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Abstract Conditional correlation networks, within Gaus-
sian Graphical Models (GGM), are widely used to describe
the direct interactions between the components of a random
vector. In the case of an unlabelled Heterogeneous popu-
lation, Expectation Maximisation (EM) algorithms for Mix-
tures of GGM have been proposed to estimate both each sub-
population’s graph and the class labels. However, we argue
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that, with most real data, class affiliation cannot be described
with aMixture of Gaussian, which mostly groups data points
according to their geometrical proximity. In particular, there
often exists external co-features whose values affect the fea-
tures’ average value, scattering across the feature space data
points belonging to the same sub-population. Additionally,
if the co-features’ effect on the features is Heterogeneous,
then the estimation of this effect cannot be separated from
the sub-population identification. In this article, we propose
a Mixture of Conditional GGM (CGGM) that subtracts the
heterogeneous effects of the co-features to regroup the data
points into sub-population corresponding clusters. We de-
velop a penalised EM algorithm to estimate graph-sparse
model parameters. We demonstrate on synthetic and real
data how this method fulfils its goal and succeeds in identi-
fying the sub-populations where the Mixtures of GGM are
disrupted by the effect of the co-features.

Keywords Gaussian Graphical Models · Unlabelled
Heterogeneous populations · Conditional GGM · Mixture
Models · EM algorithm

1 Introduction

The conditional correlation networks are a popular tool to
describe the co-variations between the components of a ran-
dom vector. Within the Gaussian Graphical Model (GGM)
framework, introduced in Dempster (1972), the random vec-
tor of interest is modelled as a gaussian vectorN(𝜇,Σ), and
the conditional correlation networks can be recovered from
the sparsity of the precision matrix Λ := Σ−1. In this article,
we consider the case of an unlabelled heterogeneous popu-
lation, in which different sub-populations (or "classes") are
described by different networks. Additionally, we take into
account the presence of observed co-features (discrete and/or
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continuous) that have a heterogeneous (class-dependent) im-
pact on the values of the features. The absence of known class
labels turns the analysis of the population into an unsuper-
vised problem. As a result, any inference method will have to
tackle the problem of cluster discovery in addition to the pa-
rameter estimation. The former is a crucial task, especially
since the relevance of the estimated parameters is entirely
dependent on the clusters identified. The co-features, if their
effects on the features are consequent, can greatly disrupt
the clustering. Indeed, any unsupervised method will then
be more likely to identify clusters correlated with the val-
ues of the co-features than with the hidden sub-population
labels. This occurs frequently when analysing biological or
medical features. To provide a simple illustration, if one runs
an unsupervised method on an unlabelled population con-
taining both healthy and obese patients, using the body fat
percentage as a feature, then the unearthed clusters are very
likely to be more correlated with the gender of the patients (a
co-feature) rather than with the actual diagnostic (the hidden
variable). Additionally, the fact that the effect of the gender
on the average body fat is also dependent on the diagnostic
(class-dependent effect) makes the situation even more com-
plex.
The seminal work of Dempster (1972), and its later hierar-
chical extension introduced in Honorio and Samaras (2010)
andVaroquaux et al. (2010), generated tremendous interest in
GGM and hierarchical GGM analyses respectively. See Lar-
tigue (2020) for an extensive literature review on these topics.
Recently, unsupervised hierarchical GGM have received in-
creasing attention, with works such as Gao et al. (2016) and
Hao et al. (2017) adapting the popular supervised joint Hier-
archical GGM methods of Mohan et al. (2014) and Danaher
et al. (2014) to the unsupervised case. When the labels are
known in advance, these joint Hierarchical GGM are use-
ful models to estimate several sparse conditional correlation
matrices and are modular enough to allow for the recovery of
many different forms of common structure between classes.
However, we argue that they are not designed for efficient
cluster identification in the unsupervised scenario, and will
very likely miss the hidden variable and find clusters cor-
related to the most influential co-features instead. Which in
turn will result in the estimation of irrelevant parameters.
Even when there are no pre-existing hidden variables to re-
cover, and the unsupervised method is run "blindly", it is
uninteresting to recover clusters describing the values to al-
ready known co-features. Instead, one would rather provide
beforehand the unsupervised method with the information
of the co-features’ values and encourage it to recover new
information from the data.
In order to take into account the effect of co-features on fea-
tures, Yin and Li (2011) andWytock andKolter (2013) intro-
duced the Conditional GaussianGraphicalModels (CGGM).
Within thismodel, the average effect of the co-features is sub-

tracted from the features using a "linear transition" matrix
Θ, which leaves the features with only their residual be-
haviour. Both Yin and Li (2011) and Sohn and Kim (2012)
worked with homogeneous populations, but the Hierarchical
form of the CGGM was introduced by Chun et al. (2013)
to study labelled heterogeneous populations, with hetero-
geneous effects of the co-features on the features. Recent
works such as Huang et al. (2018) and Ou-Yang et al. (2019)
have adapted the state of the art supervised joint Hierarchical
GGM methods to the CGGM, in order to also recover ele-
ments of common structure across all classes. However, to
the best of our knowledge, there has been no effort to make
use of the CGGM in the unsupervised case to identify groups
with distinct sparse correlation structures with common ele-
ments.
In this article, we introduce a Mixture of Conditional GGM
that models the class-dependent effect of the co-features on
the features with different transition parameters (Θ𝑘 )𝐾𝑘=1. We
propose an Expectation-Maximisation (EM) procedure to es-
timate this model without prior knowledge of the class labels.
This EM algorithm can be regularised with all the structure-
inducing penalties introduced for the supervised joint Hi-
erarchical CGGM. Hence, the recovered sparse precision
matrices (Λ𝑘 )𝐾𝑘=1 and corresponding conditional correlation
graphs can present any of the desired form of common struc-
ture. Moreover, with an additional penalty term, we can also
enforce sparse and common structure within the transition
parameters Θ𝑘 . We provide a very detailed computational
scheme for our algorithm in the specific case of the Group
Graphical Lasso (GGL) penalty of Danaher et al. (2014).
Moreover, we make the code for our algorithm, as well as a
toy example that reproduces some of the results of this paper,
publicly available at: https://github.com/tlartigue/Mixture-
of-Conditional-Gaussian-Graphical-Models.
Thanks to the inclusion of the co-features within the model,
our EM algorithm is able to avoid trivial clusters correlated
with the co-features’ values, and instead unearths clusters
providing new information on the population. Additionally,
since our model takes into account heterogeneous effects of
the co-features, our EM can handle the more complex sce-
narios, where the co-features act differently on the features
in each sub-population.
A similar method was introduced by Kim (2016), who also
uses a Conditional Gaussian Mixture model between co-
features and features, as well as sparse GGM on the features.
In their case however, the prediction of the features by the
co-features takes centre stage. Indeed, the Mixture model
acts as a Mixture of Experts, see Jordan and Jacobs (1994),
that improves the prediction by allowing non-linear relations.
Whereas in this article, the co-features are not meant to pre-
dict the features, but instead to make the clustering of the
population more sensible. Another difference is that our al-
gorithm performs at each M step a joint estimation of the

https://github.com/tlartigue/Mixture-of-Conditional-Gaussian-Graphical-Models
https://github.com/tlartigue/Mixture-of-Conditional-Gaussian-Graphical-Models


Mixture of Conditional Gaussian Graphical Models 3

model parameters in order to identify the common covari-
ance structure between the different groups. Another domain
of research, the "Finite Mixture Regression models" (FMR)
DeSarbo and Cron (1988); Khalili and Chen (2007), exhibit
some superficial similarities with the Mixture of CGGM,
but are very different in scope. The FMR consist of several
parallel linear regressions between co-features and features.
Where the features are usually uni- or low-dimensional and
their covariance structure is not in question. Prediction is
once again the main focus. Any clustering derived from an
FMR model has its different classes solely defined by differ-
ent linear relations (different "slopes") between co-features
and features. This is very different from our GGM approach,
where a multidimensional feature vector is described with a
hierarchical graphical model, and the co-feature are a tool to
improve the clustering within the feature space.
We demonstrate the performance of our method on synthetic
and real data. First with a 2-dimensional toy example, where
we show the importance of taking into consideration the (het-
erogeneous) effects of co-features for the clustering. Then,
in higher dimension, we demonstrate that our EM with Mix-
ture of CGGM consistently outperforms, both in terms of
classification and parameter reconstruction, the EM with a
Mixture of GGM (used in Gao et al. (2016) and Hao et al.
(2017)), as well as an improved Mixture of GGM EM, that
takes into consideration a homogeneous co-feature effect.
Finally, on real Alzheimer’s Disease data, we show that our
method is the better suited to recover clusters correlated with
the diagnostic, from both MRI and Cognitive Score features.

2 Supervised Hierarchical GGM and CGGM

In this section, we summarise the whys and wherefores of
Gaussian Graphical Modelling: the simple models for ho-
mogeneous populations, as well as the hierarchical models
for heterogeneous populations. First, we explore the classical
Gaussian Graphical Models techniques to describe a vector
of features𝑌 ∈ R𝑝 , thenwe discuss the Conditional Gaussian
Graphical Models implemented in the presence of additional
co-features 𝑋 ∈ R𝑞 . For every parametric model, we call 𝜃
the full parameter, and 𝑝𝜃 the probability density function.
Hence, in the example of a gaussianmodel 𝜃 = (𝜇,Σ). For hi-
erarchical models with 𝐾 classes, we will have 𝐾 parameters
(𝜃1, ..., 𝜃𝐾 ).

2.1 Basics of Hierarchical Gaussian Graphical Models

In the classicalGGManalysis introduced byDempster (1972),
the studied features 𝑌 ∈ R𝑝 are assumed to follow a Mul-
tivariate Normal distribution: 𝑌 ∼ N (𝜇,Σ). The average 𝜇
is often ignored and put to 0. With Λ := Σ−1, the resulting

distribution is:

𝑝𝜃 (𝑌 ) = (2𝜋)−𝑝/2 |Λ|1/2 𝑒𝑥𝑝
(
−1
2
𝑌𝑇Λ𝑌

)
. (1)

In this case 𝜃 = Λ. Using the property that 𝑐𝑜𝑟𝑟 (𝑌𝑢 , 𝑌𝑣 | (𝑌𝑤 )𝑤≠𝑢,𝑣 ) =
− (Λ)𝑢𝑣√

(Λ)𝑢𝑢 (Λ)𝑣𝑣
, the conditional correlation network is ob-

tained using a sparse estimation of the precision matrix Λ.
Heterogeneous populations, where different correlation net-
works may exist for each sub-population (or "class"), can be
describedwith theHierarchical version of theGGM(1).With
𝐾 classes, Let 𝜃 := (𝜃1, ..., 𝜃𝑘 ) be the parameter for each class
and 𝑧 ∈ È1, 𝐾É the categorical variable corresponding to the
class label of the observation𝑌 . With 𝜃𝑘 := Λ𝑘 and 𝑧 known,
the Hierarchical density can be written:

𝑝𝜃 (𝑌 |𝑧) =
𝐾∑︁
𝑘=1

1𝑧=𝑘 𝑝𝜃𝑘 (𝑌 )

=

𝐾∑︁
𝑘=1

1𝑧=𝑘 (2𝜋)−𝑝/2 |Λ𝑘 |1/2 𝑒𝑥𝑝
(
−1
2
𝑌𝑇Λ𝑘𝑌

)
.

(2)

Mirroring the famous Graphical LASSO (GLASSO) ap-
proach introduced by Yuan and Lin (2007) and Banerjee
et al. (2006) for homogeneous populations, many authors
have chosen to estimate sparse Λ̂𝑘 as penalised Maximum
Likelihood Estimator (MLE) of Λ𝑘 . For 𝑖 = 1, ..., 𝑛, let 𝑌 (𝑖)
be independent identically distributed (iid) feature vectors
and 𝑧 (𝑖) their labels. These MLE are computed from the
simple convex optimisation problem

𝜃 = argmin
𝜃

− 1
𝑛

𝐾∑︁
𝑘=1

𝑛∑︁
𝑖=1

1𝑧 (𝑖)=𝑘 𝑙𝑛 𝑝𝜃𝑘 (𝑌 (𝑖) ) + 𝑝𝑒𝑛(𝜃) . (3)

Where the convex penalty 𝑝𝑒𝑛(𝜃) is usually designed to
induce sparsity within each individual Λ̂𝑘 as well as to
enforce a certain common structure between the Λ̂𝑘 . This
common structure is a desirable outcome when the different
sub-populations are assumed to still retain core similarities.
Following in the footsteps of Guo et al. (2011), most authors
propose such a joint estimation of the matrices Λ𝑘 . In the
case of the penalised MLE estimation (3), the form of the
resulting common structure is dependent on the penalty. For
instance, Danaher et al. (2014) propose the "Fused Graphi-
cal LASSO"" and "Group Graphical LASSO" penalties that
encourage shared values and shared sparsity pattern across
the different Λ𝑘 respectively. Likewise, Yang et al. (2015)
propose another fused penalty to incentivise common val-
ues across matrices. With their node based penalties, Mohan
et al. (2014) can encourage the recovery of common hubs in
the graphs.
Remark 1 Within a hierarchical model, one can also take
𝜃𝑘 := (𝜇𝑘 ,Λ𝑘 ), and adapt 𝑝𝜃𝑘 (𝑌 ) accordingly, since it is
natural to allow each sub-population to have different average
levels 𝜇𝑘 .
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2.2 Conditional GGM in the presence of co-features

In some frameworks, additional variables, noted 𝑋 ∈ 𝑅𝑞 and
called "co-features" or "cofactors" can be observed alongside
the regular features within the gaussian vector 𝑌 ∈ R𝑝 . In all
generality, 𝑋 can be a mix of finite, discrete and continuous
random variables. In the GGM analysis, these co-features are
not included as nodes of the estimated conditional correlation
graph. Instead, they serve to enrich the conditioning defining
each edge: in the new graph, there is an edge between the
nodes𝑌𝑢 and𝑌𝑣 if and only if 𝑐𝑜𝑣(𝑌𝑢 , 𝑌𝑣 | (𝑌𝑤 )𝑤≠𝑢,𝑣 , 𝑋) ≠ 0.
The Conditional Gaussian Graphical Models (CGGM) were
introduced by Yin and Li (2011) and Sohn and Kim (2012)
in order to properly take into account the effect of 𝑋 on 𝑌
and easily identify the new conditional correlation network
in-between the 𝑌 . They propose a linear effect, expressed by
the conditional probability density function (pdf):

𝑝𝜃 (𝑌 |𝑋) :=
|Λ|

1
2

(2𝜋)
𝑝

2
𝑒𝑥𝑝

(
−1
2
(𝑌+Λ−1Θ𝑇 𝑋)𝑇Λ(𝑌+Λ−1Θ𝑇 𝑋)

)
,

(4)

with Θ ∈ R𝑞×𝑝 and 𝜃 = {Λ,Θ}. In other words: 𝑌 |𝑋 ∼
N

(
−Λ−1Θ𝑇 𝑋,Λ−1

)
. To simplify later equations, we de-

fine the function 𝐿 (𝑌, 𝑋,Λ,Θ) := − 12 (𝑌 +Λ
−1Θ𝑇 𝑋)𝑇Λ(𝑌 +

Λ−1Θ𝑇 𝑋). Eq (4) can be re-written:

𝑝𝜃 (𝑌 |𝑋) =
|Λ|

1
2

(2𝜋)
𝑝

2
𝑒𝑥𝑝

(
𝐿 (𝑌, 𝑋,Λ,Θ)

)
.

Two main branches of CGGM exist, depending on whether
the pdf of 𝑋 is also modelled. In this work, we chose to
impose no model on 𝑋 . The lack of assumption on the den-
sity of 𝑋 provides far more freedom than the joint gaussian
assumption. In particular, X can have categorical and even
deterministic components. This allows us to integrate any
observed variables without restriction to the model.
To tackle heterogeneous populations, works such as Chun
et al. (2013) have introduced the Hierarchical version of the
CGGM pdf:

𝑝𝜃 (𝑌 |𝑋, 𝑧) :=
𝐾∑︁
𝑘=1

1𝑧=𝑘
|Λ𝑘 |

1
2

(2𝜋)
𝑝

2
𝑒𝑥𝑝

(
𝐿 (𝑌, 𝑋,Λ𝑘 ,Θ𝑘 )

)
. (5)

In particular, Huang et al. (2018) have adapted the penalised
MLE (3) to the Hierarchical CGGM density for some of the
most popular GGM penalties. With an iid observed sam-
ple (𝑌 (𝑖) , 𝑋 (𝑖) , 𝑧 (𝑖) )𝑛

𝑖=1, the corresponding penalised CGGM
MLE can be written;

𝜃 = argmin
𝜃

− 1
𝑛

𝐾∑︁
𝑘=1

𝑛∑︁
𝑖=1

1𝑧 (𝑖)=𝑘 𝑙𝑛 𝑝𝜃𝑘 (𝑌 (𝑖) |𝑋 (𝑖) ) + 𝑝𝑒𝑛(𝜃) .

(6)

Remark 2 To include a regular average value for 𝑌 , inde-
pendent of the values of 𝑋 , one can simply add a constant
component equal to "1" in 𝑋 .

3 Mixtures of CGGM for unlabelled heterogeneous
population

In this section, we tackle the problem of an unlabelled hetero-
geneous population. We introduce a Mixture of Conditional
Gaussian Graphical Model to improve upon the state of the
art unsupervised methods by taking into consideration the
potent co-features that can drive the clustering. We develop
a penalised EM algorithm to both identify data clusters and
estimate sparse, structured,model parameters.We justify that
our algorithm is usable with a wide array of penalties and
provide detailed algorithmic steps for the Group Graphical
LASSO (GGL) penalty.

3.1 Presentation and motivation of the model

When the labels of a heterogeneous population are missing,
supervised parameter estimation methods like (3) have to
be replaced by unsupervised approaches that also tackle the
problem of cluster discovery. When 𝑧 is unknown, the Hier-
archical model (2) can easily be replaced by aMixture model
with observed likelihood:

𝑝𝜃, 𝜋 (𝑌 ) =
𝐾∑︁
𝑘=1

𝜋𝑘 𝑝𝜃𝑘 (𝑌 ) , (7)

and complete likelihood:

𝑝𝜃, 𝜋 (𝑌, 𝑧) =
𝐾∑︁
𝑘=1

1𝑧=𝑘𝜋𝑘 𝑝𝜃𝑘 (𝑌 ) . (8)

Where 𝜋𝑘 := P(𝑧 = 𝑘) and 𝜋 := (𝜋1, ..., 𝜋𝑘 ) . Then, the
supervised penalised likelihood maximisation (3) can be
adapted into the penalised observed likelihood optimisation:

𝜃, 𝜋̂ = argmin
𝜃, 𝜋

− 1
𝑛

𝑛∑︁
𝑖=1

𝑙𝑛

(
𝐾∑︁
𝑘=1

𝜋𝑘 𝑝𝜃𝑘

(
𝑌 (𝑖)

))
+ 𝑝𝑒𝑛(𝜃, 𝜋) .

(9)

This is a non-convex problem, and authors such as Zhou
et al. (2009) and Krishnamurthy (2011) have proposed EM
algorithms to find local solutions to (9). For amore recent ex-
ample, Hara et al. (2018) used such a Mixture of GGM with
an 𝑙1 regularisation on each class with each M step solved by
Graphical LASSO, Banerjee et al. (2008); Friedman et al.
(2008). Likewise, Fop et al. (2019) also consider problems
of the form (9), solved with an EM algorithm, although their
regularisation functions belong to another family entirely,
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that enforces sparsity on the covariance matrix instead of the
precision matrix. However, all these works omit the com-
mon structure inducing penalties that are the signature of
the supervised joint GGM methods. The works of Gao et al.
(2016) and Hao et al. (2017) correct this by proposing EM al-
gorithms that solve (9) for some of the joint-GGM penalties,
such as the Fused and Group Graphical LASSO penalties.
By design, the EM algorithm must handle the cluster identi-
fication jointly with the mixture parameters estimation. The
underlying assumption is that the different sub-populations
can be identified as different clusters in the feature space.
With real data, and especially medical data, this is generally
untrue, as many factors other than the class label can have
a larger impact on the position of the data points in the fea-
ture space. Even when there are no specific sub-populations
to recover, and the EM is ran "blindly" in order to observe
which data points are more naturally grouped together by the
method, the unearthed clusters have every chance to be very
correlated with very influential but trivial external variables,
such as the age group or the gender. In order to guide the
cluster discovery of the EM algorithm, we propose a Mix-
ture of Conditional Gaussian Graphical Models with which
the overbearing effect of trivial external variables can be re-
moved. By placing all external observed variable into 𝑋 , we
define the Mixture of CGGM with its observed likelihood:

𝑝𝜃, 𝜋 (𝑌 |𝑋) :=
𝐾∑︁
𝑘=1

𝜋𝑘 𝑝𝜃𝑘 (𝑌 |𝑋)

=

𝐾∑︁
𝑘=1

𝜋𝑘
|Λ𝑘 |

1
2

(2𝜋)
𝑝

2
𝑒𝑥𝑝

(
𝐿 (𝑌, 𝑋,Λ𝑘 ,Θ𝑘 )

)
.

(10)

Within this model, the position of each feature vector 𝑌 is
corrected by its, class-dependent, linear prediction by the co-
features 𝑋: E[𝑌 |𝑋, 𝑧 = 𝑘] = −Λ−1

𝑘
Θ𝑇
𝑘
𝑋 . In other words the

"Mixture of Gaussians" type clustering is done on the resid-
ual vector 𝑌 − E[𝑌 |𝑋, 𝑧 = 𝑘] = 𝑌 + Λ−1

𝑘
Θ𝑇
𝑘
𝑋 . Hence, even

if the co-features 𝑋 have a class-dependent impact on the
average level of the features𝑌 , the Mixture of CGGMmodel
is still able to regroup in the feature space the observations
𝑌 (𝑖) that belong to the same class, 𝑧 (𝑖) = 𝑘 . We illustrate this
dynamic in section 4.1.
Like the previous works on joint-GGM estimation, our goal
is to estimate the parameters of model (10) with sparse pre-
cision matrices Λ𝑘 and common structure across classes.
Sparsity in the matrices Θ𝑘 is also desirable for the sake
of interpretation. Hence, we define the following penalised
Maximum Likelihood problem:

𝜃, 𝜋̂ = argmin
𝜃, 𝜋

{
− 1
𝑛

𝑛∑︁
𝑖=1

𝑙𝑛

(
𝐾∑︁
𝑘=1

𝜋𝑘 𝑝𝜃𝑘

(
𝑌 (𝑖) |𝑋 (𝑖)

))
+ 𝑝𝑒𝑛(𝜃, 𝜋)

}
.

(11)

As with (9), this is a non-convex problem, and we define an
EMalgorithm to find local minima of the optimised function.

3.2 Penalised EM for the Mixture of CGGM

In this section, we provide the detailed steps of a penalised
EM algorithm to find local solution of the non-convex pe-
nalised MLE (11) in order to estimate the parameters of the
mixture model (10) with precision matrix sparsity as well
as common structure. First we provide the different steps of
the algorithm and justify that it can be run with a wide array
of penalty functions. Then, we provide a detailed optimisa-
tion scheme for the Group Graphical Lasso (GGL) penalty
specifically. The full code for this GGL-penalised CGGM
EM can be found at https://github.com/tlartigue/Mixture-of-
Conditional-Gaussian-Graphical-Models.

3.2.1 EM algorithm for Mixtures of CGGM

With 𝑛 fixed
{
𝑋 (𝑖)

}𝑛
𝑖=1 and 𝑛 iid observations

{
𝑌 (𝑖)

}𝑛
𝑖=1 fol-

lowing the mixture density 𝑝𝜃, 𝜋 (𝑌 |𝑋) given in (10), the
penalised observed negative log-likelihood to optimise is:

−1
𝑛

𝑛∑︁
𝑖=1

𝑙𝑛

(
𝐾∑︁
𝑘=1

𝜋𝑘 𝑝𝜃𝑘

(
𝑌 (𝑖) |𝑋 (𝑖)

))
+ 𝑝𝑒𝑛(𝜃, 𝜋) . (12)

The EM algorithm is an iterative procedure updating the
current parameter (𝜃 (𝑡) , 𝜋 (𝑡) ) with two steps. For a Mixture
model, the Expectation (E) step is:

𝑝
(𝑡)
𝑖,𝑘
:= P𝜃 (𝑡 ) , 𝜋 (𝑡 ) (𝑧 (𝑖) = 𝑘 |𝑌 (𝑖) , 𝑋 (𝑖) )

=

𝑝
𝜃
(𝑡 )
𝑘

(𝑌 (𝑖) |𝑋 (𝑖) )𝜋 (𝑡)
𝑘∑𝐾

𝑙=1 𝑝𝜃 (𝑡 )
𝑙

(𝑌 (𝑖) |𝑋 (𝑖) )𝜋 (𝑡)
𝑙

.

More explicitly, by replacing 𝑝𝜃𝑘 (𝑌 |𝑋) by its formula (4):

(𝐸) 𝑝
(𝑡)
𝑖,𝑘

=
|Λ𝑘 |

1
2 𝑒𝑥𝑝

(
(𝐿 (𝑌 (𝑖) , 𝑋 (𝑖) ,Λ𝑘 ,Θ𝑘 )

)
𝜋
(𝑡)
𝑘∑𝐾

𝑙=1 |Λ𝑙 |
1
2 𝑒𝑥𝑝

(
𝐿 (𝑌 (𝑖) , 𝑋 (𝑖) ,Λ𝑙 ,Θ𝑙)

)
𝜋
(𝑡)
𝑙

.

(13)

Likewise, for Mixture models, the M step is:

(𝜃, 𝜋) (𝑡+1) = argmin
𝜃, 𝜋

{
− 1
𝑛

𝐾∑︁
𝑘=1

𝑛∑︁
𝑖=1

𝑝
(𝑡)
𝑖,𝑘
𝑙𝑛

(
𝜋𝑘 𝑝𝜃𝑘 (𝑌 (𝑖) |𝑋 (𝑖) )

)
+ 𝑝𝑒𝑛(𝜃, 𝜋)

}
.

Assuming that there is no coupling between 𝜋 and 𝜃 in the
penalty, i.e. 𝑝𝑒𝑛(𝜋, 𝜃) = 𝑝𝑒𝑛𝜋 (𝜋) + 𝑝𝑒𝑛𝜃 (𝜃), then the two

https://github.com/tlartigue/Mixture-of-Conditional-Gaussian-Graphical-Models
https://github.com/tlartigue/Mixture-of-Conditional-Gaussian-Graphical-Models


6 Thomas Lartigue et al.

optimisations can be separated:

𝜃 (𝑡+1) = argmin
𝜃

{
− 1
𝑛

𝐾∑︁
𝑘=1

𝑛∑︁
𝑖=1

𝑝
(𝑡)
𝑖,𝑘
𝑙𝑛 𝑝𝜃𝑘 (𝑌 (𝑖) |𝑋 (𝑖) )

+ 𝑝𝑒𝑛𝜃 (𝜃)
}
,

𝜋 (𝑡+1) = argmin
𝜋

{
− 1
𝑛

𝐾∑︁
𝑘=1

𝑛∑︁
𝑖=1

𝑝
(𝑡)
𝑖,𝑘
𝑙𝑛 𝜋𝑘 + 𝑝𝑒𝑛𝜋 (𝜋)

}
.

We denote the sufficient statistics 𝑛(𝑡)
𝑘
:=

∑𝑛
𝑖=1 𝑝

(𝑡)
𝑖,𝑘
, 𝑆𝑘, (𝑡)
𝑌𝑌

:=
1
𝑛

∑𝑛
𝑖=1 𝑝

(𝑡)
𝑖,𝑘
𝑌 (𝑖)𝑌 (𝑖) 𝑇 , 𝑆𝑘, (𝑡)

𝑌𝑋
:= 1

𝑛

∑𝑛
𝑖=1 𝑝

(𝑡)
𝑖,𝑘
𝑌 (𝑖)𝑋 (𝑖) 𝑇 and

𝑆
𝑘, (𝑡)
𝑋𝑋

:= 1
𝑛

∑𝑛
𝑖=1 𝑝

(𝑡)
𝑖,𝑘
𝑋 (𝑖)𝑋 (𝑖 𝑇 ) . Then, the M step can be

formulated as:

𝜃 (𝑡+1) = argmin
𝜃

{
𝐾∑︁
𝑘=1

( 〈
Λ𝑘 ,

𝑆
𝑘, (𝑡)
𝑌𝑌

2

〉
+

〈
Θ𝑘 , 𝑆

𝑘, (𝑡)
𝑌𝑋

〉
+

〈
Θ𝑘Λ

−1
𝑘 Θ𝑇𝑘 ,

𝑆
𝑘, (𝑡)
𝑋𝑋

2

〉
(𝑀) −

𝑛
(𝑡)
𝑘

𝑛
𝑙𝑛(|Λ𝑘 |)

)
+ 𝑝𝑒𝑛𝜃 (𝜃)

}
,

𝜋 (𝑡+1) = argmin
𝜋

{
−

𝐾∑︁
𝑘=1

𝑛
(𝑡)
𝑘

𝑛
𝑙𝑛 𝜋𝑘 + 𝑝𝑒𝑛𝜋 (𝜋)

}
.

(14)

The E step in Eq (13) is in closed form. Likewise, the optimi-
sation problem that defines 𝜋 (𝑡+1) in Eq (14) is very simple,
and with any reasonable penalty 𝑝𝑒𝑛𝜋 , solving it is not is-
sue. For instance, usual regularisation of the penalty take
either the form 𝑝𝑒𝑛𝜋 (𝜋) = 0 or 𝑝𝑒𝑛𝜋 (𝜋) ∝

∑
𝑘 log(𝜋𝑘 ),

which both result in closed form solutions for 𝜋 (𝑡+1) . The
M step update of the model parameter 𝜃 is a harder opti-
misation problem. However, as is usually the case with EM
algorithms, the update of 𝜃 in the M step (14) has the same
form as the supervised MLE (6). As a result, when the su-
pervised Hierarchical CGGM problem (6) is tractable, then
our M step is tractable as well. Conveniently, this super-
vised CGGM estimation problem has already been studied
and solved in Huang et al. (2018) for the Group Graphical
Lasso (GGL) penalty of Danaher et al. (2014). Furthermore,
Huang et al. (2018) show that the supervised negative log-
likelihood is a convex function of 𝜃. As a consequence, as
long as the penalty 𝑝𝑒𝑛𝜃 is convex and differentiable, then
our M step (14) is a convex optimisation problem with a
differentiable objective function. Since those problems are
solvable with gradient descent algorithm, this means that the
proposed EM algorithm is tractable for a very wide array
of penalties 𝑝𝑒𝑛𝜃 . In particular, this includes all the convex
differentiable penalties, which covers a lot of popular GGM
penalties for sparsity and joint structure, such as the ones

from the works of Danaher et al. (2014), Mohan et al. (2014)
and Yang et al. (2015) for instance.
In order to provide an algorithm with more specific and de-
tailed steps, we consider in the rest of the section the special
case of the GGL penalty. The GGL penalty was noticeably
used in the supervised case by Huang et al. (2018), who pro-
posed a proximal gradient algorithm. Likewise, we can use
a proximal gradient algorithm to compute the M step (14) of
our EM algorithm.

3.2.2 Proximal gradient algorithm to solve the M step with
the GGL penalty

The GGL penalty, introduced in Danaher et al. (2014) and
adapted to the hierarchical CGGM by Huang et al. (2018),
can be written:

𝑝𝑒𝑛𝜃 (𝜃) :=
∑︁

1≤𝑖≠ 𝑗≤𝑝

©­«𝜆Λ1
𝐾∑︁
𝑘=1

���Λ(𝑖 𝑗)
𝑘

��� + 𝜆Λ2
√√√

𝐾∑︁
𝑘=1

(
Λ
(𝑖 𝑗)
𝑘

)2ª®¬
+

∑︁
1≤𝑖≤𝑞
1≤ 𝑗≤𝑝

©­«𝜆Θ1
𝐾∑︁
𝑘=1

���Θ(𝑖 𝑗)
𝑘

��� + 𝜆Θ2
√√√

𝐾∑︁
𝑘=1

(
Θ
(𝑖 𝑗)
𝑘

)2ª®¬ .
(15)

Unlike in Huang et al. (2018), where𝜆Λ1 = 𝜆Θ1 and 𝜆
Λ
2 = 𝜆Θ2 ,

we use different levels of penalisation for the parameters Λ
and Θ, since both their scales and their desired sparsity level
can be very different. This penalty borrows its design from
the Group Lasso, see Yuan and Lin (2006), where the 𝑙1
norm induces individual sparsity of each coefficient, and the
𝑙2 induces simultaneous sparsity of groups of coefficients. In
Eq. (15), for each pair (𝑖, 𝑗) belonging to the relevant space,{
Λ
(𝑖 𝑗)
𝑘

}𝐾
𝑘=1
constitutes a group that can be entirely put to 0.

This incites the algorithm to set a certain matrix coefficient
to 0 over all 𝐾 classes. These common zeros constitute the
common structure sought after by the GGL approach. In our

CGGM case, the same can be said for the group
{
Θ
(𝑖 𝑗)
𝑘

}𝐾
𝑘=1
.

Regarding the theoretical analysis, we underline that the 𝑙2
part of the penalty is not separable in a sum of 𝐾 different
penalties, which forces a joint optimisation problem to be
solved, even in the supervised framework.
We detail here how to solve the M step (14) with 𝑝𝑒𝑛𝜃 (𝜃)
defined as in Eq (15). We assume, as usual, that the opti-
misation in 𝜋 is both independent from the optimisation in
𝜃 = {Λ𝑘 ,Θ𝑘 }𝐾𝑘=1 and trivial. The function to minimise in 𝜃
at the M step is:

𝑓 (𝜃) :=
𝐾∑︁
𝑘=1

(
−
𝑛
(𝑡)
𝑘

𝑛
𝑙𝑛( |Λ𝑘 |) +

〈
Λ𝑘 , 𝑆

𝑘, (𝑡)
𝑌𝑌

〉
+

〈
2Θ𝑘 , 𝑆𝑘, (𝑡)𝑌𝑋

〉
+

〈
Θ𝑘Λ

−1
𝑘 Θ𝑇𝑘 , 𝑆

𝑘, (𝑡)
𝑋𝑋

〉 )
+ 𝑝𝑒𝑛𝜃 (𝜃) .
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As shown in Huang et al. (2018), this function is convex
and infinite on the border of its set of definition and as a
unique global minimum. We note 𝑓 (𝜃) =: 𝑔(𝜃) + 𝑝𝑒𝑛𝜃 (𝜃)
for the sake of simplicity. The proximal gradient algorithm,
see Combettes and Pesquet (2011), is an iterative method,
based on a quadratic approximation on 𝑔(𝜃), that benefits
from theoretical convergence guarantees. If 𝜃 (𝑠−1) is the cur-
rent state of the parameter within the proximal gradient iter-
ations, then the next stage, 𝜃 (𝑠) , is found by optimising the
approximation:

𝑓

(
𝜃 (𝑠)

)
= 𝑓

(
𝜃 (𝑠−1) + 𝜃 (𝑠) − 𝜃 (𝑠−1)

)
≈ 𝑔

(
𝜃 (𝑠−1)

)
+ ∇𝑔

(
𝜃 (𝑠−1)

)𝑇
.

(
𝜃 (𝑠) − 𝜃 (𝑠−1)

)
+ 1
2𝛼




𝜃 (𝑠) − 𝜃 (𝑠−1)


2
2
+ 𝑝𝑒𝑛𝜃

(
𝜃 (𝑠)

)
≡ 1
2𝛼




𝜃 (𝑠) − (
𝜃 (𝑠−1) − 𝛼∇𝑔

(
𝜃 (𝑠−1)

))


2
2

+ 𝑝𝑒𝑛𝜃
(
𝜃 (𝑠)

)
.

(16)

Where we removed in the last line the constants irrelevant to
the optimisation in 𝜃 (𝑠) and 𝛼 denotes the step size of the gra-
dient descend. Note that we use the superscript (𝑠) to indicate
the current stage of the proximal gradient iteration, to avoid
confusion with the superscript (𝑡) used for the EM iterations
(which are one level above). We underline that, in addition to
𝑔(𝜃) itself, the second order term in the Taylor development
of 𝑔(𝜃) is also approximated. Using 1

2𝛼


𝜃 (𝑠) − 𝜃 (𝑠−1)

22 in-

stead of 12
(
𝜃 (𝑠) − 𝜃 (𝑠−1)

)𝑇
.𝐻𝑔

(
𝜃 (𝑠−1)

)
.
(
𝜃 (𝑠) − 𝜃 (𝑠−1)

)
spares

us from computing the Hessian 𝐻𝑔
(
𝜃 (𝑠−1)

)
and simplifies

the calculations to come. The approximated formulation in
Eq (16) leads to the definition of the proximal optimisation
problem:

𝑝𝑟𝑜𝑥𝛼 (𝑥) := argmin
𝜃

1
2𝛼
‖𝜃 − 𝑥‖22 + 𝑝𝑒𝑛𝜃 (𝜃) . (17)

So that the proximal gradient step can be written:

𝜃 (𝑠) = 𝑝𝑟𝑜𝑥𝛼𝑠

(
𝜃 (𝑠−1) − 𝛼𝑠∇𝑔

(
𝜃 (𝑠−1)

))
. (18)

Where the step size 𝛼𝑠 is determined by line search. The
usual proximal gradient heuristic is to take a initial step size
𝛼0, a coefficient 𝛽 ∈ (0, 1), and to reduce the step size,
𝛼←− 𝛽𝛼, as long as:

𝑔

(
𝜃 (𝑠−1) − 𝛼𝐺𝛼

(
𝜃 (𝑠−1)

) )
>𝑔

(
𝜃 (𝑠−1)

)
− 𝛼∇𝑔

(
𝜃 (𝑠−1)

)𝑇
.𝐺𝛼

(
𝜃 (𝑠−1)

)
+ 𝛼
2




𝐺𝛼 (
𝜃 (𝑠−1)

)


2
2
,

with𝐺𝛼
(
𝜃 (𝑠−1)

)
:= 𝜃 (𝑠−1)−𝑝𝑟𝑜𝑥𝛼 (𝜃 (𝑠−1)−𝛼∇𝑔(𝜃 (𝑠−1) ))

𝛼
the gen-

eralised gradient.

To apply the proximal gradient algorithm, we need to be able
to solve the proximal (17) with the CGGM likelihood and
the GGL penalty. Thankfully, Danaher et al. (2014) found
an explicit solution to this problem in the GGM case, which
Huang et al. (2018) adapted to the CGGM. The proximal op-
timisation is separable inΛ andΘ, and the solutionsΛ(𝑝𝑟𝑜𝑥)
and Θ(𝑝𝑟𝑜𝑥) share the same formula. As a result, we use 𝐷
as a placeholder name for either Λ or Θ, i.e. depending on
the context either 𝐷𝑖 𝑗

𝑘
= Λ

𝑖 𝑗

𝑘
or 𝐷𝑖 𝑗

𝑘
= Θ

𝑖 𝑗

𝑘
. Let 𝑆 be the soft

thresholding operator: 𝑆(𝑥, 𝜆) := 𝑠𝑖𝑔𝑛(𝑥) 𝑚𝑎𝑥( |𝑥 | − 𝜆, 0),
and 𝐷𝑖 𝑗

𝑘,𝛼
:= 𝐷

𝑖 𝑗 , (𝑠−1)
𝑘

− 𝛼 𝜕𝑔

𝜕𝐷
𝑖 𝑗

𝑘

(
𝜃 (𝑠−1)

)
. The solution of

(17), with 𝑥 = 𝜃 (𝑠−1) −𝛼∇𝑔
(
𝜃 (𝑠−1)

)
, is given coefficient-by-

coefficient in Eq (19):

𝐷
𝑖 𝑗 , (𝑝𝑟𝑜𝑥)
𝑘

=𝑆

(
𝐷
𝑖 𝑗

𝑘,𝛼
, 𝜆𝐷1 𝛼

)
× 𝑚𝑎𝑥

©­­«1 −
𝜆𝐷2 𝛼√︃∑

𝑘 𝑆(𝐷
𝑖 𝑗

𝑘,𝛼
, 𝜆𝐷1 𝛼)2

, 0
ª®®¬ .

(19)

Note that the partial derivatives 𝜕𝑔

𝜕𝐷
𝑖 𝑗

𝑘

(
𝜃 (𝑠−1)

)
, necessary to

get 𝐷𝑖 𝑗
𝑘,𝛼
, are easily calculated in closed form from the like-

lihood formula. With the proximal problem (17) and the line
search easily solvable, the proximal gradient steps can be it-
erated until convergence to find the global minimum of 𝑓 (𝜃).
With 𝑓 (𝜃) optimised, the M step (14) is solved.

4 Experiments

In this section, we demonstrate the performances of our EM
with Mixture of CGGM. First on a visual toy example in 2
dimension, then on a higher dimensional synthetic example
and finally on real Alzheimer’s Disease data. We compare
theMixture of CGGM to the regular Mixture of GGMwhich
ignores co-features and to a Mixture of GGM that assumes
a uniform linear effect of the co-features on the features.

4.1 An illustration of co-features with class-dependent
effect

In this section, we present a simple visual example to illus-
trate the importance of taking into account heterogeneous
co-feature effects. We show that even with a single binary
co-feature, and with low dimensional features, the state of
the art unsupervised GGM techniques are greatly disrupted
by the co-features. Whereas our EMwith Mixture of CGGM
(which we call "Conditional EM" or "C-EM") achieves near
perfect classification.
Under the Mixture of Gaussians (MoG) model, the observed
data, 𝑌 ∼ ∑𝐾

𝑘=1 𝜋𝑘N (𝜇𝑘 ,Σ𝑘 ), belongs to 𝐾 classes which
can directly be represented as 𝐾 clusters in the feature space
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R𝑝 . Each cluster centered around a centroid at position 𝜇𝑘
and with an ellipsoid shape described by Σ𝑘 . However, when
there exists conditioning variables 𝑋 ∈ R𝑞 that have an ef-
fect on𝑌 , this geometric description becomesmore complex.
Typically, the value of 𝑌 could depend linearly on the value
of 𝑋 , with E [𝑌 |𝑋, 𝑧 = 𝑘] = 𝛽𝑇

𝑘
𝑋 for some 𝛽𝑘 ∈ R𝑝×𝑞 . In

this case, the average position in class 𝑘 is not a fixed 𝜇𝑘
but a function of 𝑋 . If 𝑋 contains categorical variables, this
creates as many different centroid positions as there are pos-
sible category combinations in 𝑋 . The number of these de
facto clusters geometrically increases with the dimension 𝑞,
which deters from simply running a clustering method with
an increased number of clusters 𝐾 ′ to identify all of them.
Moreover, if 𝑋 contains continuous variables, there is a con-
tinuum of positions for the centroid, not a finite number of de
facto clusters. If 𝑋 mixes the two types of variables, the two
effects coexist. This shatters any hope to run a traditional
MoG-based EM clustering algorithm, since its success is
heavily dependent on its ability to identify correctly the 𝐾
distinct cluster centroids 𝜇𝑘 .
Since the 𝑋 are observed, a possible solution is to run the lin-
ear regression𝑌 = 𝛽𝑋 beforehand, and run the EMalgorithm
on the residual 𝑌 −𝑌 to remove the effect of 𝑋 . This is what
we call the "residual EM" or "residual Mixture of GGM".
However this does not take into account the fact that this
effect can be different for each class 𝑘 , 𝛽1 ≠ 𝛽2 ≠ ... ≠ 𝛽𝐾 .
Since the label is not known beforehand in the unsupervised
context, the linear regression 𝑌 = 𝛽𝑋 can only be run on all
the data indiscriminately, hence is insufficient in general. On
the other hand, the hierarchical CGMM (5), which verifies:
E [𝑌 |𝑋, 𝑧 = 𝑘] = −Λ−1

𝑘
Θ𝑇
𝑘
𝑋 , is designed to capture hetero-

geneous co-feature effects. We design a simple experiment
to substantiate this intuition.

In this example, 𝑌 ∈ R2, 𝑋 ∈ {−1, 1} and 𝑧 ∈ {1, 2}. 𝑌 |𝑋, 𝑧
follows the hierarchical conditional model of (5). In this
simple case, this can be written as 𝑌 = (𝛽1𝑋 + 𝜖1) 1𝑧=1 +
(𝛽2𝑋 + 𝜖2) 1𝑧=2. With P (𝑧 = 1) = P (𝑧 = 2) = 0.5, 𝜖1 ∼
N(0,Λ−11 ) and 𝜖2 ∼ N(0,Λ

−1
2 ). A typical iid data sample

(𝑌 (𝑖)
𝑖=1)

𝑛 is represented on the left sub-figure of Fig. 1. The hid-
den variable 𝑧 is represented by the colour (blue or orange).
The covariance of the cluster changes with 𝑧. The observable
co-feature 𝑋 is represented by the shape of the data point
(dot or cross). The centroid of the cluster is translated differ-
ently according to the values of 𝑋 and 𝑧. It is clear from the
figure that a Mixture of Gaussians model with 𝐾 = 2 cannot
properly separate the blue and orange points in two clusters.
Indeed, on the right sub-figure of Fig. 1, we observe the final
state of an EM that fits a Mixture of Gaussians on𝑌 . The two
recovered clusters are more correlated with the co-feature 𝑋
than the hidden variable 𝑧. However, this method did not take
advantage of the knowledge of the co-feature 𝑋 . As previ-
ously mentioned, one could first subtract the effect of 𝑋 from

𝑌 before running the EM. On the left sub-figure of Fig. 2, we
represent the residual data𝑌 := 𝑌 − 𝛽𝑋 . Where 𝛽 is the Ordi-
nary Least Square estimator of the linear regression between
𝑋 and 𝑌 over all the dataset (𝛽 ≈ 𝛽1+𝛽2

2 if 𝑛 is large enough).
Since the linear effect between 𝑋 and 𝑌 is not uniform over
the dataset, but class dependent, the correction is imperfect,
and the two class clusters remain hardly separable. This is
why the residual EM, that fits a Mixture of GGM on 𝑌 is
also expected to fail to identify clusters related to the hidden
variable. Which is shown by the right sub-figure of Fig. 2,
where we see a typical final state of the residual EM.
On the leftmost sub-figure of Fig. 3, we display the proper
correction for the co-features’ effect 𝑌 ′ = 𝑌 − 𝛽1𝑋1𝑧=1 −
𝛽2𝑋1𝑧=2 = 𝜖11𝑧=1 + 𝜖21𝑧=2. Under this form, a Mixture of
Gaussian can separate the data by colour. This is precisely
the kind of translation that each data point undergoes within
a Hierarchical CGGM. Hence a Mixture of CGGM can suc-
ceed in identifying the hidden variable 𝑧, provided that it
estimates correctly the model parameters. To illustrate this
point, the two next sub-figures in Fig. 3 represent the same
final state of the EM fitting a Mixture of CGGM on 𝑌 . The
middle sub-figure represents 𝑌 ′ as well as the two estimated
centered distributions N(0, Λ̂−1

𝑘
) for 𝑘 = 1, 2. We can see

the two formally identified clusters after removing the effect
of 𝑋 . The rightmost sub-figure represents the original data𝑌
as well as the four estimated distributions N(±Σ̂𝑘Θ̂𝑇𝑘 , Λ̂

−1
𝑘
)

for 𝑘 = 1, 2. The four de facto clusters present in the data
𝑌 before removing the effect of 𝑋 are well estimated by the
method.
We confirm these illustrative results by running several sim-
ulations. Under the previously introduced framework, we
generate 50 datasets with 𝑛 = 500 data points each. For
each simulation, we make 10 random initialisations from
which we run the three EMs: with GGM, residualised GGM
or CGGM. Table 4.1 summarises the results of these sim-
ulations. We follow the errors made by the estimated class
probabilities or "soft labels", P̂(𝑧𝑖 = 𝑘), which we call the
"soft misclassification error", as well as the error made by the
"hard labels",1𝑧̂𝑖=𝑘 , whichwe call the "hardmisclassification
error". They can be expressed as 12𝑛

∑
𝑖,𝑘

���1𝑧𝑖=𝑘 − P̂(𝑧𝑖 = 𝑘)���
and 12𝑛

∑
𝑖,𝑘

��1𝑧𝑖=𝑘 − 1𝑧̂𝑖=𝑘 �� respectively.We see that theMix-
ture of CGGM performs much better, with less than 10% of
misclassification in average, while the two GGM methods
are both above 40% of error, fairly close to the level of a
random uniform classifier, 50%.

4.2 Experiments in high dimension

In this section, we perform a quantitative analysis of the al-
gorithms in a higher dimension framework, where the matrix
parameters Λ and Θ are more naturally interpreted as sparse
networks. We confirm that the Mixture of Conditional Gaus-
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Fig. 1 (Left) Observed data 𝑌 in the 2D space. The observed conditioning variable 𝑋 is binary. Data points with 𝑋 = −1 are represented as
crosses, and the ones with 𝑋 = 1 are represented as dots. In addition, there is an unknown "class" variable 𝑧. Class 1 is in blue, class 2 in orange.
𝑌 |𝑋, 𝑧 follows the hierarchical conditional model. As a result, the two classes (orange and blue) are hard to separate in two clusters. (Right) Typical
clusters estimated by an EM that fits a GGM mixture on 𝑌
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Fig. 2 (Left) Residual 𝑌̃ = 𝑌 − 𝛽𝑌 data after taking into account the estimated effect of 𝑋 . Since the effect had different intensities on class 1 and
2, only the average effect was subtracted, and two classes are still not well separated. (Right) Typical clusters estimated by the "residual EM", that
fits a GGM mixture on 𝑌̃
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Fig. 3 (Left) Observations 𝑌̃ ′ = 𝑌 − 𝛽1𝑋1𝑧=1 − 𝛽2𝑋1𝑧=2 exactly corrected for the class-dependent effect of 𝑋 . In this state the two classes
appear as two distinct clusters. The Conditional-EM is designed to transform the data in this manner. (Middle) One possible representation of the
CEM results. The corrected observations 𝑌̃ ′ are displayed alongside centered normal distributions with the two estimated covariance matrices:
N(0, Λ̂−1

𝑘
) . (Right) Another possible representation of the same CEM results. The original observations 𝑌 are displayed, alongside with the four

de facto estimated distributions N(±Σ̂𝑘Θ̂𝑇𝑘 , Λ̂
−1
𝑘
) .
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Table 1 Average and standard deviation of the misclassification error
achieved on the 2-dimensional example with the EMs on the Mixture
of GGM, the Mixture of GGM with residualised data, and the Mixture
of CGG. The two GGM methods are close to the threshold of random
classification (0.50), while the Mixture of CGGM is in average below
10% of error.

EM GGM EM res. GGM EM CGGM

soft misclassif. 0.41 (0.11) 0.47 (0.05) 0.08 (0.17)
hard misclassif. 0.41 (0.12) 0.46 (0.06) 0.07 (0.17)

sian Graphical Models is better suited to take into account
the heterogeneous effects of co-features on the graph.
For this experiment, the observed data follows a mixture
model with 𝐾 = 3 classes. Each class 𝑘 has the proba-
bility weight 𝜋𝑘 = 1

3 . An observation (𝑌, 𝑋) ∈ R
𝑝 × R𝑞

belonging to the class 𝑘 is described by the distribution:
𝑌 |𝑋 ∼ N

(
−Λ−1

𝑘
Θ𝑇
𝑘
𝑋,Λ−1

𝑘

)
. In this example, the dimensions

of 𝑌 and 𝑋 are respectively 𝑝 = 10 and 𝑞 = 5. 𝑋 contains
four independent Rademacher variables (= +1 or −1) and
a constant variable always equal to 1. The precision matrix
Λ𝑘 ∈ R𝑝×𝑝 and the transition matrices Θ𝑘 ∈ R𝑞×𝑝 are both
sparse. For Λ, over the 45 off-diagonal coefficients, Λ1 has
7 non-zero coefficients, Λ2 has 16, and Λ3 has 2. Resulting
in an average 18.5% rate of sparsity among the off-diagonal
coefficients. The sparsity pattern of the Λ𝑘 are represented
on Fig. 5, within the row of figures labelled "True". For Θ,
over 50 possible coefficients, Θ1 has 11 non-zero ones, Θ2
has 14, and Θ3 has 4. Resulting in an average sparsity rate
of 19.3%. Additionally, there is a repeating pattern in the
Θ𝑘 : the 4 random components of 𝑋 each affect (at least) the
corresponding component among the first 4 of 𝑌 . That is to
say that ∀𝑘,∀𝑖 ≤ 4, (Θ𝑘 )𝑖,𝑖 ≠ 0. The real Θ𝑘 are represented
on Fig. 6, within the row of figures labelled "True".
We run 20 simulations. A simulation consists of 𝑛 = 100
generated data points. On these data points, we run the com-
pared methods, all initialised with the same random parame-
ters. For all simulations, wemake 5 of these runs, each with a
different random initialisation. We compared the same three
algorithms as in section 4.1: the EM for theMixture of GGM,
the EM for the Mixture of GGM with average effect of 𝑋
subtracted, and the EM applied to the Mixture of CGGM.
We follow three metrics to assess the method’s success in
terms of cluster recovery. The classification error (both soft
and hard labels versions) and an "ABC-like" metric. The
"ABC-like" metric is meant to assess how well each of the
estimated solutions is able to replicate the observed data.
Since each solution is the parameter of a probability distri-
bution, at the end of each EM, we generate new data fol-
lowing this proposed distribution. Then, for each synthetic
data point, we compute the distance to the closest neighbour
among the real data points. These minimal distances con-

stitute our "ABC-like" metric. Finally, we also compute the
execution time of each EM, knowing that they all have the
same stopping criteria. We represent on Fig. 4 the empiri-
cal distribution of these four metrics and we quantify with
Table 2 the key statistics (mean, standard deviation, median)
that characterise them. With 𝐾 = 3 and balanced classes,
a uniform random classifier would guess the wrong label
66.7% of the time. We observe that the twoMixture of GGM
method are dangerously close to this threshold, with more
than 50% hard misclassification. The EM on the Mixture of
CGGM (C-EM) on the other hand, achieves a much better
classification with less than 15% hard misclassifcation. This
demonstrate that, even when faced with a more complex sit-
uation, in higher dimension, the Mixture of CGGM is better
suited to correct for the effect of the co-features and discover
the right clusters of data points. This also underlines once
more the importance of allowing different values of the ef-
fect of 𝑋 on 𝑌 for each class. Indeed, the residual Mixture of
GGM - which took into account the average effect of 𝑋 on 𝑌
over the entire population - was unable to achieve better per-
formances than the EM that did not even use the co-features
𝑋 . In terms of reconstruction of the observed data by the es-
timated model (ABC-like metric), we see that the synthetic
data points generated from the estimated Mixture of CGGM
model have closer nearest neighbours than the data points
generated by the other estimated models. In addition to all
these observations, the C-EM is also faster than the other two
methods, reaching the convergence threshold faster.

Table 2 Average, standard deviation and median (below) of the four
followed performance metrics over the 30 × 5 simulations. The best
values are in bold. We can see that the classification performances
with the Mixture of CGGM are much better than the two methods with
Mixtures of GGM, and with faster computation times.

EM GGM EM GGM resid. EM CGGM

soft misclassif. 0.56 (0.03) 0.51 (0.03) 0.17 (0.05)
0.57 0.51 0.16

hard misclassif. 0.55 (0.04) 0.50 (0.03) 0.14 (0.06)
0.56 0.49 0.13

ABC-like metric 5.57 (0.09) 4.64 (0.22) 4.13 (0.14)
5.58 4.64 4.14

runtimes 115 (61) 253 (137) 58 (91)
93 256 16

In addition to the cluster recovery, we can also assess the pa-
rameter reconstruction of each method. Since the three clus-
tering methods estimate different parametric models over the
data, they do not actually try to estimate the same parameters.
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Fig. 4 Empirical distribution of several performance metrics measured
over many simulations. The sample is made of 20 simulations with 5
different initialisations each. Three methods are compared. The EM
and EM residual algorithms estimate a Mixture of GGM. The C-
EM algorithm estimates a Mixture of CGGM. The C-EM is much
better performing and faster. (Upper left) Soft mis-classification er-
ror

���1𝑧𝑖=𝑘 − P̂(𝑧𝑖 = 𝑘) ���. (Upper right) Hard mis-classification error��1𝑧𝑖=𝑘 − 1𝑧̂𝑖=𝑘 ��. (Bottom left) ABC-like metric. (Bottom right) Run
time.

Regardless, all the methods still estimate a certain precision
matrix Λ𝑘 (conditional or not on the 𝑋 depending on the
model) of each sub-population that they identify. Hence, we
also record the differences between the true Λ𝑘 and their
estimations by the methods. The two metrics followed are
the Kullback–Leibler (KL) divergence Kullback and Leibler
(1951) between the gaussian distribution 𝑓Λ𝑘 ∼ N(0,Λ−1𝑘 ))
and 𝑓

Λ̂𝑘
∼ N(0, Λ̂−1

𝑘
)), and the 𝑙2 difference given by the

Froebenius norm:



Λ𝑘 − Λ̂𝑘


2

𝐹
. In Table 3, we can check

that, according to these metrics, the Λ̂𝑘 estimated by with
the Mixture of CGGM are indeed a much better fit for the
real Λ𝑘 than the estimated matrices from the other models.
This is expected, since the realΛ𝑘 actually correspond to the
CGGM model.
To illustrate the different level of success concerning the con-
ditional correlation graph recovery, we display on Fig. 5 the
conditional correlation matrix (i.e. the conditional correla-
tion graph with weighted edges) estimated by each method.
The three columns of figures correspond to the three sub-
populations. The first two rows of figures are the matrices
estimated by the two Mixtures of GGM methods, with and
without residualisation with the co-features. The third row of

figures correspond to the matrices estimated by the Mixture
of CGGM. The final row displays the real conditional corre-
lation matrices. We observe that the two Mixture of GGM
recover way too many edges, with no particular fit with the
real matrix. By contrast, the matrices from the CGGMMix-
ture exhibit the proper edge patterns, with few False Positive
and False Negative. This is not an easy feat to achieve, since
the method was run from a random initialisation on a totally
unsupervised dataset, with heavily translated data points all
over the 10 dimensional space. Moreover, the matrices in
Fig. 5 all result from the inversion of the empirical covari-
ance matrix, which is neither a very geometrical nor a very
stable operation.
In Fig. 6, we represent the regression parameter Θ̂𝑘 estimated
by with the Mixture of CGGM alongside the real Θ𝑘 . Once
again, we see that the sparsity pattern is very well identified,
with no False Positive. Moreover, in this case, there are also
almost no False Negative, and all the edge intensities are
correct. This is not a surprise. Indeed, the parameter Θ plays
a huge role in the correct classification of the data, since it
serves to define the expected position of each data point in
the feature space (playing the part of the "average" parame-
ter in Mixtures of GGM). Hence, a good estimation of Θ is
mandatory to reach a good classification. Since the EM with
Mixture of CGGM achieved very good classification results,
it was expected that Θ would be well estimated.

Table 3 Average and standard deviation of the metrics describing the
reconstruction of each precision matrix Λ𝑘 . The matrices are consis-
tently better reconstructed with the mixture of CGGM.

metric class EM GGM EM res. GGM EM CGGM

𝐾𝐿 ( 𝑓Λ, 𝑓Λ̂)
1 11.0 (3.0) 7.5 (6.8) 0.8 (0.2)
2 10.3 (2.2) 8.5 (5.0) 1.9 (0.3)
3 13.6 (2.5) 5.2 (2.3) 3.4 (1.1)



Λ − Λ̂

2
𝐹

1 39.2 (48.4) 44.2 (114) 2.2 (0.8)
2 15.1 (12.2) 102 (73.9) 6.6 (0.9)
3 14.2 (13.8) 15.1 (25.7) 5.8 (4.0)

4.3 Experiments on real data

In this section, we confirm our experimental observations
with a real, high dimensional, Alzheimer’s Disease dataset.
We illustrate that the EM with Mixture of CGGM is better
suited to identify clusters correlated with the diagnostic than
the Mixture of GGM methods. We bring to light the effect
of co-features such as the gender and age on the medical
features.
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Fig. 5 Comparison between the several estimated and the true condi-
tional correlation matrices for each sub-population. The three columns
of figures correspond to the three sub-populations. The first two rows of
figures are the matrices estimated by the twoMixture of GGMmethods,
with and without residualisation with the co-features. The third row of
figures correspond to the matrices estimated by the Mixture of CGGM.
The final row displays the real conditional correlation matrices. Unlike
the two GGM-based methods, the Mixture of CGGM recovers correct
edges with very few False Positives.
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Fig. 6 Reconstruction of the Θ𝑘 by the EM on the Mixture of CGGM.
The three columns of figures correspond to the three sub-populations.
Almost all the edges are right, with no False Positive and almost no
False Negative. Moreover, the intensities are also mostly correct.

Our dataset is composed of 708 Alzheimer’s Disease pa-
tients ("AD" patients) and 636 healthy patients ("Control"
patients). Each patient makes several visits to the clinic (be-
tween 6 and 11 usually) at different moments of their lives.
During each visit, the volumes of 10 predetermined corti-
cal regions are measured with MRI, and tests are conducted
to evaluate 20 different cognitive faculties (memory, lan-
guage...). Instead of using this complex raw data, a longi-
tudinal model is then estimated using the methodology of
Schiratti et al. (2015). Such a model describes the evolution
(or non-evolution) over time of the measured variables with a
geodesic trajectory that lives within a Riemannian manifold.
Using all patients, a "baseline" trajectory is first estimated.
Then, each individual patient’s trajectory is described by their

deviation from this baseline. In our example, this deviation is
fully encoded within 32 parameters (1 per observed variable
+ 2 additional parameters). The first model parameter is 𝜉,
the time acceleration, which describes if, overall, the disease
progresses faster or slower for the patient than for the base-
line. The second model parameter is 𝜏, the time shift, which
describes whether the disease starts sooner or later for the
patient than for the baseline. Finally, there is one parameter
𝑤𝑖 for each of the 30 measured variables (𝑖 = 1, ..., 10 for the
MRI regions and 𝑖 = 11, ..., 30 for the cognitive scores). Each
of these describes whether the variable in question degener-
ates faster or slower than the baseline, after having taken into
account the patient’s overall disease acceleration 𝜉.
For our experiments, these 𝑝 = 32 parameters are the fea-
tures in-between which we will draw graphical models: 𝑌 :=
(𝜉, 𝜏, (𝑤𝑖)𝑖=1,...,30). To illustrate the purpose of our approach:
within this framework, a positive edge between two features
𝑤𝑖 and 𝑤 𝑗 indicates that the corresponding features tend to
co-degenerate together within the population. This is a cru-
cial information for the understanding of the disease.
We include in the data three co-features that describe each
patient and are often relevant in Alzheimer’s Disease stud-
ies: the gender, the age at the first visit ("age baseline"),
and the number of years of education. With the addition
of the constant co-feature = 1, the vector of co-features is 4-
dimensional, 𝑋 ∈ R4. The 𝑛 = 1344 (708 AD + 636 Control)
patients constitute the unlabelled heterogeneous population.
The "AD" patients were diagnosedwith the Alzheimer’s Dis-
ease, either from the start or after a few visits. Before running
any method, The data (𝑌, 𝑋) is centred and normalised over
the entire population.
We run unsupervised methods with 𝐾 = 2 on this dataset
in order to separate the data into 2 sub-populations and es-
timate a graphical model for each of them. As before, the
three compared algorithms are EM, EM residual and C-EM.
There is only one dataset available, hence, in order to check
the stability of the results over several different runs, we
implement a bootstrap procedure that only uses 70% of the
data each time. We generate 10 such bootstrapped dataset.
We initialise the algorithms with a KMeans on the 𝑌 (𝑖) data
points. Since KMeans is not deterministic, we try 3 different
KMeans initialisations for each bootstrapped dataset. Like
previously, for the sake of fairness, the EM and C-EM are
always provided with the same initialisation, and the resid-
ual EM is initialised with a KMeans on the residual of 𝑌
after subtracting the prediction by the 𝑋 , a more relevant
initialisation for this method. We make all these runs with
four different feature sets. First with no space shift variable
𝑌 = {𝜉, 𝜏} , 𝑝 = 2, then we add only theMRI space shifts𝑌 ={
𝜉, 𝜏, (𝑤𝑖)𝑖=1,...,10

}
, 𝑝 = 12, then only the Cognitive Scores

space shifts 𝑌 =
{
𝜉, 𝜏, (𝑤𝑖)𝑖=1,...,10

}
, 𝑝 = 22, and finally,

with all the features 𝑌 =
{
𝜉, 𝜏, (𝑤𝑖)𝑖=1,...,30

}
, 𝑝 = 22. This

is a total of 10 bootstrapped datasets × 3 initialisations ×
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4 feature sets = 120 runs for each method. The classifica-
tion results are summarised in Table 4. With two balanced
classes, the classification error of a uniform random classi-
fier is 50%. On the smallest dataset, 𝑝 = 2, we can see that
the discovered cluster are somewhat correlated with the di-
agnostic, with classification errors below 30%. The Mixture
of GGM on the uniformly residualised data and the Mixture
of CGGM achieve similar levels of error, they are both better
than the regular Mixture of GGM. When the MRI features
are added, all the discovered cluster become more correlated
with the diagnostic. The regular Mixture of GGM achieves
in average 16% of hard classification error, the residualised
Mixture of GGM is at 11% of error, and the Mixture of
CGGM even below, at 7%. The results with only the Cog-
nitive Scores are very similar, simply a bit worse for every
method. However, when both the MRI and Cognitive Scores
feature are included, the performances of both GGM mix-
tures decrease, with both higher average error and higher
variance. On the other hand, the Mixture of CGGM achieves
here its best level of performance. This stability of the Mix-
ture of CGGM’s performance as the size of the feature set
increases indicates that our model is the best suited to prop-
erly identify clusters correlated with the diagnostic in high
dimension.
We analyse the estimated Mixture of CGGM parameters on
the full feature set 𝑝 = 32. First, since E[𝑌 |𝑋, 𝑧 = 𝑘] =
−Λ−1

𝑘
Θ𝑇
𝑘
𝑋 in the CGGM, we display on Fig. 7 the two esti-

mated 𝛽𝑘 := −Λ̂−1𝑘 Θ̂𝑘 (averaged over the bootstrap), as well
as their difference. They play the role of linear regression
coefficients in the model. The last column is the constant co-
efficient, while the first three are the gender, age baseline and
years of education coefficients respectively. Since the data is
centered, negative and positive values correspond to below
average and above average values respectively. The cluster
𝑘 = 1 is the one very correlated with the Control patients
sub-population. Similarly, the cluster 𝑘 = 2 is the one very
correlated with the AD patients.
The most noticeable difference between the two 𝛽𝑘 are the
constant vectors, who have opposite effects on all features.
In particular, the "AD cluster" is very correlated with high
𝜉, low 𝜏, an earlier atrophy of the ventricles, as well as high
space shift for the two logical memory tests (immediate and
delayed). The exact opposite being true for the "Control clus-
ter". These are the expected effects: a high 𝜉 corresponds to a
quickly progressing disease, and a low 𝜏 to an early starting
disease.
The non-constant linear regression coefficients are also dif-
ferent between the clusters, although these differences are
often in intensity and not in sign. In order to visualise more
clearly the differences in intensity, we represent on the left-
most sub-figure of Fig. 7, with the same conventions, the
difference 𝛽2 − 𝛽1. In particular, within the AD cluster, we
observe stronger positive effect of the Age at the first visit on

the space shifts corresponding to the Amygdala, entorhinal
cortex, hippocampus and parahippocampus cortex atrophies.
On the contrary, there is a stronger positive effect of the ed-
ucation level on all the space shifts of MRI atrophies for the
Control patients. The age at the first visit has a stronger neg-
ative impact on 𝑤𝑖 corresponding to the scores self reported
memory, language and visual spatial capacity for the AD
patients, and a stronger negative impact on the two logical
memory scores for the control patients. These differences,
although less intense than the differences between the two
constant terms, consequently impact the clustering, since
without these three columns, the Mixture of CGGM would
be equivalent to the less performing Mixture of GGM.
With the same conventions and scale, we display on Fig. 8,
the linear regression coefficients estimated bymaximum like-
lihood on theControl andADpatients, with the oracle knowl-
edge of the diagnostic this time. Fig. 7 and 8 are very similar,
in particular when it comes to their more potent coefficients.
This shows that the C-EM, in addition to identifying clusters
very correlated with the hidden diagnosis, also managed to
recover the correct linear tendencies between features and
co-features.
Finally, we display on Fig. 9 the average conditional corre-
lation graphs estimated for the two clusters estimated by
the Mixture of CGGM. Their only noticeable difference
is the negative conditional correlation between 𝜉 and 𝜏 in
the "Control cluster", which is reversed in the "AD clus-
ter". For the AD patients, this means that a disease that
appears later tends to also progress faster, which is in line
with medical observations. Apart from this edge, the rest
of the connections are almost identical in-between clus-
ters. This suggests that the, cluster dependent, prediction
E𝜃𝑘 [𝑌

(𝑖) |𝑋 (𝑖) , 𝑧 = 𝑘] = −Σ̂𝑘Θ̂𝑇𝑘 𝑋
(𝑖) takes into account

enough of the cluster-specific effects so that the remaining
unexplained variance has almost the same form in both clus-
ters. Hence, the conditional correlations pictured in these
graphs correspond to very general effects, such as the posi-
tive correlations between related cognitive tests or areas of
the cortex.
More strikingly, there are no conditional correlation between
𝜉 or 𝜏 and any of the space shifts 𝑤𝑖 . This as consequent
medical implications, since it suggests that the earliness (𝜏)
and speed (𝜉) of the disease are conditionally independent
from the succession of degradation that the patient’s imagery
and cognitive scores undergo. In other words, these graphs
support the idea that the disease is the same regardless of
whether it appears early/late and progresses fast/slowly.
As previously, we also estimated these conditional correla-
tions graphs with the oracle knowledge of the diagnosis, they
are displayed on Fig. 10. As with the transition matrices, the
oracle covariance graphs exhibit the same links as the ones
recovered by the C-EM. This once again highlights that the
Mixture of CGGM is an appropriate model to handle both



14 Thomas Lartigue et al.

cluster identification and structure recovery.
For the sake of comparison, the model parameters (both 𝛽
and the graph) estimated with a single class CGGM are dis-
played in Appendix.

5 Discussion and Conclusion

5.1 Discussion

In this work, we assumed that the number 𝐾 of classes
was known and fixed. This corresponds for instance to the
case where there is prior medical expertise that provides in
advance the number of classes. However, as with all un-
supervised methods, the question of the empirical estima-
tion of 𝐾 is of great importance. Several approaches are
possible. Since we have a Maximum Likelihood-type Es-
timator, a classical technique would be to use theoretical
model selection criterion that penalises the number of de-
grees of freedom in the model. Famous examples include
the Akaike information criterion (AIC), Akaike (1974), the
Bayesian information criterion, Schwarz et al. (1978), or
the corrected AIC (AICc), Hurvich and Tsai (1989). There
are 𝑑𝑓 (𝐾, 𝑝, 𝑞) = 𝐾 ( 𝑝 (𝑝+1)2 + 𝑞𝑝) degrees of freedom in a
Mixture of CGGM with 𝐾 classes. After running an EM to
completion for a value of𝐾 and getting the estimates 𝜃𝐾 , 𝜋̂𝐾 ,
the loss function associated with class number 𝐾 is:

−
𝑛∑︁
𝑖=1

𝑙𝑛

(
𝐾∑︁
𝑘=1

𝜋̂𝐾𝑘 𝑝𝜃𝐾
𝑘

(
𝑌 (𝑖) |𝑋 (𝑖)

))
+ 𝑛 𝑝𝑒𝑛(𝜃𝐾 , 𝜋̂𝐾 )

+ crit(𝑑𝑓 (𝐾, 𝑝, 𝑞), 𝑛) .
(20)

Where crit(𝑑𝑓 , 𝑛) = 𝑑𝑓 for AIC, crit(𝑑𝑓 , 𝑛) = 𝑑𝑓 𝑙𝑛 𝑛2 for BIC
and crit(𝑑𝑓 , 𝑛) = 𝑑𝑓 + 𝑑 𝑓 (𝑑 𝑓 +1)

𝑛−𝑑 𝑓 −1 for AICc. A preferred 𝐾̂ is
then chosen as the one to minimise (20) among a predefined
grid of different 𝐾 . This is notably the approach adopted by
Kim (2016). Since this model selection technique requires
one full run of the EM algorithm for each value of 𝐾 , it
can be computationally demanding. Moreover, the empirical
validity of such theoretical criteria is not always guaranteed
for all problems, see for instance Lee and Ghosh (2009) for
an such an empirical analysis.
As a result, for EM algorithms like ours, one could consider
a more data-driven selection procedure such as the Robust
EM, see Figueiredo and Jain (2002); Yang et al. (2012). Ro-
bust EM starts with a high number of classes that decreases
and converges along the optimisation thanks to an entropy
penalty term. However, this method makes each run of the
EM more computationally demanding and can lead to very
long execution times.
The relative model selection performances and computa-
tional burdens of these two different procedure will be stud-
ied in future works.

One can also question the heterogeneity of the effect of the
co-features, and wonder how the model fares in the presence
of homogeneous co-feature effects. Indeed, in our empirical
study we compare three models : (i) the Mixture of GGM
which does not take into account the co-features; (ii) the
Mixture of GGM with prior residualisation, which assume
an homogeneous effect of the co-features across all hidden
sub-populations; and (iii) the Mixture of CGGM, which al-
lows the co-feature to have heterogeneous effects on the hid-
den sub-population. However, one can wonder how is the
Mixture of CGGM able to describe, and detect, the situation
where the/several co-features have a homogeneous effect on
the/some features?Within theMixture of CGGM, the hetero-
geneity assumption is translated as extra degrees of freedom.
The homogeneous case is included in this model: it corre-
sponds to the scenario where coefficients have equal values
across classes. When it comes to the estimation procedure,
one way to enforce truly equal values is to replace the Group
Graphical Lasso (GGL) penalty used in our examples by the
Fused Graphical Lasso (FGL) penalty. Like GGL, FGL is
one of the penalties proposed for the supervised Hierarchical
GGM estimation in Danaher et al. (2014). As such, it is one
of the many penalties with which our EM is tractable. This
penalty - thanks to terms of the form:

∑
𝑙<𝑘

���Θ(𝑖 𝑗)
𝑙
− Θ(𝑖 𝑗)

𝑘

��� - is
designed to equalise the coefficients whose estimated values
across different classes are close. This allows the model to
detect homogeneous effects of the co-features.
Another, more hands on, possibility that does not require
the use of fused-type penalties is to conduct statistical test-
ing during the optimisation procedure. In order to detect
homogeneity, such tests would look for significantly close
coefficients. Then, if applicable, constrain them to be equal
from this point on, hence removing this degree of freedom
from the model. Thanks to this reduced complexity of the
resulting model, such an step could help make the procedure
more stable in the presence of co-features with homogeneous
effect.
Those approaches will also be tested as part of future works
in order to evaluate the performances of Mixtures of CGGM
in the case of homogeneous co-feature effects.

5.2 Conclusion

We introduced the Mixture of Conditional Gaussian Graph-
ical Models in order to guide the cluster discovery when
estimating different Gaussian Graphical Models for an un-
labelled heterogeneous population in the presence of co-
features. Wemotivated its usage to deal with the potential in-
homogeneous and class-dependent effect of the co-features
on the observed data that would otherwise disrupt the clus-
tering effort. To estimate our Mixture model, we proposed
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Table 4 Recovery of the diagnostic labels (AD or control) with unsupervised methods on real longitudinal data. The three compared methods
are the EM, EM residual (both GGM) and the C-EM (CGGM). Four different feature sets are tried: only {𝜏, 𝜉 }, adding the MRI space shift
coefficients 𝑤𝑖 , adding the Cognitive Score (CS) space shift coefficients 𝑤𝑖 , and adding both the MRI and CS space shift coefficients. The table
presents the average and standard deviation of the misclassification error over 10 bootstrap iteration, with 5 different KMeans initialisation each.
The best results are in bold.

metric EM EM resid. C-EM

no CS, no MRI soft misclassif. 0.31 (0.02) 0.22 (0.03) 0.21 (0.01)
𝑝 = 2 hard misclassif. 0.31 (0.03) 0.18 (0.05) 0.19 (0.01)

only MRI soft misclassif. 0.15 (0.01) 0.13 (0.01) 0.08 (0.01)
𝑝 = 12 hard misclassif. 0.12 (0.01) 0.10 (0.01) 0.07 (0.01)

only CS soft misclassif. 0.17 (0.02) 0.15 (0.02) 0.09 (0.01)
𝑝 = 22 hard misclassif. 0.14 (0.03) 0.13 (0.03) 0.08 (0.01)

CS and MRI soft misclassif. 0.24 (0.09) 0.17 (0.04) 0.08 (0.01)
𝑝 = 32 hard misclassif. 0.21 (0.10) 0.15 (0.05) 0.07 (0.01)

a penalised EM algorithm ("Conditional EM" or "C-EM")
compatible with a wide array of penalties. Moreover, we pro-
vided detailed algorithmic steps in the specific case of the
popular Group Graphical LASSO penalty, and made the cor-
responding code publicly available. Then, we demonstrated
the interest of the method with experiments on synthetic and
real data. First, we showed on a toy example - with a 2-
dimensional feature space and a 1-dimensional co-feature -
that the regularMixture of GGMmethodswere inadequate to
deal with even the most simple in-homogeneous co-feature.
We confirmed on a more complex simulation, in higher di-
mension, that Mixtures of CGGM could identify much better
the clusters in the feature space, and recover the actual GGM
structure of the data. Finally, we tested all the methods on a
real data set, with longitudinal model parameters describing
the evolution of several Alzheimer’s Disease patients. We
demonstrated that our method was the best at identifying the
diagnostic with an unlabelled dataset. We unearthed some
in-homogeneous effect of co-features on the longitudinal pa-
rameter and recovered the conditional correlation graphs by
cluster. These graphs hint at a conditional independence be-
tween the earliness and speed of the disease and the order in
which the many degradation appear. This hypothesis will be
tested in future studies.

Appendix: Single class CGGM on the real data

In this appendix, we take a look at the parameters (aver-
aged over several bootstrap folds) estimated by fitting single
CGGM on the real data. On Fig. 11, we display both the
estimated 𝛽 = −Σ̂Θ̂ between 𝑋 and 𝑌 and the estimated con-
ditional correlation graph in-between the components of 𝑌 .
The constant term in 𝛽 is 0 since the data is overall cen-
tred. Other than that, the coefficient intensities appear to be

weaker than in the multi-class parameters. The conditional
correlation graph on the other hand displays the negative
correlation between disease earliness 𝜏 and speed 𝜉 that was
characteristic of the Control patients on Fig. 9 and 10. This is
despite the Controls (𝑛 = 636) being slightly less numerous
than the AD (𝑛 = 708) patients on this dataset.
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Fig. 9 (Left) Conditional correlation graph of the estimated cluster most correlated with the "Control" diagnosis. (Right) Conditional correlation
graph of the estimated cluster most correlated with the "AD" diagnosis.
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Fig. 11 Parameters estimated with a simple CGGM on all data. (Left) 𝛽 = −Σ̂Θ̂. (Right) Conditional correlations graph.
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