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Brown algae are key components of marine ecosystems and live in association with
bacteria that are essential for their growth and development. Ectocarpus siliculosus
is a genetic and genomic model for brown algae. Here we use this model to start
disentangling the complex interactions that may occur between the algal host and
its associated bacteria. We report the genome-sequencing of 10 alga-associated
bacteria and the genome-based reconstruction of their metabolic networks. The
predicted metabolic capacities were then used to identify metabolic complementarities
between the algal host and the bacteria, highlighting a range of potentially beneficial
metabolite exchanges between them. These putative exchanges allowed us to predict
consortia consisting of a subset of these ten bacteria that would best complement the
algal metabolism. Finally, co-culture experiments were set up with a subset of these
consortia to monitor algal growth as well as the presence of key algal metabolites.
Although we did not fully control but only modified bacterial communities in our
experiments, our data demonstrated a significant increase in algal growth in cultures
inoculated with the selected consortia. In several cases, we also detected, in algal
extracts, the presence of key metabolites predicted to become producible via an
exchange of metabolites between the alga and the microbiome. Thus, although further
methodological developments will be necessary to better control and understand
microbial interactions in Ectocarpus, our data suggest that metabolic complementarity
is a good indicator of beneficial metabolite exchanges in the holobiont.

Keywords: Ectocarpus siliculosus, symbiotic/mutualistic bacteria, genome-scale metabolic networks, metabolic
complementarity, holobiont

INTRODUCTION

Microbial symbionts are omnipresent and important for the development and functioning of
multicellular eukaryotes. Together the eukaryote hosts and their microbiota form meta-organisms
also called holobionts. Elucidating the interactions within microbial communities and how they
affect host physiology is a complex task and requires an understanding of the dynamics within

Frontiers in Marine Science | www.frontiersin.org 1 February 2020 | Volume 7 | Article 85

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/journals/marine-science#editorial-board
https://www.frontiersin.org/journals/marine-science#editorial-board
https://doi.org/10.3389/fmars.2020.00085
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmars.2020.00085
http://crossmark.crossref.org/dialog/?doi=10.3389/fmars.2020.00085&domain=pdf&date_stamp=2020-02-21
https://www.frontiersin.org/articles/10.3389/fmars.2020.00085/full
http://loop.frontiersin.org/people/837706/overview
http://loop.frontiersin.org/people/429116/overview
http://loop.frontiersin.org/people/375280/overview
http://loop.frontiersin.org/people/867385/overview
http://loop.frontiersin.org/people/616277/overview
http://loop.frontiersin.org/people/269050/overview
http://loop.frontiersin.org/people/173539/overview
http://loop.frontiersin.org/people/35659/overview
http://loop.frontiersin.org/people/123488/overview
https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00085 February 19, 2020 Time: 17:19 # 2

Burgunter-Delamare et al. Brown Algal–Bacterial Metabolic Interactions

the microbiome and the host, as well as of possible inter-
species interactions and/or metabolic exchanges that could occur
between the partners. One way to dissect those interactions is
via targeted co-culture experiments using culturable bacteria,
and monitoring potential interaction, e.g., via transcriptomics
(de Oliveira et al., 2017). This approach works particularly well
for 1:1 or 1:2 interactions, but as the number of potentially
interacting organisms increases, selecting the “right” bacterial
consortia becomes a major bottleneck (Lindemann et al., 2016).

Metabolic complementarity has previously been proposed as
an indicator for potentially beneficial host–symbiont interactions
and can be assessed in silico using the metabolic networks of
the host and the microbiota (Dittami et al., 2014b; Levy et al.,
2015). Common examples of metabolic complementarity are
associations of autotrophic and heterotrophic organisms such
as corals and their photosynthetic symbionts (Rohwer et al.,
2002), or algae, and their heterotrophic bacterial biofilm (Wahl
et al., 2012). In this case, the autotrophic partner has a metabolic
capacity (photosynthesis) that allows for the production of
metabolic intermediates (organic carbon), which can be further
metabolized by the heterotrophic partners. However, especially in
systems with long-lasting interactions more complex metabolic
interdependencies are likely to evolve (e.g., Amin et al., 2015).

As a tool to further explore such interactions, Frioux
et al. (2018) have proposed the pipeline MiSCoTo. Given
the metabolic networks of a host and several symbionts, this
tool predicts potential metabolic capacities of one partner
that could be unlocked by a contribution of a metabolite
from another (e.g., the provision of carbohydrates by a
photosynthetic organism unlocking the biochemical processes
related to primary metabolism in heterotrophs). Furthermore,
this computational approach uses these complementarities to
define minimal consortia (i.e., with the lowest possible number of
exchanges/contributors) allowing the host to reach its maximum
metabolic potential. However, the actual predictive value of these
models, both in terms of the effect on host growth and fitness, and
in terms of the metabolic scope (i.e., the metabolites producible
by the holobiont system), remains to be assessed.

Here we have applied the MiSCoTo tool to the filamentous
brown alga Ectocarpus siliculosus, a model filamentous brown
alga with an available metabolic network (Prigent et al., 2014),
as well as a selection of 10 Ectocarpus-derived bacteria (KleinJan
et al., 2017). We then selected specific minimal microbial
consortia for in vivo testing of the proposed hypotheses
(growth rate, production of specific metabolites). Our results
demonstrate a clear positive effect of inoculation with the
predicted bacterial consortia on algal growth as well as an
effect on the production of algal metabolites predicted to
depend on bacterial contributions. In vivo observations largely
corresponded to in silico predictions despite the incomplete
input data (with models limited to annotated pathways) and
the fact that we had only limited control of the microbiome.
The present work thus generates numerous testable hypotheses
on specific beneficial interactions between Ectocarpus and its
microbiome, but also provides a proof of concept for the overall
predictive power of network-based metabolic complementarity
for beneficial host–microbe interactions.

MATERIALS AND METHODS

Bacterial Cultures and Genome
Sequencing
Ten bacterial strains were selected from the 46 isolated by
KleinJan et al. (2017) from Ectocarpus subulatus. They were
grown in liquid Zobell and/or diluted R2A until bacterial
growth was visible with the naked eye (∼3 days at room
temperature), and their identity was confirmed by sequencing
of the 16S rRNA gene with the primers 8F and 1492R
(KleinJan et al., 2017). Bacterial DNA was extracted using
the UltraClean R© Microbial DNA isolation kit (MoBio, Qiagen,
Hilden, Germany) and used for standard pair-end sequencing
at the GENOMER platform (FR2424, Station Biologique de
Roscoff), using Illumina Miseq technology (V3 chemistry,
2 × 300 bp). After cleaning with Trimmomatic v0.38, default
parameters (Bolger et al., 2014), the paired-end reads were
assembled using SPADES v3.7.0 (Bankevich et al., 2012;
default parameters for long reads). The RAST/SEED server
(Aziz et al., 2008) was used for gene annotation, and
sequences were later also incorporated into the MAGE platform
(Vallenet et al., 2006).

In silico Predictions of Metabolic
Interactions and Selection of Consortia
Bacterial metabolic networks were constructed using Pathway
Tools version 20.5 (Karp et al., 2016) and version 2 of
the Ectocarpus siliculosus EC32 metabolic network for the
host, prior to any gap-filling step, in order to prevent the
presence of possibly false positive reactions in the model.
(because these false positive reactions could hide algal bacterial
interactions). Both host and bacterial networks are provided as
SBML file in Supplementary File S1. This network comprised
a total of 2,118 metabolites, 1,887 metabolic reactions, and
was able to produce five of the 50 metabolites known to
be a part of the Ectocarpus biomass (Aite et al., 2018) with
only the culture medium as input. For the remaining 45
compounds the lack of producibility can be explained by the
presence of metabolic gaps – either because a reaction was
missed during the reconstruction of the network (missing
annotation etc.), or because the corresponding pathways require
metabolite exchanges with other partners in the environment,
e.g., bacteria. The more such gaps can be filled by exchanging
compounds between two metabolic networks, the higher we
consider the degree of metabolic complementarity between the
corresponding organisms.

Here we used the MiSCoTo tool (Frioux et al., 2018) to
compute such potential metabolic exchanges between Ectocarpus
and any of the ten targeted bacteria. The underlying model
of MiSCoTo assumes that a compound is producible by a
host-symbiont community if there is a chain of metabolic
reactions which transforms the culture medium into the expected
compound without taking into consideration flux accumulations
or competition for resources, and allowing for the exchange of
compounds across cell boundaries. These simplifications imply
that compounds predicted to be producible in silico may, in some
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cases, remain unproducible in vivo, although the consortium has
all the genes to activate the pathways.

In this study MiSCoTo was run twice, first to determine
the scope of all algal compounds that become producible via
exchanges with all 10 bacterial genomes together, and as second
time to select minimal bacterial consortia for the production of
these compounds. In both cases the Provasoli culture medium
was used as a source as defined previously (Prigent et al., 2014).

Algal Cultures
Two of the six predicted bacterial consortia were tested
experimentally via algal-bacterial co-culture experiments.
Additionally, each member of the two consortia was tested
individually, as well one other sequenced strain that was not part
of any of the predicted minimal consortia, i.e., Sphingomonas sp.
391. Ectocarpus siliculosus (strain 32; accession CCAP 1310/4,
origin San Juan de Marcona, Peru) was cultured under standard
conditions (13◦C; 12 h light regime) in Provasoli-enriched
natural seawater until the start of antibiotic treatment. Prior
to co-culture experiments, algal filaments were treated with a
mixture of the following liquid antibiotics: 45 µg/ml Penicillin
G, 22.5 µg/ml streptomycin, and 4.5 µg/ml chloramphenicol
dissolved in Provasoli-enriched artificial seawater 450 mM
Na+, 532 mM Cl−, 10 mM K+, 6 mM Ca2+, 46 mM Mg2+,
16 mM SO4

2−. Filaments were exposed to 25 ml of this solution
for 3 days and then placed in Provasoli-enriched artificial
seawater for 3 days to recover. The absence of bacteria on
the algal surface was verified by microscopy using phase-
contrast (Olympus BX60, 1.3- PH3 immersion objective, 800x
magnification) and by plating of algal filaments on Petri dishes
with Zobell medium followed by 3 weeks of incubation at
room temperature.

Co-culture Experiments
For co-culture experiments, cell densities of bacterial cultures
were determined using a BD FACS CantoTM II flow cytometer
(BD Bioscience, San Jose, CA, United States) using samples
fixed in Tris-EDTA. Before the start of the experiment,
antibiotic-treated algae (three replicate cultures per condition)
were inoculated with 2.3∗105 bacterial cells per strain and
ml medium. Each co-culture was then incubated for 4 weeks
under standard algal growth conditions (see above). During
this time, algal growth was quantified by measuring the
filament length of the algae each week using the binocular
microscope (3 measurements per replicate). Furthermore,
bacterial abundance in the algal growth medium was estimated
using flow cytometry (described above) and bacteria attached to
algal cell walls were counted by microscopy (5 × 10 µm long
filaments observed per biological replicate, 800x magnification
in phase contrast). At the end of the experiment, general algal
morphology was observed using a LEICA DMi8 microscope
and in parallel, remaining algal tissues were frozen in
liquid nitrogen and freeze-dried for downstream analyses.
Two controls (three replicates each) were run in parallel:
a non-antibiotic treated positive control (CTRL w/o. ATB),
and an antibiotic-treated non-inoculated alga as a negative
control (CTRL w. ATB).

Bacterial Community Composition After
Co-culture Experiments
A metabarcoding approach was implemented to investigate
the composition of the bacterial community after the co-
culture experiments. For each culture, 20 mg ground freeze-
dried tissue (TissueLyserII Qiagen, Hilden, Germany; 2 × 45 s,
30 Hz) was used for DNA extraction (DNeasy Plant Mini
Kit, Qiagen; standard protocol). Nucleotide concentrations
were verified with NanodropONE (Thermo Fisher Scientific).
A mock community comprised of DNA from 32 bacterial
strains (covering a variety of taxa) as well as a negative control
were included in addition to the samples (see Thomas et al.,
2020 for details). Libraries were prepared according to the
standard Illumina protocol for metabarcoding MiSeq technology
targeting the V3–V4 region (Illumina, 2017) and sequenced using
Illumina MiSeq Technology (2 × 300 bp, pair-end reads; MiSeq
Reagent v3 kit; Platform de Séquencage-Génotypage GENOMER,
FR2424, Roscoff).

Resulting raw sequences (7,354,164 read pairs) were trimmed
using fastq_quality_trimmer from the FASTX Toolkit (quality
threshold 30; minimum read length 200) and assembled into
6,804,772 contigs using PandaSeq v2.11 (Masella et al., 2012).
Data were analyzed with Mothur (V.1.40.3) according to the
MiSeq Standard Operating Procedures (Kozich et al., 2013).
Contigs were pre-clustered (allowing for four mismatches),
and aligned to the Silva_SEED 132b database for sequence
classification. Chimeric sequences were removed (Vsearch) and
the remaining sequences classified taxonomically (Wang et al.,
2007). Non-bacterial sequences were removed and the remaining
sequences were then clustered into operational taxonomic units
(OTUs) at a 97% identity level and each OTU was classified
to the genus level where possible (Wang et al., 2007). All
OTUs with n ≤ 10 sequences were removed resulting in a final
data matrix with 1,834,992 sequences. The OTU matrix was
subsampled to have the same number of sequences per sample
for downstream analyses.

Targeted Metabolomics
Seven metabolites predicted to be producible by the algae
only in presence of metabolic exchanges with specific bacteria
were selected for targeted metabolite profiling after manual
verification of automatic predictions of corresponding pathways
in the algal and bacterial networks and based on their biological
importance for the alga: L-histidine, putrescine, beta-alanine,
nicotinic acid, folic acid, auxin, and spermidine. Metabolites
were extracted from 10 mg of ground, freeze-dried tissue using
a triple extraction protocol based on the method of Bligh and
Dyer (1959): two ml of methanol:chloroform:water (6:4:1) were
used as first extraction solvent, then the remaining pellet was
extracted with 1 ml of chloroform:methanol (1:1), and finally,
a 3rd extraction was performed using 1 ml of H2O. The
supernatants of each extraction were pooled and evaporated
under a stream of nitrogen. The residue was then resuspended
in 100 µl methanol:water (1:1) and analyzed on an ACQUITY
Ultra-performance convergence chromatography (UPC2) system
(Waters R©, Milford, United States) equipped with a Viridis BEH
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column (3 × 100 mm, 1.7 µm). A linear gradient of two
solvents was used to separate peaks: supercritical carbon dioxide
(Solvent A), and methanol spiked with 0.1% formic acid (Solvent
B). The gradient ran from 5% to 25% of solvent B (35% for
spermidine and nicotinic acid) during 2 min, was kept at this
level for another 2 min and then gradually reduced back to
5% during 3 min. The UPC2 system was coupled to a Xevo
G2 Q-Tof mass spectrometer (Waters), operating in positive
ESI ion mode (m/z 20–500). Blanks, as well as standards of
all 7 compounds obtained from Sigma-Aldrich (St. Louis, MO,
United States), were run in parallel to samples. The resulting
chromatograms were then used to examine the presence/absence
of the target compounds in the other samples based on
retention time and the mass spectra. Analyses were performed
at the METABOMER platform (FR2424, Station Biologique
de Roscoff).

Statistical Analyses
Growth data (both algal and bacterial) were confirmed to follow a
normal distribution using a Shapiro–Wilk test (Rstudio v1.0.44).
Significant differences between all treatments after 4 weeks of
co-culture (day 28) were calculated with an ANOVA and a
Tukey honestly significant difference (HSD) post hoc test with
a significance level α 0.05 using the PAST software version 3.20
(Hammer et al., 2001).

RESULTS

Predicted Metabolic Interactions and
Selection of Beneficial Bacterial
Consortia
Genome sequencing and subsequent bioinformatics analyses
yielded bacterial genome assemblies with sufficient coverage
and 11–72 scaffolds per genome (Table 1). Metabolic networks
were then reconstructed for these ten genomes. On average,
1,714 reactions, 111 transport reactions, and 1,405 metabolites
(Table 2) were predicted per bacterium. These reactions
belonged, again on average, to 261 pathways, 137 of which were
complete and 124 were incomplete (i.e., missing one or more
reactions). Based on metabolic complementarity analysis carried
out using MiSCoTo, these bacterial networks were predicted
to enable the production of 160 additional compounds with
the algal networks, including several polyamines (Cadaverine,
Spermidine, Agmatine), amino acids (Histidine, Tyrosine, beta-
alanine), vitamins B3, B9, and E, several lipids and lipid
derivatives, and nucleic acids. Please refer to Supplementary
Table S1 for a complete list of compounds. Many of these
compounds were also previously predicted via the metabolic
interaction between the same strain of E. siliculosus and the
associated bacterium Candidatus Phaeomarinobacter ectocarpi
(Dittami et al., 2014a; Prigent et al., 2017). A total of six bacterial
consortia comprising three bacterial strains each (Table 3)
were predicted to be sufficient to enable the production of
all of these compounds. Of these six proposed consortia, two
comprised one phylogenetically distinct bacterium each (i.e.,

the Bacteroidetes Imperialibacter vs. the Gammaproteobacterium
Marinobacter) were chosen for in vivo testing using algal-
bacterial co-cultures.

Growth Rates in Co-culture Experiments
The inoculation with one or several bacterial strains significantly
enhanced algal growth by a factor of 2 compared to controls
(Figure 1A). This positive effect was observed both for the
predicted bacterial consortia and for all the individual strains
tested. At the same time, the abundance of bacteria on
algal filaments after 4 weeks of cultivation was significantly
lower in cultures initially inoculated with bacteria compared
to both controls with and without initial antibiotic treatment
(Figure 1B), although bacterial cell counts in the medium were
similar between co-culture experiments and the non-inoculated
control after 28 days (Supplementary Figure S1).

Bacterial Impact on Morphology
Compared to the negative control, which exhibited a ball-
like morphology typical for “axenic” cultures (Tapia et al.,
2016), all bacterial inocula tested resulted in filamentous thalli
with clear branching patterns (Figure 2). We furthermore
observed differences in the branching patterns depending on
the bacterial inocula. For example, Sphingomonas-inoculated
cultures produced relatively long filaments with few branching
sites (Figure 2G), whereas Hoeflea-inoculated cultures produced
filaments with frequent branching (Figure 2E). Imperialibacter
induced aggregation of individual filaments (Figure 2F), while in
all other co-cultures, filaments remained more or less separated.
These differences were, however, difficult to quantify given
complexity of their morphology.

(Algal) Metabolome in Co-culture
Conditions
Seven putatively key metabolites (l-histidine, putrescine, beta-
alanine, nicotinic acid, folic acid, auxin, and spermidine)
predicted to be non-producible by the alga alone but producible
via exchanges with some bacterial consortia, were quantified
in algal tissues by UPC2-MS after 4 weeks of co-culture. The
presence/absence of these metabolites is shown in Figure 3,
comparing both the predicted producibility by metabolic
network analysis and the experimental UPC2-MS results. In
the negative control, i.e., antibiotic-treated algae that were
not inoculated with bacteria, none of the compounds could
be identified by UPC2-MS confirming the computational
predictions. In contrast, in all co-cultures, at least one target
compound was experimentally detected. Furthermore, each
compound became producible in at least one of the co-cultures.
Overall, across the 56 predictions made based on the metabolic
networks (7 metabolites × 8 consortia including the individual
bacteria and the negative control) in silico and in vivo data agreed
in 28 cases (Figure 3). Only in four cases did we observe the
presence of a metabolite although it was not predicted by the
networks. Finally, in 24 cases we did not detect the presence of
a metabolite predicted to be producible in the co-cultures.

Frontiers in Marine Science | www.frontiersin.org 4 February 2020 | Volume 7 | Article 85

https://www.frontiersin.org/journals/marine-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-07-00085 February 19, 2020 Time: 17:19 # 5

Burgunter-Delamare et al. Brown Algal–Bacterial Metabolic Interactions

TABLE 1 | Overview of bacterial genomes used in this study and corresponding assembly statistics.

Raw reads # Scaffolds Genome size (mbp) N50 (mbp) Coverage Mapped reads

Bosea sp. 5A 1,863,417 26 6.34 0.98 133 X 99.91%

Erythrobacter sp. 430 1,065,278 11 3.14 0.44 157 X 99.93%

Hoeflea sp. 425 3,734,649 41 5.22 1.26 326 X 99.94%

Imperialibacter sp. R6 1,553,981 65 6.8 0.21 111 X 99.94%

Marinobacter sp. HK15 1,587,675 14 4.39 1.11 172 X 99.93%

Rhizobium sp. 404 1,332,560 27 4.2 0.45 148 X 99.93%

Roseovarius sp. 134 987,463 73 4.68 0.18 150 X 99.92%

Roseovarius sp. 420 803,175 85 4.68 0.12 79 X 99.89%

Sphingomonas sp. 361 1,111,277 25 3.28 0.29 150 X 99.87%

Sphingomonas sp. 391 1,150,343 74 4.6 0.16 113 X 99.91%

TABLE 2 | Number of predicted metabolic pathways (complete pathways in parentheses), reactions and metabolites in bacterial metabolic networks.

Number of pathways Number of reactions Transport reactions Number of metabolites

Bosea sp. 5A 298 (187) 1892 153 1557

Erythrobacter sp. 430 218 (91) 1532 63 1247

Hoeflea sp. 425 315 (170) 1920 129 1558

Imperialibacter sp. R6 239 (131) 1711 100 1425

Marinobacter sp. HK15 249 (128) 1679 128 1364

Rhizobium sp. 404 289 (142) 1814 125 1462

Roseovarius sp. 134 263 (146) 1703 125 1418

Roseovarius sp. 420 263 (143) 1701 125 1418

Sphingomonas sp. 361 224 (108) 1519 69 1239

Sphingomonas sp. 391 254 (126) 1671 92 1358

The networks are available in the SBML format as Supplementary File S1.

TABLE 3 | Minimal bacterial consortia predicted by MiSCoTo that enabled the
production of 160 algal compounds.

Solution proposed by MiSCoTo In vivo testing?

Marinobacter sp. HK15, Roseovarius sp. 420, Hoeflea sp. 425 Yes

Roseovarius sp. 420, Imperialibacter sp. R6, Hoeflea sp. 425 Yes

Marinobacter sp. HK15, Bosea sp. 5a, Roseovarius sp. 420 No

Marinobacter HK15, Hoeflea sp. 425, Roseovarius sp. 134 No

Imperialibacter sp. R6, Hoeflea sp. 425, Roseovarius sp. 134 No

Marinobacter sp. HK15, Bosea sp. 5a, Roseovarius sp. 134 No

See Supplementary Table S1 for a detailed list of compounds.

Bacterial Community Composition After
Co-culture Experiments
The bacterial community composition of each sample was
analyzed by 16S rDNA metabarcoding at the end of the co-
culture experiments. This was done to verify if the bacteria
inoculated had grown in the co-cultures and to determine
to what extent other bacteria were present and affected by
the inoculations. The results (Table 4) show that, except
for Imperialibacter, all of the bacterial strains inoculated
were detected in the corresponding co-cultures 28 days after
inoculation. However, except for Marinobacter and Hoeflea,
read abundances of these strains were low compared to
the total number of reads. In parallel, several other OTUs

that had not been inoculated were detected in our co-
culture experiments, suggesting that these bacteria were at
least partially resistant to or protected from (e.g., within the
cell wall) the antibiotic treatments applied, and were able
to recover under the experimental conditions: in total 30
additional OTUs with a minimal abundance of 1% of total reads
were detected in our samples, accounting for 63–82% of the
total reads. Furthermore, Hoeflea reads were dominant in all
samples including the non-Hoeflea-inoculated cultures (14–30%
of total reads).

DISCUSSION

Metabolic Complementarity, a Powerful
Metric Despite Limitations
Metabolic complementarity intuitively seems like an excellent
marker for beneficial metabolic interactions. The more organisms
are complementary at the metabolic and by extension the
gene level, the more they can potentially benefit from each
other (Levy et al., 2015); the more they overlap in terms
of metabolic pathways, the more likely they are to compete
for the same resources (Kreimer et al., 2012). There are,
however, two important restrictions that limit the applicability
of this simple idea. First, the possibility of a beneficial
exchange does not necessarily mean that it will occur,
because this may require the presence and activation of
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FIGURE 1 | (A) Relative length of E. siliculosus filaments after 28 days of (co-)culture compared to the starting point. (B) Number of bacteria detected on algal
filaments after 28 days of co-culture. Both panels (A,B) show means of 3 replicate co-cultures ± SD and differences are statistically significant (one-way ANOVA
p < 0.01). The letters above the columns indicate the results of a TUKEY HSD pairwise comparisons (p < 0.05). CTRL, control; ATB, antibiotic treatment; MRH,
Marinobacter–Roseovarius–Hoeflea; RIH, Roseovarius–Imperialibacter–Hoeflea.

excretion/uptake mechanisms in both partners, e.g., via chemical
or environmental cues. Secondly, the genome-scale metabolic
models used to predict metabolic complementarities may be
partially erroneous and incomplete. For instance, metabolic
networks frequently do not comprise interactions of chemical
signals with receptor molecules, which may be key to regulate

interactions (Zhou et al., 2016; Wang et al., 2018). Furthermore,
in many cases, they are based on automatic predictions and
annotations of protein sequences, which may, in some cases,
miss genes or introduce overpredictions of functions (Schnoes
et al., 2009). In this paper, we provide first in vivo tests of host-
microbe interactions inferred from genome-based predictions
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FIGURE 2 | Morphological effect co-cultures with bacteria on E. siliculosus after 4 weeks of co-culturing. Panels (A–G) correspond to different bacterial inoculations,
panels (H,I) to controls. MRH, Marinobacter–Roseovarius–Hoeflea; RIH, Roseovarius–Imperialibacter–Hoeflea.

FIGURE 3 | Comparison of predicted production of target metabolites in co-cultures based on metabolic networks (symbol before the slash) and results from
targeted UPC2-MS analyses of algal filaments after 28 days (symbol after the slash). The column “Exchange” indicates one possible compound provided by the
microbiome leading to the production of the compound in the column “Target” in the algal metabolome; it was these target metabolites that were tested for using
UPC2-MS. All experiments were carried out in triplicate, each replicate of the same condition yielding identical results. (–): a target metabolite was not
predicted/detected (+): a metabolite was predicted/detected. Green highlights conditions where predictions correspond to the in vivo observations, red highlights
compounds that were detected although no pathway was predicted. Yellow indicates compounds potentially producible via bacterial exchanges that were not
detected. MRH, Marinobacter–Roseovarius–Hoeflea; RIH, Roseovarius–Imperialibacter–Hoeflea; CTRL, control; ATB, antibiotic treatment.

of metabolic complementarity. Despite the aforementioned
restrictions and simplifications, our results discussed below
provide a strong indication that genome-based predictions of

metabolic complementarity are a powerful tool to handle the
complexity of host microbe systems and to generate hypotheses
on their interactions.
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Similar Complementarities Found Across
Studies and Ectocarpus Symbionts
Compared to a previous analysis of metabolic complementarity
between Ectocarpus and another associated bacterium,
Candidatus Phaeomarinobacter ectocarpii, (Dittami et al.,
2014a; Prigent et al., 2017), newly producible compounds
predicted in this study were largely similar, notably regarding
polyamines, histidine, beta-alanine, and auxin. This similarity
persists even though metabolic complementarity analyses were
performed using MiSCoTo, which incorporates the notion of
different compartments minimizing the number metabolite
exchanges (Frioux et al., 2018) and despite the fact that different
bacteria were examined. The main difference compared to the
previous study is that numerous additional compounds were
predicted to be exchanged, which can be explained by the fact
that ten rather than one bacterial network were available to
complete the algal network.

Inoculation With Metabolically
Complementary Bacteria Enhances
Growth Rate and Impacts Morphology
and Metabolism
As described above, both the bacterial consortia tested, as well
as all of the bacteria inoculated individually had clear positive
effects on algal growth and impacted algal morphology and
metabolite profiles, even though, by the time the co-cultures
were harvested, some of the inoculated bacteria were present
only in very low abundance or even below the detection limit.
These positive effects could be due either to interactions early
in the co-culture experiments followed by a decline in bacterial
abundance, or due to the capacity of bacteria to impact and
interact with their algal hosts even at very low cell concentrations.
The latter would support the hypothesis that part of the observed
effects may not be due to the exchanges of (abundant) primary
metabolites, such as the predicted histidine/histidinol, but due
to lowly concentrated signaling molecules or growth hormones.
One such compound could be the examined auxin, which
was detected in 5 of the 7 tested co-cultures, and which has
previously been shown to modify the developmental patterns
and morphology of Ectocarpus cultures (Le Bail et al., 2010)
in a similar way as bacterial inoculations. Another observation
was that the abundance of bacteria on algal filaments but not
in the medium was significantly lower in co-culture conditions
compared to the controls. This suggests that the inoculated
bacteria, either directly, or indirectly, by stimulating algal growth
or defense, can also regulate biofilm formation (see Goecke et al.,
2010 for a review).

Interestingly, although differences in the effects of individual
bacteria and bacterial consortia were observed on metabolite
profiles and morphology, all consortia had similar effects on
algal growth. Indeed, all of the tested bacteria, including
Sphingomonas, which was not part of the minimal solutions
proposed by MiSCoTo, were to a great extent complementary
to the alga, already covering a large part of the metabolic gaps.
In future studies, it may be particularly useful to incorporate
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a larger range of bacteria, possibly from other sources so that
they are not expected to have evolved mutualistic interactions
with brown algae. These negative controls could then be used
to correlate growth rates with the presence or absence of
specific metabolic capacities in the network. Once the list of
candidate metabolite exchanges has been narrowed down by such
comparisons, supplying these metabolites from artificial sources
but also testing for their excretion into the medium by bacteria
can be used to corroborate their role.

Predicted Metabolic Exchanges Likely to
Occur in Part
With respect to the predictions of target metabolites, we
observed that for a large number of cases, predictions from the
metabolic networks corresponded to the observations made by
experimental metabolic profiling: none of the target metabolites
were detected in the negative control, and only in four cases
(Figure 3) did we detect compounds in co-cultures that were
not predicted to be there. This could either be attributed to
undetected metabolic pathways in the examined/added bacteria
(e.g., due to missing annotations) or, more likely, to the activity of
other bacteria present in our co-culture experiments (see below).
Furthermore, there were several cases in which a potentially co-
producible metabolite was not detected in our co-cultures. Here
two explanations appear particularly likely: first, the metabolites
in question may be produced but quickly metabolized in certain
consortia, so that they do not accumulate sufficiently to be
detectable in our cultures; secondly, it is possible that the
corresponding biosynthetic pathway of the metabolite was not
active or that the necessary exchange of metabolites was not
taking place. To resolve this point in future experiments, the
addition of gene expression data may help to establish whether
or not biosynthetic or degradation pathways are active. From a
global perspective, however, the fact that none of the compounds
in question were detected in negative controls, but all of
them it at least one co-culture condition, constitutes a highly
promising result.

Outlook
In our opinion, the main challenge for future in vivo studies
of metabolic complementarity will be to better control the
Ectocarpus-associated microbiome in co-culture experiments,
and thus to avoid any impact of non-inoculated microbes.
The currently applied antibiotic treatments are successful in
removing bacteria from the algal surface to a level where they
are no longer detectable by microscopy and spreading on culture
medium, but once the treatment is stopped and algae are left
to recover, so do parts of the microbiome, possibly from spores
that were inactive or embedded in the algal cell wall and thus
less susceptible to our treatments (Tetz and Tetz, 2017). In light
of these results, we strongly recommend routine metabarcoding
analysis for any type of coculture experiment, also in other
model systems. One possibility in the future would be to use
axenization protocols based on the movement of gametes, as has
been done for Ulva mutabilis (Spoerner et al., 2012); at least some
strains of Ectocarpus have previously been shown to produce

phototactic gametes (Kawai et al., 1990). A second alternative is
the continuous use of antibiotics throughout the experiment, and
working with antibiotic-resistant bacterial strains. In this context
a better understanding of the metabolic requirements of the algae
will help to durably maintain axenic cultures.

Despite these challenges, the present study constitutes
an important proof of concept for the use of metabolic
complementarity to study simplified system of mutualistic
host–symbiont interactions. We anticipate that, in the long
run, this concept can be applied not only to controlled
co-culture experiments, but that it will also prove useful
for the interpretation of more complex datasets such as
metatranscriptomic or metagenomic data.
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FIGURE S1 | Number of bacteria detected in the algal culture medium after
28 days of co-culture. The graph shows means of 3 replicates ± SD and
differences are statistically significant (one-way ANOVA p < 0.01). The letters
above the columns indicate the results of a TUKEY HSD pairwise comparisons
(p < 0.05). CTRL, control; ATB, antibiotic treatment.

FIGURE S2 | Heatmap of relative OTU abundance for all 30 OTUs that made up
over 1% of the total number of reads and that were not inoculated (see Table 4 for
the latter). This heatmap as generated using the ClustVis service (Metsalu and
Vilo, 2015) using “correlation” as a distance measure and “average linkage” as
clustering method. The color code corresponds to the mean sequence abundance
for each OTU in the three replicates a percentage of total reads; uc., unclassified.

TABLE S1 | Metabolites predicted to become producible by the alga as a result of
metabolite exchanges between the alga and bacteria.

FILE S1 | Metabolic networks of the algal host and the tested bacteria in
the SBML format.
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