I. R. Davison and G. A. Pearson, Stress tolerance in intertidal seaweeds, J. Phycol, vol.32, p.211, 1996.

R. S. Steneck, Kelp forest ecosystems: Biodiversity, stability, resilience and future, Environmental Conservation, vol.519, pp.436-459, 2002.

D. J. Mchugh, A guide to the seaweed industry, FAO Fish. Tech. Pap, p.521, 2003.

, Food and Agriculture Organization of the United Nations, F. Global production statistics, vol.523, p.525, 2016.

J. M. Archibald, The puzzle of plastid evolution, Curr. Biol, vol.19, pp.81-89, 2009.

A. F. Peters, D. Marie, D. Scornet, B. Kloareg, and J. M. Cock, Proposal of Ectocarpus 527 siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and 528 genomics, J. Phycol, vol.40, pp.1079-1088, 2004.

J. M. Cock, The Ectocarpus genome and the independent evolution of multicellularity 530 in brown algae, Nature, vol.465, pp.617-638, 2010.

S. Heesch, A sequence-tagged genetic map for the brown alga Ectocarpus siliculosus 532 provides large-scale assembly of the genome sequence, New Phytol, vol.188, pp.42-51, 2010.

B. Stache-crain, D. G. Müller, and L. J. Goff, Molecular systematics of Ectocarpus and 534

(. Kuckuckia and . Ectocarpales, Phaeophyceae) inferred from phylogenetic analysis of nuclear-and 535 plastid-encoded DNA sequences, J. Phycol, vol.33, pp.152-168, 1997.

A. F. Peters, L. Coucerio, K. Tsiamis, F. C. Küpper, and M. Valero, Barcoding of cryptic 537 stages of marine brown algae isolated from incubated substratum reveals high diversity

, Cryptogam. Algol, vol.36, pp.3-29, 2015.

N. Ye, Saccharina genomes provide novel insight into kelp biology, Nat. Commun, vol.6, p.6986, 2015.

K. Nishitsuji, A draft genome of the brown alga, Cladosiphon okamuranus , S-strain: a 542 platform for future studies of 'mozuku' biology, DNA Res, p.39, 2016.

K. Nishitsuji, Draft genome of the brown alga, Nemacystus decipiens, Onna-1 strain: 545 Fusion of genes involved in the sulfated fucan biosynthesis pathway, Sci. Rep, vol.9, p.546, 2019.

A. E. Montecinos, Species delimitation and phylogeographic analyses in the Ectocarpus 548 subgroup siliculosi (Ectocarpales, Phaeophyceae), J. Phycol, vol.53, p.15, 2017.

W. H. Harvey, Phycologia britannica, or, a history of British sea-weeds: containing coloured 550 figures, generic and specific characters, synonymes, and descriptions of all the species of 551 algae inhabiting the shores of the British Islands, 1848.

F. T. Kützing, Physiologie und Systemkunde der Tange, vol.553, 1843.

J. J. Bolton, Ecoclinal variation in Ectocarpus siliculosus (Phaeophyceae) with respect to 555 temperature growth optima and survival limits, Mar. Biol, vol.73, pp.131-138, 1983.

J. West and G. Kraft, Ectocarpus siliculosus (Dillwyn) Lyngb. from Hopkins River Falls, p.557

, Victoria -the first record of a freshwater brown alga in Australia, Muelleria, vol.9, p.19, 1996.

S. M. Dittami, S. Heesch, J. L. Olsen, and J. Collén, Transitions between marine and 559 freshwater environments provide new clues about the origins of multicellular plants and 560 algae, J. Phycol, vol.53, pp.731-745, 2017.

D. Oh, M. Dassanayake, H. J. Bohnert, and J. M. Cheeseman, Life at the extreme: lessons, 2012.

T. Gualtieri, E. Ragni, L. Mizzi, U. Fascio, and L. Popolo, The cell wall sensor Wsc1p is 585 involved in reorganization of actin cytoskeleton in response to hypo-osmotic shock in 586 Saccharomyces cerevisiae, Yeast, vol.21, pp.1107-1120, 2004.

H. Dong, High light stress triggers distinct proteomic responses in the marine diatom 588 Thalassiosira pseudonana, BMC Genomics, vol.17, p.994, 2016.

S. Zhu and B. R. Green, Photoprotection in the diatom Thalassiosira pseudonana: Role of 590 LI818-like proteins in response to high light stress, Biochim. Biophys. Acta -Bioenerg, vol.1797, pp.1449-1457, 2010.

S. M. Dittami, Global expression analysis of the brown alga Ectocarpus siliculosus 593 (Phaeophyceae) reveals large-scale reprogramming of the transcriptome in response to 594 abiotic stress, Genome Biol, vol.10, p.66, 2009.

H. Wu, Insights into salt tolerance from the genome of Thellungiella salsuginea

, Proc. Natl. Acad. Sci. U. S. A, vol.109, pp.12219-12243, 2012.

J. G. De-boer, R. Yazawa, W. S. Davidson, and B. F. Koop, Bursts and horizontal evolution 598 of DNA transposons in the speciation of pseudotetraploid salmonids, BMC Genomics, vol.8, p.599, 2007.

T. T. Hu, The Arabidopsis lyrata genome sequence and the basis of rapid genome size 601 change, Nat. Genet, vol.43, pp.476-81, 2011.

S. Tan, LTR-mediated retroposition as a mechanism of RNA-based duplication in 603 metazoans, Genome Res, vol.26, pp.1663-1675, 2016.

D. G. Müller, M. Kapp, and R. Knippers, Viruses in marine brown algae, vol.50, p.605, 1998.

N. Delaroque, The complete DNA sequence of the Ectocarpus siliculosus virus EsV-1 607 genome, Virology, vol.287, pp.112-132, 2001.

S. M. Dittami, Microarray estimation of genomic inter-strain variability in the genus 609 Ectocarpus (Phaeophyceae), BMC Mol. Biol, vol.12, 2011.

M. Liu, The complex jujube genome provides insights into fruit tree biology, Nat. 611 Commun, vol.5, p.5315, 2014.

B. Kloareg and R. S. Quatrano, Structure of the cell-walls of marine-algae and 613 ecophysiological functions of the matrix polysaccharides. Ocean, Mar Biol, vol.26, p.614, 1988.

Z. A. Popper, Evolution and diversity of plant cell walls: from algae to flowering plants
URL : https://hal.archives-ouvertes.fr/hal-01117618

, Annu. Rev. Plant Biol, vol.62, pp.567-90, 2011.

T. A. Torode, Monoclonal antibodies directed to fucoidan preparations from brown 618 algae, PLoS One, vol.10, p.118366, 2015.

A. Q. Rao, Genomics of salinity tolerance in plants, Plant Genomics

I. Y. Abdurakhmonov, , vol.621, p.46, 2016.

K. Avia, High-density genetic map and identification of QTLs for responses to 622 temperature and salinity stresses in the model brown alga, Ectocarpus. Sci. Rep, vol.7, p.623, 2017.

L. K. Mosavi, T. J. Cammett, D. C. Desrosiers, and Z. Peng, The ankyrin repeat as molecular 625 architecture for protein recognition, Protein Sci, vol.13, pp.1435-1448, 2004.

A. P. Lipinska, E. J. Van-damme, and O. De-clerck, Molecular evolution of candidate 627 male reproductive genes in the brown algal model Ectocarpus, BMC Evol. Biol, vol.16, p.49, 2016.

H. S. Yoon, J. D. Hackett, C. Ciniglia, G. Pinto, and D. Bhattacharya, A molecular timeline 629 for the origin of photosynthetic eukaryotes, Mol. Biol. Evol, vol.21, p.50, 2004.

B. Charrier, Development and physiology of the brown alga Ectocarpus siliculosus: 631 two centuries of research, New Phytol, vol.177, pp.319-351, 2008.

D. Tautz and T. Domazet-lo?o, The evolutionary origin of orphan genes, Nat. Rev. Genet, vol.12, pp.692-702, 2011.

K. Khalturin, G. Hemmrich, S. Fraune, R. Augustin, and T. C. Bosch, More than just 635 orphans: are taxonomically-restricted genes important in evolution?, Trends Genet, vol.25, p.413, 2009.

A. Ritter, Transcriptomic and metabolomic analysis of copper stress acclimation in 638

, Ectocarpus siliculosus highlights signaling and tolerance mechanisms in brown algae, BMC 639 Plant Biol, vol.14, p.116, 2014.

R. C. Starr and J. A. Zeikus, Utex -the culture collection of algae at the University of Texas at 641 Austin: 1993 list of cultures, J. Phycol, vol.29, pp.1-106, 1993.

J. H. Bothwell, D. Marie, A. F. Peters, J. M. Cock, and S. M. Coelho, Role of 643 endoreduplication and apomeiosis during parthenogenetic reproduction in the model brown 644 alga Ectocarpus, New Phytol, vol.188, pp.111-132, 2010.

L. Bail and A. , Normalisation genes for expression analyses in the brown alga model 646 Ectocarpus siliculosus, BMC Mol. Biol, vol.9, p.75, 2008.

A. Rival, Variations in genomic DNA methylation during the long-term in vitro 648 proliferation of oil palm embryogenic suspension cultures, Plant Cell Rep, vol.32, p.649, 2013.

R. Luo, SOAPdenovo2: an empirically improved memory-efficient short-read de novo 651 assembler, Gigascience, vol.1, p.18, 2012.

M. Boetzer, C. V. Henkel, H. J. Jansen, D. Butler, and W. Pirovano, Scaffolding pre-653 assembled contigs using SSPACE, Bioinformatics, vol.27, pp.578-587, 2011.

F. Cabanettes and C. Klopp, D-GENIES: dot plot large genomes in an interactive, efficient 655 and simple way, PeerJ, vol.6, p.4958, 2018.

E. Bosi, MeDuSa: a multi-draft based scaffolder, Bioinformatics, vol.31, p.62, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01139506

H. Tang, ALLMAPS: robust scaffold ordering based on multiple maps, Genome Biol, vol.658, p.3, 2015.

S. M. Dittami and E. Corre, Detection of bacterial contaminants and hybrid sequences in the 660 genome of the kelp Saccharina japonica using Taxoblast, PeerJ, vol.5, p.64, 2017.

A. M. Eren, Anvi'o: an advanced analysis and visualization platform for 'omics data, PeerJ, vol.662, p.1319, 2015.

F. Meyer, The metagenomics RAST server -a public resource for the automatic 664 phylogenetic and functional analysis of metagenomes, BMC Bioinformatics, vol.9, p.66, 2008.

D. Ellinghaus, S. Kurtz, and U. Willhoeft, LTRharvest, an efficient and flexible software for 666 de novo detection of LTR retrotransposons, BMC Bioinformatics, vol.9, p.18, 2008.

T. Flutre, E. Duprat, C. Feuillet, and H. Quesneville, Considering transposable element 668 diversification in de novo annotation approaches, PLoS One, vol.6, p.16526, 2011.

S. A. Goff, The iPlant collaborative: cyberinfrastructure for plant biology. Front. Plant 670 Sci, vol.2, p.34, 2011.

L. Delage, In silico survey of the mitochondrial protein uptake and maturation systems 672 in the brown alga Ectocarpus siliculosus, PLoS One, vol.6, p.19540, 2011.

L. Corguillé and G. , Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus 674 vesiculosus: further insights on the evolution of red-algal derived plastids, BMC Evol. Biol, vol.9, p.253, 2009.

K. Lagesen, RNAmmer: consistent and rapid annotation of ribosomal RNA genes. 677, Nucleic Acids Res, vol.35, pp.3100-3108, 2007.

M. Bernt, MITOS: improved de novo metazoan mitochondrial genome annotation, Mol. 679 Phylogenet. Evol, vol.69, pp.313-322, 2013.

D. Laslett and B. Canback, ARAGORN, a program to detect tRNA genes and tmRNA genes 681 in nucleotide sequences, Nucleic Acids Res, vol.32, pp.11-17, 2004.

P. Schattner, A. N. Brooks, and T. M. Lowe, The tRNAscan-SE, snoscan and snoGPS web 683 servers for the detection of tRNAs and snoRNAs, Nucleic Acids Res, vol.33, p.75, 2005.

S. Foissac, Genome annotation in plants and fungi: EuGene as a model platform
URL : https://hal.archives-ouvertes.fr/hal-02658120

, Bioinform, vol.3, p.11, 2008.

V. H. Nguyen and D. Lavenier, PLAST: parallel local alignment search tool for database 687 comparison, BMC Bioinformatics, vol.10, p.329, 2009.

H. Nielsen, Predicting Secretory Proteins with SignalP, Protein Function Prediction

D. Kihara, , pp.59-73, 2017.

S. Götz, High-throughput functional annotation and data mining with the Blast2GO 691 suite, Nucleic Acids Res, vol.36, pp.3420-3455, 2008.

E. Lee, Web Apollo: a web-based genomic annotation editing platform, Genome Biol, vol.693, p.93, 2013.

N. Dunn, , vol.696, p.81, 2017.

P. D. Karp, Pathway Tools version 19.0 update: software for pathway/genome 697 informatics and systems biology, Brief. Bioinform, vol.17, pp.877-890, 2016.

C. G. De-oliveira-dal'molin, L. Quek, R. W. Palfreyman, S. M. Brumbley, and . Nielsen, , p.699

L. , AraGEM, a genome-scale reconstruction of the primary metabolic network in 700 Arabidopsis, Plant Physiol, vol.152, pp.579-89, 2010.

N. Loira, A. Zhukova, D. J. Sherman, and . Pantograph, A template-based method for genome-702 scale metabolic model reconstruction, J. Bioinform. Comput. Biol, vol.13, p.84, 2015.

S. Prigent, Meneco, a Topology-Based Gap-Filling Tool Applicable to Degraded 704

, Genome-Wide Metabolic Networks, PLOS Comput. Biol, vol.13, p.1005276, 2017.

M. Aite, Traceability, reproducibility and wiki-exploration for "à-la-carte" 706 reconstructions of genome-scale metabolic models, PLOS Comput. Biol, vol.14, p.707, 2018.

A. Cormier, Re-annotation, improved large-scale assembly and establishment of a 709 catalogue of noncoding loci for the genome of the model brown alga Ectocarpus, New 710 Phytol, vol.214, pp.219-232, 2017.

D. M. Emms and S. Kelly, OrthoFinder: solving fundamental biases in whole genome 712 comparisons dramatically improves orthogroup inference accuracy, Genome Biol, vol.16, p.713, 2015.

A. P. Lipinska, Rapid turnover of life-cycle-related genes in the brown algae, Genome 715 Biol, vol.20, p.35, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02046119

P. Di-tommaso, T-Coffee: a web server for the multiple sequence alignment of protein 717 and RNA sequences using structural information and homology extension, Nucleic Acids Res, vol.718, pp.13-20, 2011.

M. Suyama, D. Torrents, and P. Bork, PAL2NAL: robust conversion of protein sequence 720 alignments into the corresponding codon alignments, Nucleic Acids Res, vol.34, pp.609-621, 2006.

G. Talavera and J. Castresana, Improvement of phylogenies after removing divergent and 723 ambiguously aligned blocks from protein sequence alignments, Syst. Biol, vol.56, p.92, 2007.

Z. Yang, PAML 4: phylogenetic analysis by maximum likelihood, Mol. Biol. Evol, vol.24, p.91, 2007.

S. M. Dittami, G. Michel, J. Collén, C. Boyen, and T. Tonon, Chlorophyll-binding proteins 727 revisited--a multigenic family of light-harvesting and stress proteins from a brown algal 728 perspective, BMC Evol. Biol, vol.10, p.365, 2010.

K. Katoh, K. Misawa, K. Kuma, and T. Miyata, MAFFT: a novel method for rapid multiple 730 sequence alignment based on fast Fourier transform, Nucleic Acids Res, vol.30, p.95, 2002.

A. M. Waterhouse, J. B. Procter, D. M. Martin, M. Clamp, and G. J. Barton, Jalview 732 Version 2--a multiple sequence alignment editor and analysis workbench, Bioinformatics, vol.25, pp.1189-91, 2009.

S. Guindon and O. Gascuel, A simple, fast, and accurate algorithm to estimate large 735 phylogenies by maximum likelihood, Syst. Biol, vol.52, pp.696-704, 2003.

S. Kumar, G. Stecher, and K. Tamura, MEGA7: Molecular Evolutionary Genetics Analysis 737 Version 7.0 for Bigger Datasets, Mol. Biol. Evol, vol.33, pp.1870-1874, 2016.

J. Dainat, H. Gourlé, and . Nbisweden/emblmygff3, , vol.740, p.99, 2018.

M. E. Skinner, A. V. Uzilov, L. D. Stein, C. J. Mungall, and I. H. Holmes, JBrowse: a next-741 generation genome browser, Genome Res, vol.19, pp.1630-1638, 2009.