads to a valid construction, only
that such a choice exists. In the next section, we show that regular fine zonotopal tilings can
be obtained by choosing a weighted Delaunay triangulation at each step, providing a sufficient
condition on the triangulations that guarantees the convergence of the construction process.

Finally, we give a couple of interesting results regarding the combinatorial structure of spline
spaces built by Theorem 2.10. First, as a direct consequence of Theorem 1.1, we obtain the
following simple characterization of the total number of spline functions:

Corollary 2.11. The total number of spline functions built by the process described in Theorem
2.10 on a point set A with |A| = n, summed over all orders k = 0, . . . , n− d− 1, is always equal
to the number of affinely independent subsets of A.

Next, we provide a characterization of the set of simplices

T (k) := {conv({ab}b∈B) : ΠI,B ∈ P(k)}

The intersection of these simplices defines the zones where all the spline functions are pure
polynomials, and their boundaries define the zones of reduced regularity of spline functions, i.e.,
knots in d = 1, knot lines in d = 2 and more generally knot hypersurfaces in d > 2.

Proposition 2.12. For all 0 ≤ k ≤ n − d − 1, the simplices in T (k) cover
(
k+d
d

)
times the set

convk(A).

Proof. By induction over k. The simplices in T (0) form a triangulation of conv(A) by Proposition
2.6, and therefore cover it exactly once. Assume now that the proposition is true for every
r < k. By Property (iii) of Proposition 2.8, for any subset Q ⊂ [n] with |Q| = k, the simplices
{conv({ab}b∈B) : ΠI,B ∈ E(r)(Q), r ≤ k} triangulate convQ(A), i.e.,

k∑
r=0

∑
ΠI,B∈E(r)(Q)

1B = 1convQ(A),

where 1convQ(A) : Rd 7→ R is the indicator function of the set convQ(A) ⊂ Rd and 1B is the
indicator function of conv({ab}b∈B). We sum this expression over all subsets Q ⊂ [n], |Q| = k.
Each tile ΠI,B ∈ P(r) appears in the sum whenever ItJ = Q for some subset J ⊂ [n], |J | = k−r
with J∩B = ∅. Therefore, the occurrences of a tile of P(r) in the sum correspond to the possible
choices of |Q \ I| = k − r indices among the

∣∣I tB∣∣ = n − r − d − 1 which are available. We
obtain ∑

ΠI,B∈P(k)

1B +

k−1∑
r=0

(
n− r − d− 1

k − r

) ∑
ΠI,B∈P(r)

1B =
∑

Q⊂[n],|Q|=k

1convQ(A). (2.17)
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By induction, the simplices derived from the tiles in P(r) cover the region convr(A) ⊇ convk(A)
exactly

(
r+d
d

)
times, and the sum on the right covers convk(A) exactly

(
n
k

)
times. Using multiset

notation and the Vandermonde identity, we can derive

k∑
r=0

(
n− r − d− 1

k − r

)(
r + d

r

)
=

k∑
r=0

((
n− k − d
k − r

)) ((
d+ 1

r

))
(2.18)

=

((
n− k + 1

k

))
=

(
n

k

)
.

Separating the term with r = k in the first sum in (2.18), we conclude that the first term in (2.17),
i.e. the set of all simplices in T (k), must cover the region convk(A) exactly

(
k+d
d

)
times.

Notice that in general it is not possible to extract from the set T (k) a collection of
(
k+d
d

)
independent triangulations, as these simplices form in general a branched cover of conv(A).
In practice, T (k) forms a complex web of overlapping simplices that contains many complex
intersections, see e.g. Figure 3.

Ep0q

Ep1q

Ep2q

Ep3q
a1

a2

a3

Ep0q

a1

a2

a3

Ep1q

Ep3q
Ep2q “ ∅

Figure 3: For a point configuration A ⊂ R2 with collinear points, the sets T (k) for k = 0 and k = 2, with
the shading indicating the number of simplices covering each point, and the regions E(r)(Q) of (2.11)
for two possible choices of Q := (a1, a2, a3).

3 Spline spaces from regular fine zonotopal tilings

We specialize the results of the previous section to spline spaces derived from regular fine zono-
topal tilings. Given a polytope P ⊂ Rd+2, we define its upper convex hull as the set of faces of
P whose outward normal vector has a positive (d+ 1)-th component.

Definition 3.1. A zonotopal tiling P of Z(V ) ⊂ Rd+1 is regular if its tiles are precisely the
projections along the (d+1)-th coordinate of the faces in the upper convex hull of another zonotope
Z̃ ⊂ Rd+2.

We show that this special case corresponds exactly to simplex splines associated to weighted
Delaunay configurations. The special properties of these tilings then allow us to derive a set
of practical algorithms for the construction of the spline spaces and the determination and
evaluation of all spline functions that are supported on a given point x ∈ Rd.
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3.1 Delaunay triangulations and regular zonotopal tilings
Let h : A 7→ R be a height function over A. Let T be a set of simplices that triangulate
conv(A) with vertices in A. For every subset B ⊆ [n], |B| = d + 1 such that there is a simplex
∆ := conv({ab}b∈B) ∈ T , let us order B such that det((ab, 1)b∈B) > 0. If, for every i ∈ A \B,

det((ab, h(ab), 1)b∈B , (ai, h(ai), 1)) < 0, (3.1)

then the triangulation T is called a weighted Delaunay triangulation with height function h. If
the points of A are in general position, plugging h(a) = ‖a‖2 in (3.1) yields the usual Delaunay
triangulation, see e.g. [32].

In order for the Delaunay triangulation to exist and be unique, a bit of care is needed when
choosing the height function h.

Definition 3.2. A height function h is generic if, given the lifted point cloud

Ã := {(a, h(a)), a ∈ A} ⊂ Rd+1,

the only affinely dependent subsets of d+2 points in Ã lie on a vertical plane, i.e., a plane whose
normal N ∈ Rd+1 satisfies Nd+1 = 0.

Notice that affinely dependent subsets are indeed allowed on vertical planes, and thus the
points in A can be repeated or affinely dependent. If h is generic, then the determinant in (3.1)
is always nonzero, and the weighted Delaunay triangulation is unique. Hereafter, we will only
consider generic height functions. We can now use (3.1) to specialize Theorem 2.10 to weighted
Delaunay triangulations.

Theorem 3.3. Let h be a generic height function on A, and for every set Q ⊆ [n] let TQ(h)
be the weighted Delaunay triangulation of convQ(A) with height function h. Then the procedure
outlined in Theorem 2.10 with the choice TI = TI(h) always produces a regular fine zonotopal
tiling P(h).

Proof. It is easy to prove using the lifting property (3.1). See also [33, 34] and especially [35] for
similar constructions and an interesting generalization.

Let Ã = {ãi := (ai, h(ai)), i = 1, . . . , n} ⊂ Rd+1 be the point cloud lifted by h, Ṽ :=
{(ai, h(ai), 1) : i = 1, . . . , n} be the associated vector configuration and Z(Ṽ ) be the zonotope
built on Ṽ . Denoting by π : Rd+2 7→ Rd+1 the projection that removes the (d+ 1)-th coordinate,
it is easy to check that π(Z(Ṽ )) = Z(V ). We define P(h) as the regular zonotopal tiling

P(h) := {π(Π̃I,B) : Π̃I,B is in the upper convex hull of Z(Ṽ )}. (3.2)

The fact that (3.2) is indeed a regular zonotopal tiling of Z(V ) was proven e.g. in [36, Lemma 2.2].
Since Π̃I,B is a boundary facet of Z(Ṽ ), we can follow the same reasoning as in the proof of item
(ii) of Proposition 2.5. After selecting the face normal NB of Π̃I,B with (NB)d+1 > 0, given that
h is generic and the face is not vertical, we conclude that the determinant

det((ab, h(ab), 1)b∈B , (ai, h(ai), 1)) (3.3)

is positive for all i ∈ I and negative for all i ∈ I tB, while the condition (NB)d+1 > 0 translates
to det((ab, 1)b∈B) > 0. Since only the points {ai}i∈ItB appear in the link region R(I), the
weighted Delaunay condition (3.1) is satisfied for all the points in R(I).

Theorems 2.10 and 3.3 together give a practical construction algorithm for all regular fine
zonotopal tilings of Z(V ), and therefore for their associated spline spaces. Restricting the con-
struction to the the special case d = 2 and to points in generic position, this process reduces to
a version of Liu and Snoeyink’s construction algorithm [5–7].
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3.2 Splines supported on a point

In this subsection we show that, in the case of spline spaces associated to regular fine zonotopal
tilings, there exists an efficient process to determine all the spline functions up to a given degree
k ≥ 0 that are supported on a given point x ∈ Rd. This is equivalent, by (2.1), to finding all the
tiles ΠI,B ∈ P(h) such that x ∈ conv({ai}i∈ItB). In this case, by extension, we say that the tile
ΠI,B is supported on x.

For spline functions of degree 0, the task is particularly simple. In fact, since the simplices
T (0) triangulate conv(A) (Proposition 2.6), whenever x ∈ conv(A) there is one and only one tile
Π∅,Z supported on x. Computationally, Π∅,Z can be found efficiently via a point location query
on a triangulation, for which many efficient algorithms exist, see e.g. [37, 38]. We prove in the
remainder of this section that all the other tiles ΠI,B (and hence spline functions) supported on
x can be found from Π∅,Z using a suitable orientation, induced by x, of the adjacency graph G of
P(h), i.e., the simple, connected graph having the tiles of P(h) as vertices and their connecting
internal facets as edges.

We assume hereafter that the test point x ∈ Rd is generic, i.e., it satisfies the following
condition:

x 6∈ aff({ac}c∈C) for all internal facets ΠJ,C of P.

This excludes from the possible values of x a zero-measure subset of Rd, and as a consequence,
all the following results must be understood to hold almost everywhere. This restriction can be
easily lifted using some well-known techniques such as symbolic perturbation. We can define
an orientation ox, depending on x, on the adjacency graph G of P as follows. Let ΠJ,C be a
facet shared by two tiles ΠI,B and ΠI′,B′ , with normal vector NC ∈ Rd+1. Then we define the
orientation of the corresponding edge in G as ΠI,B → ΠI′,B′ if and only if

sign (〈NC , (x, 1)〉) = sign (〈NC , z
′ − z〉) (3.4)

for any z′ ∈ ΠI′,B′ , z ∈ ΠI,B . In other words, we pick the direction of NC that leads to a positive
scalar product with (x, 1), and we use it to orient the corresponding edge.

The orientation ox defined by (3.4) yields a directed graph (G, ox). In the case of regular
tilings, this graph is acyclic.

Lemma 3.4. Let P(h) be a regular fine zonotopal tiling of Z(V ) with generic height function h.
Then the directed graph (G, ox) is acyclic for every generic x ∈ Rd. The same is true for any
fine zonotopal tiling P of Z(V ), regular or not, when d = 1.

Proof. Let Πi := ΠIi,Bi , i = 1, . . . , r be a family of r tiles of P(h) and let Fi := ΠJi,Ci , i = 1, . . . , r
be a family of facets such that Fi is shared between the tiles Πi and Πi+1. Let us assume that
the tiles form a cycle in G, i.e., Πr+1 = Π1. For each 1 ≤ i ≤ r, let Ni := NCi

be a vector normal
to the i-th facet and pointing from the tile Πi to the tile Πi+1.

Since P(h) is regular, by Theorem 3.3, for each tile Πi there is a vector yi ∈ Rd+2 with
(yi)d+1 > 0 such that 〈yi, (as, h(as), 1)〉 is positive if s ∈ Ii, zero if s ∈ Bi and negative if
s ∈ Ii tBi . Define the point gi ∈ Rd+1 component-wise as

(gi)j :=
(yi)j

(yi)d+1
, j = 1, . . . , d, (gi)d+1 :=

(yi)d+2

(yi)d+1
, (3.5)

which is possible since (yi)d+1 > 0. For all b ∈ Bi, 〈yi, (ab, h(ab), 1)〉 = 0 implies

〈gi, vb〉 = −h(ab), (3.6)
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and as a consequence, for all c ∈ Bi ∩Bi+1 = Ci,

〈gi+1 − gi, vc〉 = 0, (3.7)

i.e., the vector (gi+1 − gi) is parallel to Ni. Let now zi ∈ Πi be the point

zi :=
∑
j∈Ii

vj +
1

2

∑
b∈Bi

vb, (3.8)

and let b ∈ Bi, b′ ∈ Bi+1 be the two indices such that Bi \ {b} = Bi+1 \ {b′}. Let σ1 = +1
or −1 if b ∈ I ′ or b 6∈ I ′, respectively, and similarly σ2 = +1 or −1 if b′ ∈ I or b′ 6∈ I
respectively. Using (3.3), (3.5) and (3.8), it is easy to check that sign(〈gi, vb′〉 + h(ab′)) = σ2,
sign(〈gi+1, vb〉 + h(ab)) = σ1 and zi+1 − zi = σ1vb − σ2vb′ . Therefore, according to (3.6) and
(3.7),

sign(〈gi+1−gi, zi+1−zi〉)= sign(〈gi+1−gi, σ1vb−σ2vb′〉)
= sign(σ1 〈gi+1, vb〉+σ2h(ab′)+σ1h(ab)+σ2 〈gi, vb′〉)
= σ2

1 + σ2
2 > 0.

In other words, (gi+1 − gi) always points in the same direction as Ni, and thus gi+1 − gi = µiNi

for some µi > 0. We can therefore write:

0 =

r∑
i=1

(gi+1 − gi) =

r∑
i=1

µiNi with µ1, . . . , µr > 0. (3.9)

Taking the scalar product of (3.9) with (x, 1), x ∈ Rd shows that, for at least one facet Fi, we
must have 〈Ni, (x, 1)〉 < 0 and therefore

sign (〈Ni, (x, 1)〉) 6= sign (〈Ni, zi+1 − zi〉) ,

i.e., (3.4) fails. In other words, this orientation cannot be induced by any generic point x ∈ Rd.
All orientations (G, ox) are therefore acyclic.

In the one-dimensional case, we can obtain the positive linear combination of normals (3.9)
without assuming the existence of the vectors yi. We only give a sketch of the proof. First, there
is at least one tile Πi such that Fi 6= Fi+1, else the tiles cannot form a loop. Furthermore, since
each tile is convex, each angle Ni∠Ni+1 can only be strictly less than π, but the total angle along
the cycle must be equal to 2kπ, k ∈ Z \ {0}. These conditions imply that there is a closed path
in R2 whose j-th displacement vector is directed along Nj . Defining gi as the i-th vertex of the
path then yields (3.9).

Remark 3.5. The construction used in the proof of Lemma 3.4 is similar to the affinization of
central hyperplane arrangements, see e.g. [39, Chapter 7].

As a directed acyclic graph, (G, ox) can be topologically sorted, and the (only) tile Π∅,Z

supported on x can be used as the root of an oriented path that follows the topological sorting.
We prove now that the other tiles ΠI′,B′ supported on x are all reachable from Π∅,Z using such
a path. First, we need a small lemma in convex theory, very similar (although not equivalent)
to Carathéodory’s theorem.
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Lemma 3.6. Let A = (a1, . . . , an) be a configuration of n > d+ 1 points in Rd, and let B ⊂ [n]
be a set of |B| = d + 1 indices such that the points (ai)i∈B are affinely independent. Then, for
every x ∈ conv(A) there exists an index b ∈ B such that ab and x are on the same closed halfspace
of aff({ai}i∈B\{b}) and x ∈ conv({ai}i∈[n]\{b}).

Proof. First, assume that x ∈ conv({ai}i∈B). In this case, for all b ∈ B, x is on the same closed
halfspace of aff({ai}i∈B\{b}) as ab. We can then pick any index c ∈ [n] \ B, and the (possibly
degenerate) simplices conv({ai}i∈B\{b}t{c}) for all b ∈ B cover conv({ai}i∈B). Thus, for at least
one index b ∈ B, x ∈ conv({ai}i∈B\{b}t{c}), satisfying the lemma.

Assume now that x 6∈ conv({ai}i∈B). Then x ∈ conv(A) if and only if

x =

n∑
i=1

µiai

for some real numbers µa = i satisfying µi ≥ 0 and
∑n

i=1 µi = 1. Since the points indexed by
B are affinely independent, we can also express x =

∑
b∈B λbab, with

∑
b∈B λb = 1. We extend

this to a linear combination x =
∑n

i=1 λiai by defining λi := 0 for i 6∈ B. We have

n∑
i=1

µi = 1 =

n∑
i=1

λi,

and therefore
∑n

i=1(µi−λi) = 0. The expression µi−λi cannot be identically zero for all i ∈ [n],
since otherwise x ∈ conv({aj}j∈B), which we have excluded. Thus, there must be at least one
b ∈ B with λb > µb ≥ 0. If we pick an index c ∈ B such that

c ∈ arg min
b∈B

{
αb :=

µb

λb − µb
: λb > µb

}
,

we can write the nonnegative linear combination

n∑
i=1

[µi − (λi − µi)αc] ai = x, (3.10)

where clearly µi−(λi−µi)αc ≥ 0 and µc−(λc−µc)αc = 0. Thus, the point ac satisfies the lemma,
since λc > µc ≥ 0 implies that ac and x are on the same open halfspace of aff({ai}i∈B\{c}), and x
can be expressed as the convex combination (3.10) with the point ac having a zero coefficient.

We can now prove that there is always a directed path in (G, ox) from Π∅,Z to any tile ΠI′,B′

supported on x.

Proposition 3.7. Let P(h) be a regular fine zonotopal tiling of Z(V ) with generic height function
h, let x ∈ conv(A) be a generic point, and let Π∅,Z be the only tile in P(0)(h) supported on x.
Then for every tile ΠI′,B′ ∈ P(h) supported on x, there is a directed path in (G, ox) from Π∅,Z

to ΠI′,B′ with every tile ΠI,B in the path satisfying |I| ≤ |I ′|.

Proof. If I ′ = ∅, then necessarily ΠI′,B′ = Π∅,Z , and we are done. Else, we complete the
proof by finding another tile ΠI,B and an oriented edge ΠI,B → ΠI′,B′ in (G, ox) such that ΠI,B

is supported on x and I ⊆ I ′. The same reasoning can then be applied to ΠI,B and again
repeatedly, yielding an oriented path of tiles supported on x and with non-increasing |I|. Since
the graph is acyclic (Lemma 3.4) and the number of tiles is finite, the process must eventually
end with ΠI,B = Π∅,Z as the root of the path.
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According to Lemma 3.6, and since x is generic, there exists an index b′ ∈ B′ such that

x ∈ conv({ai}i∈I′tB′\{b′}) and ab′ , x are on the same side of Hb′ , (3.11)

where Hb′ := aff({ai}i∈B′\{b′}). Necessarily, this means that there is an index j ∈ I ′ such
that aj is on the same side of Hb′ as ab′ , otherwise Hb′ would separate x from the convex hull
conv({ai}i∈I′tB′\{b′}) and (3.11) would be false. Proposition 2.5 then guarantees that there is a
tile ΠI,B , connected to ΠI′,B′ with an edge in G, such that B \ {b} = B′ \ {b′} for some b ∈ B
and either I ′ = I or I ′ = I t {b}. The point ab is on the opposite side of Hb′ as ab′ and x
in the first case, and on the same side in the second case. It is easy to check, using (3.4) and
taking the representative points z ∈ ΠI,B and z′ ∈ ΠI′,B′ defined as in (3.8), that in both cases
the edge associated to the tile ΠJ,C with J = I ′, C = B ∩ B′ is oriented from ΠI,B to ΠI′,B′ .
Furthermore, in both cases, B t I ⊇ I ′ t B′ \ {b′}, implying that ΠI,B is supported on x, and
I ⊆ I ′. This completes the proof.

Proposition 3.7 is important because it shows that every tile ΠI,B of order k can be connected
to Π∅,Z in (G, ox) using only tiles of order k or less (see e.g. Figure 4). In practical applica-
tions, this implies that all the spline functions of degree k supported on any given point can be
found efficiently using only the knowledge of spline functions of degree r ≤ k. Therefore, when
constructing a spline space using the process delineated in Theorems 2.10 and 3.3, the iterations
can be safely stopped at the desired degree, without any need to access higher-degree functions.

Furthermore, Theorem 3.7 suggests a simple and efficient algorithm to find all the spline
functions supported on a point x. The first step, which requires finding the spline of degree
k = 0 having x in its support, can be efficiently implemented via any search tree constructed on
the simplices in T (0) [37, 38]. Such trees typically have a O (n log(n)) construction complexity
and a O (log(n)) query complexity, n being the number of degree-zero splines. After this first
step, the complexity is simply linear in the number of spline functions (of all degrees r ≤ k)
which are nonzero on x, and does not depend on the total number of functions in the spline
space.

Notice however that there is still a need to check explicitly if every visited spline function is
actually supported on x, albeit only for a limited number of functions.

We show an example of the directed graph (G, ox) in Figure 4.

3.3 Spline evaluation
Once all the spline functions supported on a given point x have been determined, one might be
tempted to use the oriented graph (G, ox) and its topological sorting to compute the value of all
the spline functions on x.

Imagine that we want to compute, for some tile ΠI,B supported on x, the value of M b :=
M(x | (ai)i∈ItB\{b}) for all b ∈ B, which can in turn be used to compute the value of the spline
itself M := M(x | ΠI,B) using (1.1b). For every b ∈ B and every point x ∈ Rd, if M b(x) 6= 0,
then there is exactly one edge ΠI′,B′ → ΠI,B with B \ {b} = B′ \ {b′} and either I = I ′,
I = I ′ t {b′}, I ′ = I t {b} or I t {b} = I ′ t {b′}. Suppose that the values of M(x | (ai)i∈I′tB′)
and M(x | (ai)i∈I′tB′\{b′}) for all b′ ∈ B′ are known. Are we able to compute the value of M b?
The answer depends on which case is realized. In particular:

(i) If I = I ′, then M b = M(x | (ai)i∈I′tB′\{b′}), which is known;

(ii) if I = I ′ t {b′}, then M b = M(x | ΠI′,B′), which is also known;

(iii) if I t {b} = I ′ t {b′}, then M b can be computed from the set of known values M(x |
(ai)i∈I′tB′\{b′}), b′ ∈ B′ via a single application of (1.2).
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Figure 4: Left: oriented adjacency graph (G, ox) for the tilings of Figure 2, with the orientation
induced by a point x ∈ (a4, a5). The subgraph determined by the tiles supported on x is drawn
with solid lines, and the tiles are numbered according to their position in a topological sorting of
(G, ox), starting with 0 for the tile Π∅,Z . Right: corresponding spline functions supported on x.
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However, in the case I ′ = It{b}, there seems to be no obvious way to directly obtainM b. If this
happens only for a single b ∈ B, then it is still possible to obtain M b via (1.1b), after noticing
that M = M(x | (ai)i∈I′tB′\{b′}). In general, however, this case can happen more than once for
a given point x and a given spline M(x | ΠI,B) if d ≥ 3, making it essentially impossible to build
an efficient recurrent evaluation scheme without the use of some auxiliary functions.

We propose here a slightly different construction, based on the following observation. First,
notice that the problematic case I ′ = I t {b} cannot arise if M(x | ΠI,B) is a spline of maximal
degree for P (see Figure 2). However, if we consider a zonotopal tiling PI,B of the zonotope
Z(VI,B) built on the reduced point configuration AI,B := (ai)i∈ItB , then M(x | ΠI,B) can
indeed be obtained from any maximal-degree tile of PI,B . Thus, if in the evaluation of each
spline M(x | ΠI,B) we use the reduced tiling PI,B , the problematic case I ′ = I t {b} cannot
occur, and neither can the case I ′ t {b′} = I. Notice that an induced tiling PI,B of Z(VI,B) can
simply be obtained from P via Lemma 1.2.

The reasoning of the previous paragraph suggests a simple procedure to build a set of auxiliary
spline functions that are sufficient to compute, via recurrence, the value of any function M(x |
ΠI,B):

(i) Build the tiling PI,B induced by P on the reduced point configuration AI,B := (ai)i∈ItB
via Lemma 1.2;

(ii) For each b ∈ B, find the unique tile ΠI′,B′ ∈ PI,B , if any, such that B ∩ B′ = B \ {b}.
If the tile exists, the value of M(x | (ai)i∈ItB\{b}) can then be computed from the values
of M(x | ΠI′,B′) and M(x | (ai)i∈I′tB′\{b′}), b′ ∈ B′, either directly or through (1.2),
otherwise the value is zero;

(iii) Store the subsets (I ′, B′) found in step (ii), and repeat the same process from step (i)
starting from each corresponding tile ΠI′,B′ .

The set of stored subsets (I ′, B′) obtained during this process corresponds to a set of auxiliary
spline functions that are sufficient to compute the value of the spline M(x | ΠI,B) for all x.
Applying this process to all tiles ΠI,B ∈ P(k) then yields a complete set of auxiliary functions
sufficient for the evaluation of all the basis functions of order k via (1.1b) and (1.2). Notice that
the same couple (I ′, B′) can be obtained starting from multiple basis functions, in which case, it
should obviously be stored only once.

So far, we have not detailed how the subsets corresponding to the tiles connected to ΠI,B

in the induced tiling PI,B can be found efficiently in step (ii). Naively, one can start from the
knowledge of the whole tiling P and apply Lemma 1.2, but this is obviously computationally
infeasible in most applications. Thankfully, in the case of regular tilings, there is a more efficient
way to compute them.

Lemma 3.8. Let P(h) be a regular fine zonotopal tiling of Z(V ) with height function h, and
let ΠI,B and ΠI′,B′ be two of its tiles, sharing a facet ΠJ,C with normal vector NC . Define for
convenience:

σij := sign (det((ac, h(ac), 1)c∈C , (ai, h(ai), 1), (aj , h(aj), 1))) ,

σi := sign (det((ac, 1)c∈C , (ai, 1))) .

Then b′ ∈ I if and only if σbb′ · σb > 0, b ∈ I ′ if and only if σbb′ · σb′ < 0, and, choosing the
orientation of NC such that 〈NC , (x, 1)〉 = det((ac, 1)c∈C , (x, 1)), sign(〈NC , z − z′〉) = σbb′ ·σb ·σb′
for all z ∈ ΠI,B, z′ ∈ ΠI′,B′ .

Proof. The first two facts follow immediately from the Delaunay property (3.1), since, if σb > 0,
then b′ ∈ I if and only if σbb′ > 0, and the same is true if both signs are reversed. The same
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reasoning applies to the condition b ∈ I ′ using σb′b = −σbb′ and σb′ . If we now consider the
representative points z ∈ ΠI,B and z′ ∈ ΠI′,B′ defined as in (3.8), we can express their difference
as

z − z′ =
1

2
(σbb′σb′vb + σbb′σbvb′) ,

and therefore

sign(〈NC , z − z′〉) =
1

2
sign (σbb′σb′ 〈NC , (ab, 1)〉+ σbb′σb 〈NC , (ab′ , 1)〉) (3.12)

but since b and b′ are on the same side of aff({ac}c∈C) if and only if 0 < σb·σb′ = (σbb′σb)·(σbb′σb′),
the two terms in the sum on the right hand side of (3.12) always have the same sign, and we can
thus rewrite (3.12) as

1

2
(σbb′σb′ sign(〈NC , (ab, 1)〉) + σbb′σb sign(〈NC , (ab′ , 1)〉)) = σbb′ · σb · σb′ ,

since sign(〈NC , (ab, 1)〉) = σb, and similarly for b′. This completes the proof.

In the case of regular tilings, Lemma 3.8 can be used to build any induced tiling PI,B , its
adjacency graph and the induced orientations simply by taking the collection B := {B′ ⊆ I tB :
|B′| = d+ 1,det(B′) 6= 0} of all affinely independent subsets of size d+ 1 of (ai)i∈ItB , and using
for each subset B′ the signs σbb′ , σb and σb′ , b′ ∈ B′ to construct the associated subset I ′ and
form the tile ΠI′,B′ ∈ PI,B . The evaluation graph for ΠI,B will then contain all the tiles directly
adjacent to ΠI,B in PI,B . Notice that, when all auxiliary functions are taken into account, the
splines of degree zero do not constitute in general a triangulation of conv(A). However, it is still
possible to build search trees capable of efficiently finding all the (possibly overlapping) simplices
that contain a given point x, for example using structures such as bounding volumes hierarchies
(BVH), of which the R-tree and R?-tree [37, 38] are prominent examples. We illustrate the
construction of auxiliary functions and the corresponding evaluation obtained via the process
outlined above in Figs 5 and 6 respectively.

We end this section with a couple of final considerations. First, notice that it is not necessary
to explicitly prove that the evaluation graph is acyclic, as this is evident from its construction.
In particular, the evaluation graph for splines of order k clearly generates a k-partite oriented
graph, to which some connections between splines of the same order are added (Figure 6). Since
the connections among this subset of tiles are the same as those in the full adjacency graph G of
P, no cycle can be created by the orientation ox induced by any point x.

Second, notice that in the special case where every point in A is repeated at least k+1 times,
the construction process of Theorems 2.10 and 3.3 yields the usual Bernstein-Bézier functions
[40] over a triangulation of conv(A), and the evaluation graph reduces to the usual de Casteljau
algorithm [41] over each simplex.

Finally, notice that, as can be gleaned from Figure 5, the procedure outlined here does not
lead in general to a minimal amount of auxiliary spline functions. In particular, each tile ΠI,B

for which there is an index i ∈ I such that ai 6∈ conv({ab}b∈B) can lead to an increased number
of auxiliary functions. How often this happens is determined by the chosen height function h,
either globally or locally in each induced tiling PI,B , and is related to the presence of slivers, i.e.,
simplices with skewed aspect ratios, in the associated weighted Delaunay triangulations. Some
techniques exist to optimize the Delaunay height function in order to reduce the number of these
elements, see e.g. [42, 43]. We defer to a future work the investigation of how these techniques
can help optimize the number of auxiliary functions required in the evaluation of simplex splines.
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Figure 5: Top left: A regular fine zonotopal tiling and the associated spline space over the
point configuration of Figure 2, with the tiles corresponding to the splines of degree k = 2
(i.e., P(2)) highlighted and numbered from 1 to 4. Top right: corresponding spline functions and
auxiliary functions, numbered 5 through 17, computed by the process of Section 3.3. Bottom: the
induced zonotopal tilings PI,B encountered during the construction of auxiliary spline functions.
Highlighted tiles correspond to stored functions.
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Figure 6: Top: the complete graph containing all the auxiliary functions obtained via the con-
struction presented in Section 3.3 in the case of the example of Figure 5. Bottom: The actual
evaluation graph obtained when computing the value of the spline functions at different locations
x.
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4 Conclusions
We have uncovered an interesting combinatorial structure capable of producing spaces of polynomial-
reproducing multivariate (simplex) splines built atop any point configuration A, which ties them
to the well studied fine zonotopal tilings of the associated zonotope Z(V ). This correspondence
allows to generalize the set of known multivariate spline spaces and to adapt a known construc-
tion algorithm to a more general setting. When the tiling is regular, its adjacency graph provides
a way to efficiently determine all the spline functions supported on any given point x, and to
devise a recurrence evaluation scheme that reuses some intermediate results, thus providing a
useful first step in the practical application of simplex spline bases in approximation and analysis.

Only fine zonotopal tilings have been explored in the present work. Possible connections
between more general zonotopal tilings and other kinds of multivariate splines, such as box splines
or more general polyhedral splines [44, 45] might be possible by generalizing this restriction.

From a computational standpoint, it is possible that the correspondence uncovered in the
present work can be used to obtain further optimized algorithms for multivariate splines. Two
aspects in particular deserve a particular attention in our opinion.

First, the evaluation scheme proposed in this work does not guarantee a minimal number of
auxiliary functions. On the other hand, optimized weighted Delaunay triangulations coming from
computer graphics applications (see e.g. [42, 43]) could provide more suitable height functions,
significantly improving the efficiency of the evaluation algorithm.

Second, the freedom given by the possibility of constructing spline bases over point sets with
repeated knots can be exploited to build bases of splines with variable regularity and localized or
arbitrarily-shaped discontinuities, with interesting applications in function approximation and
numerical analysis.
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