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Interface design guidelines encourage designers to provide high-performance mechanisms for expert users. 
However, research shows that many expert interface components are seldom used, and that there is a 
tendency for users to persistently fail to adopt faster methods for completing their work. This paper 
summarizes and organizes research relevant to supporting users in making successful transitions to 
expert levels of performance. First, we provide a brief introduction to the underlying human factors of skill 
acquisition relevant to interaction with computer systems. We then present our focus, which is a review of 
the state of the art in user interfaces that promote expertise development. The review of interface research 
is based around four domains of performance improvement: intramodal improvement that occurs as a 
factor of repetition and practice with a single method of interaction; intermodal improvement that occurs 
when users switch from one method to another that has a higher performance ceiling; vocabulary 
extension, in which the user broadens their knowledge of the range of functions available; and task 
mapping, which examines the ways in which users perform their tasks. The review emphasizes the 
relationship between interface techniques and the human factors that explain their relative success.  
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1. INTRODUCTION  

Graphical User Interfaces (GUIs) mediate most communication between humans and 
computing devices. Their success is partly due to their natural support for novice 
users – the phrase ‘see and point versus learn and remember’ [Shneiderman 1987] 
describes how novices benefit from being able to visually find salient interface 
elements and manipulate them through a metaphor of direct manipulation. However, 
the very characteristics that make GUIs effective for novices also cause them to fail 
in their goal of supporting experts, and GUIs often trap users into a ‘beginner mode’ 
of operation. The richness and power of human perception, cognition, and motor 
action is constrained by standard GUI mechanisms such as visual search and direct 
manipulation, which are easy to understand but which force the experienced user 
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into relatively slow and laborious action. Conversely, interfaces explicitly designed 
for experts (e.g., keyboard shortcuts or command-line interaction) allow high levels of 
performance, but only after extensive training. While the design of interfaces for 
novices or for experts has been well investigated, the design of interfaces that 
facilitate a transition from novice to expert performance is less well understood.  

The problem of users failing to achieve expertise has been shown in many studies 
across a wide range of interactive tasks and contexts. In the area of Computer Aided 
Design, field studies demonstrated that long-term users often employ inefficient 
strategies for completing tasks [Bhavnani and John 2000], and log studies have 
shown surprisingly limited command vocabularies among experienced users 
[Matejka et al. 2009]. Similar findings have been shown for text editing [Rosson 
1983], operating systems [Draper 1984; Doane et al. 1990], and spreadsheets [Nilsen 
et al. 1993]. Furthermore, studies of interface mechanisms designed to facilitate 
expertise, such as keyboard shortcuts, have shown that these mechanisms are 
seldom used [Lane et al. 2005; Alexander 2009].  

Carroll and Rossen [1987] used the phrase ‘the paradox of the active user’ to 
encapsulate the tendency for users’ interface performance to reach an asymptote at a 
level of mediocrity. They explained this effect through two biases that people bring to 
their work: a production bias, which encourages reuse of known methods, in 
preference to finding better methods that may improve throughput in the long run; 
and an assimilation bias, in which people apply existing knowledge to interpret and 
solve new problems. Both biases lead users to continue with known methods of 
interaction, causing an associated tendency to miss opportunities for improvement. 
In scrutinizing this paradox, Fu and Gray [2004] additionally explained that 
preferred procedures for interaction are maintained over faster recommended 
alternatives when the preferred procedure is well-practiced and generally applicable, 
and when it provides fast, incremental feedback.  

The tendency for users to asymptote at mediocre performance has serious and 
enduring implications for the productivity of millions of office workers. The tools used 
to conduct everyday office work, such as word processors and spreadsheet 
applications, have maintained substantially consistent point-and-click graphical user 
interface mechanisms across decades of interface revisions, and their expert methods 
of interaction, such as keyboard accelerators or ‘hotkeys’, have also remained 
relatively stable. Furthermore, recent interface releases have tended to reduce the 
visibility of expert methods for interaction – for example, many hotkeys available in 
Microsoft Word have no visual depiction at all (e.g., Ctrl-Alt-M for “New Comment”), 
and the extra effort required to discover the hotkey (e.g., a web search) may deter 
users from doing so.  

The typical design of graphical user interfaces, therefore, allows users to quickly 
learn suboptimal methods for task completion (e.g., by pointing and clicking), which 
users tend to maintain for months, years, and decades of subsequent interaction. 
While the productivity loss associated with each command selection is relatively 
small, these losses are multiplied across dozens of selections of each command per 
day (e.g., each invocation of the ‘bold’ command), for dozens of distinct commands, for 
several applications, for hundreds of days each year, and for dozens of years. The 
total productivity loss is analogous to an office worker who never learns to touch type 
– each keystroke is a minimal cost, but days of productivity per year are lost due to 
inefficient interaction methods.  

Although many studies have demonstrated a tendency for users to fail to attain 
expertise, until recently there has been relatively little research into interface 
methods that can promote and assist the transition to expertise (with some notable 
exceptions, reviewed in Sections 4-7). Consequently, while designers know the 
problem exists, interface design guidelines provide little assistance. For example, 



 

Nielsen’s [1993] influential usability heuristics give the abstract guidance ‘Provide 
Shortcuts’ (which research shows are unlikely to be used) and ‘Help and 
Documentation’ (often the user’s source of last resort [Randall and Pedersen 1998]). 
Recently, however, there has been an increase in literature explicitly addressing the 
problem of how interfaces can be designed to promote and assist expert levels of 
performance. This paper provides a review and analysis of interface strategies that 
can promote expertise, as well as providing a foundation in underlying human factors 
that can explain their success and point to promising new directions.  

Naturally, learning and skill acquisition have been the focus of substantial 
research in the psychology literature. Texts such as Anderson’s [2005] general review 
of cognitive psychology dedicate multiple chapters to the topic, and more specific 
texts such as Schmidt and Lee [2011] scrutinize how humans develop motor skills. 
The problem for interface developers and researchers, however, is that while there is 
abundant literature on skill development, there is a lack of clarity on how the 
findings can be applied in user interfaces to assist the development of user expertise. 

This paper provides a review of literature addressing the problem of how user 
interfaces can assist users in transitioning from novice to expert levels of 
performance. The review is presented in two parts. First, we present a brief summary 
of key relevant findings on human skill acquisition, predominantly from the 
psychology literature. Second, we describe our focus, which is research from Human-
Computer Interaction on interface techniques that are designed to support skill 
development, and we analyze their relative successes and failures. The review of 
interface research is divided into four sections, each addressing a different domain of 
performance improvement, progressing from low level issues of interface control 
through to high level issues of task strategy. The four domains are as follows: 
intramodal improvement, which occurs within a single interface method, such as 
when learning to operate a new pointing device; intermodal improvement, which 
occurs across interface methods, such as between mouse selection and hotkey use; 
vocabulary extension, which concerns the breadth of the user’s knowledge of interface 
features; and task mapping, which concerns the way in which users approach their 
tasks, including how they learn their tasks and the strategies they employ. Finally, 
we identify a research agenda for future work on supporting expertise development 
with user interfaces. The overall aims of the paper are to summarize and distill 
existing knowledge on expertise development with user interfaces, to highlight 
successful strategies that designers might consider for facilitating expertise 
development, and to motivate and direct further research on the topic.  

2. HUMAN FACTORS OF LEARNING AND SKILL ACQUISITION 
From an experimental-psychology perspective, learning and skill acquisition are 
often defined in terms of functions of memory [Schmidt and Lee 2011] – human 
memory is the repository for human experiences and understanding, so anything that 
has been learned is encoded in some form of memory. However, human memory is a 
vast research topic and a complete review is beyond the scope of this paper. Instead, 
we limit the review to summarizing the aspects of human memory that directly 
influence skill development with user interfaces – for example, spatial and 
proprioceptive memory strongly influence the user’s ability to rapidly acquire 
interface targets, and consequently these functions are reviewed in Section 2.7.  

Similarly, there is vast research literature on learning and education that is 
beyond the scope of this paper. As with memory functions, for brevity we limit 
coverage of this literature to summarizing key lessons that are applicable to skill 
acquisition with user interfaces. We refer readers seeking more general introductions 
to Anderson [2005] for general psychology, to Baddeley [1999] for a review of human 
memory, and to Thomas [2013] for an introduction to education.   



 

This section focuses on underlying human factors of skill acquisition that are 
relevant to user interface design. It begins by describing three stages of skill 
development, and then reviews several factors influencing skill acquisition, including 
repetition, type and distribution of practice, the role of effort in efficient training, and 
how different forms of motivation and feedback affect training outcomes. Later 
sections explain how many of these human factors are employed in specific user 
interfaces that aim to improve users’ transitions from novice to expert performance.  

2.1 Stages of psychomotor skill development: cognitive, associative, autonomous  
Various models of psychomotor skill acquisition have been proposed, with Fitts and 
Posner’s [1967] three stage model being particularly influential. It describes how 
skills are developed through cognitive, associative, and autonomous phases, outlined 
in the following paragraphs. Learning to change gears on a manual car is a 
commonly-used example of this process, with novices at the cognitive phase forming 
initial models that might involve understanding the mechanics of a clutch and the 
need to disengage the motor from the gearbox, removing power from the motor while 
doing so, etc. During the associative phase the learner focuses on repeating the 
necessary actions to refine their appropriate synchronization. And once autonomous, 
the coordinated actions are performed as a single burst of unconscious activity, 
leaving the driver’s cognitive capacity free for higher-level activities such as 
navigating or planning their day.   
Cognitive phase 
During the cognitive phase, initial conceptions of the activity are formed, 
predominantly learning what activities are to be done. Knowledge at this phase is 
substantially declarative and explicit, and might be communicated through verbal or 
written instructions, or through direct observation or visual images of the activity.  

Performance of tasks at the cognitive phase is characterized by controlled 
interaction. Schneider and Shiffrin [1977] identified the following characteristics of 
controlled interaction: 1) it is slow; 2) it is attention-demanding, in that other similar 
tasks interfere with its execution; 3) it is serial in nature; 4) and it is strongly 
volitional, in that the activities can be avoided or immediately stopped. Task 
performance during the cognitive phase is also inconsistent, partially due to the 
learner’s exploration of alternative strategies of what to do. Despite this variance, 
task performance improvements are largest during the cognitive phase.  

The most effective training strategies during the cognitive phase focus on 
establishing the person’s explicit conceptualization or understanding of the task. 
They therefore typically involve explicit instruction, provision of clear models, or 
some other form of feedback that assists with task conception. Psychology research 
examining effective training methods for each phase are reviewed in Section 2.8.  
Associative phase 
The associative phase (also referred to as the ‘fixation’ phase) is characterized by 
improvements in the motor actions used to execute the task. While the cognitive 
phase is dominated by attention to what is done, the associative phase is dominated 
by attention to how it is done. Performance improvements generally involve subtle 
adjustments of execution, resulting in smaller gains than the cognitive phase, but the 
performance variance decreases. The verbal, declarative and explicit understanding 
of the execution of the task that characterized the cognitive phase is largely unused 
during the associative phase.  

The associative phase is enduring, with many tasks requiring years or decades of 
practice before transitioning from the associative phase to automaticity.  
  



 

Autonomous phase 
The autonomous phase represents the ultimate level of psychomotor learning, which 
is attained after prolonged and extensive practice. Key characteristics of automaticity 
are the opposite of those characterizing the controlled interaction at the cognitive 
phase. Schneider and Shiffrin [1977] identified the following characteristics of 
autonomous actions: 1) they are fast; 2) they are not attention demanding, in that 
other verbal or cognitive operations do not interfere with their execution; 3) they are 
parallel in nature, with various operations possibly occurring together; 4) they are 
not volitional, in that processing is often unavoidable. Experienced touch-typists are 
likely to have encountered the non-volitional component of automaticity – when 
interrupted, a few pending keystrokes will be typed as a burst of activity prior to 
dealing with the interruption. Furthermore, there is evidence that people are unable 
to voluntarily terminate execution of these bursts [Salthouse 1985]. 

When an individual’s task performance moves towards automaticity there is a 
reduction in the mental and physical effort expended on the task [Kahneman 1973]. 
This reduction can be observed using measures such as pupil dilation (pupils enlarge 
with mental effort, e.g., [Hyönä et al. 1995]), galvanic skin response (skin 
conductivity increases with effort, e.g., [Engström et al. 2005]), or fMRI (e.g., 
[Hasegawa et al. 2002]). Dual attention tasks are commonly used to examine 
automaticity because the parallel processing and absence of attention that 
accompanies automaticity allows improved performance on concurrent activities, 
with relatively small detriment to the skilled execution.   

2.2 The Power Law of Practice  
The three-phase model of skill acquisition provides a useful characterization of how 
people conceptualize and enact tasks, as well as suggesting how different training 
interventions might assist skill development at each phase. Although the phases are 
not discrete and different individuals may progress at very different rates, when 
aggregate task performance is viewed across time, the performance curve follows a 
smooth and continuous power function, with substantial initial gains that gradually 
diminish. This aggregate ‘power law of practice’ has been reliably observed across 
many studies, including Snoddy’s [1926] early studies of drawing mirror images, 
Crossman’s [1959] study of factory workers rolling cigars, and Card et al.’s [1983] 
study of text-editing tasks. The generality of this practice effect was noted by Fitts 
[1964] and named the ‘power law of practice’ by Newell and Rosenbloom [1981], 
although Heathcote [2000] argues that an exponential law is more accurate. 

2.3 Type of Practice 
Although the power law of practice has been shown to apply in many domains, there 
is strong evidence that repetition alone is insufficient for the attainment of elite skill. 
Ericsson [2004] reviews multiple studies of elite performance across diverse domains 
(including musicians, athletes, and chess players), concluding that in addition to 
many thousands of hours of practice, the type of practice is critical. In particular, he 
demonstrates the necessity of deliberate practice, which focuses on tasks beyond the 
person’s competence and comfort [Ericsson et al. 2007]. Deliberate practice facilitates 
two kinds of learning – improving skills already attained, and extending the reach 
and range of skills; it is further assisted through expert mediation, such as skilled 
coaching.  

Ericsson refers to the cognitive, associative, and autonomous phases of learning 
(Section 2.1) when explaining the difference between the attainment of ‘everyday 
skills’ and ‘expert’ (or elite) performance. He argues that everyday skills are 
developed as described in Section 2.1, progressing through cognitive and associative 
phases, and becoming satisfactory once autonomous. However, he contends that elite 



 

performance require deliberate practice to counteract automaticity during practice, 
with performers using various forms of mental representations to maintain the 
cognitive and associative phases [Ericsson 2004]. Further, he observes that once 
deliberate practice is abandoned, elite performance may deteriorate. 

2.4 Depth of Processing and Effort  
The deliberate use of mental mechanisms to assist continued learning and 
improvement described by Ericsson are reflected by the research of Craik and 
Lockhart [1972], who proposed a “levels of processing” framework in memory 
research. They postulated that the strength of a memory is a positive function of the 
depth to which the stimulus is analyzed. Several studies validated the framework – 
for example, Craik and Tulving [1975] showed that ‘deeper’ or more effortful mental 
manipulations during word memorization improved recall over ‘shallow’ encodings. 
In their experiment, word stimuli for memorization were coupled with shallow or 
deep questions, where ‘shallow’ encodings were based on word structure (e.g., “is the 
word in capital letters?”) or on phonetic properties (e.g., “does the word rhyme with 
‘weight’?”), while ‘deep’ encodings were based on categories (e.g., “is the word a type 
of fish?”), or on sentence fitting (e.g., “would the word fit in the sentence ‘he met a 
______ in the street’?”).  

Regardless of the exact framework used to encapsulate memorization procedures, 
there is comprehensive empirical evidence that elaborative processing [Anderson 
2005] (p.193), which increases the difficulty of processing stimuli for memorization, 
has a critical role in learning. This is an important and possibly counterintuitive 
finding for systems that are intended to improve ultimate user performance, because 
it suggests that interventions that cause temporary performance degradation during 
training may be beneficial in the long term – “manipulations that degrade the speed 
of acquisition can support the long term goals of training” (p.207, [Schmidt and Bjork 
1992]). This issue is revisited in Section 2.9, which examines the guidance hypothesis.  

2.5 Convergence and Divergence of Individual Differences with Practice 
In some conditions, the variance between individuals’ performance decreases 
following practice, but in others, the variance increases. Studies on the role of 
deliberate practice and mental effort help explain why some people attain higher 
levels of performance than others despite their prolonged and intense repetition. As 
Ericsson puts it, “it may appear that excellence is simply the result of practicing 
daily for years or even decades. However, living in a cave does not make you a 
geologist” [Ericsson et al. 2007], p3.  

Ackerman provides a succinct summary of the conditions under which individuals’ 
performance becomes more similar or more different as a result of practice 
[Ackerman 2007]. For simple tasks that involve speed and accuracy of motor 
movement, results suggest that differences diminish as a result of practice. For 
example, the individual differences between people first using a mouse to control a 
cursor might be large, but converges with practice. However, if a motor skill task is 
more complex or if it enables unobvious styles/strategies of use, then performance 
differences may stay constant or diverge with practice. For example, two novice 
keyboard users may begin with a ‘hunt-and-peck’ strategy of one-finger typing, but 
one user may dedicate deliberate practice to touch-typing, thus accelerating their 
performance, while the other does not.  

As the touch-typing example suggests, as tasks become more complex or strategic, 
or as they demand more knowledge, there is a tendency for divergence to increase 
between the levels of highest and lowest performance.   
  



 

2.6 Distribution of Practice  
Altering the temporal distribution of training sessions can influence their 
effectiveness, and rest periods between sessions improve learning, with longer rest 
periods being more beneficial than short ones. These effects have been empirically 
demonstrated in the psychomotor domain for both short term activities (e.g., a point-
following task with 30 second training batches and rests of between 0 s and 60 s, as 
used by Bourne and Archer [1956]) and long term activities (e.g., typing tasks trained 
once or twice daily for a total of 60 hours, as used by Baddeley and Longman [1978]). 
Similar effects have been demonstrated for cognitive learning. For example, Cepeda 
et al. [2006] present a review of 184 papers studying verbal recall tasks, 
demonstrating that spaced (versus continuous) practice sessions improve recall 
performance. Their review also reveals an interaction between the optimal spacing 
period and the intended duration of memory retention, with longer spacing periods 
working best for longer retention.     

2.7 Spatial and Proprioceptive Memory 
Spatial memory is particularly important for efficient interaction with graphical user 
interfaces. When an interface is spatially stable users can make rapid decisions about 
the location of target items, but when stability is compromised users must resort to 
comparatively slow visual search [Cockburn et al. 2007; Cockburn and Gutwin 2009].  

Spatial memory is a substantial research field within psychology (Anderson 
[2005], chapter 4), but the findings reported above also apply to spatial memory. For 
example, the method of loci can be considered to be a form of elaborative processing 
that aids recollection by associating memory stimuli with known spatial locations 
(such as the rooms in a familiar house). Related ‘depth of processing’ spatial memory 
effects have been reported in studies such as Naveh-Benjamin [1987] and Van 
Asselen, Fritschy and Postma [2005], as well as several studies specifically 
concerning interaction with computer systems (reviewed later in Section 4.2).  

The input to spatial memory may be represented by visual, aural or proprioceptive 
stimuli. While graphical user interfaces are predominantly portrayed visually, 
consistent proprioceptive actions for control is likely to yield significant advantages 
for expert users. For example, the consistent spatial location of a vehicle’s brake 
pedal (relative to the driver) facilitates rehearsal of precisely the same physical 
action to slow the vehicle, with obvious advantages in an emergency. Touch-typing 
allows equivalent performance benefits for acquiring consistently defined 
proprioceptive targets. Conversely, however, the need for different movements to a 
target dependent on varied initial cursor location may impair the ultimate 
performance ceiling and ability to attain autonomous levels of performance with 
mouse and cursor interaction (further explored later in Section 4.2).  

2.8 Motivation and Feedback 
Positive motivation to learn and improve is a key determinant in whether a learner 
chooses to participate in practice. Understanding how interventions influence 
motivation is important in areas such as industrial psychology, sports science, and 
interface design for expertise.  

Two key strategies for improving motivation are to make the task seem important 
and to use goal setting [Schmidt and Lee 2011]. These strategies are not distinct – for 
example, a person may view performance improvement as unimportant until 
stimulated by the presentation of a goal representing the higher performance of 
others. Consequently, several studies have attempted to understand the types of 
goals that lead to the highest performance outcomes. Interfaces using related 
methods to promote skill development are reviewed in Section 5.1. 



 

There is extensive literature on the effectiveness of different forms of feedback in 
assisting learning, particularly in the field of education. High-level guidelines are 
necessarily broad and abstract, such as ‘create a respectful, friendly, open-minded 
and unthreatening climate’, ‘base feedback on observed facts’, and ‘suggest ideas for 
improvement’ (e.g. [Hewson and Little 2001]). In general, studies agree that specific, 
absolute goals of moderate difficulty yield better performance and learning outcomes 
than non-specific goals (such as “do your best”) or no goals [Tubbs 1986; Kyllo and 
Landers 1995; Locke and Latham 2006].   

In the psychomotor domain, where feedback is applied to learning physical 
movement, there is potential to deploy psychology findings in user interfaces (where 
users execute motor actions to activate particular interface functions). Schmidt and 
Lee [2011], chapters 11 and 12, provide a comprehensive review, covering both the 
intrinsic feedback effects (such as visual or proprioceptive stimuli) that are 
inherently coupled with limb movement, as well as the effectiveness of different 
forms of extrinsic feedback that can be explicitly applied to assist skill acquisition. 
Many parameters of augmented feedback can be manipulated, including the 
following:  

• temporal properties, such as providing feedback that is either concurrent with 
the action, presented on termination of the action, or delayed;  

• aggregation, such as providing independent feedback about each discrete action 
versus accumulating information about a sequence of actions;  

• modality and form, such as textual or spoken instruction, video of the action, or 
statistical summaries of performance;  

• knowledge of performance (KP), which concerns information about the way in 
which the action was executed, such as the deviation from the ideal movement. 
For example, a golfing tutor might show a video of a student’s swing, possibly 
commenting on foot position or backswing speed. Note that the feedback 
concerns the movement, not its outcome. 

• knowledge of results (KR), which concerns information about the outcome of the 
action that is presented after its termination, such as its success or failure, or 
the time taken to complete it. For example, a typing application might provide 
feedback in the form of a beep to indicate a target phrase or character was 
typed incorrectly, or it might show a plot of word-per-minute typing rate; 
similarly, a golfing tutor might note the distance that the ball travelled. Note 
that the feedback concerns the outcome, not the movement itself.  

The distinction between knowledge of performance (KP) and knowledge of results 
(KR) has been extensively studied in the psychomotor literature. Gentile [1972] (who 
introduced the term ‘knowledge of performance’) postulated that KP is most effective 
for closed motor tasks, in which the task is uniformly performed without response to 
changing external factors, and where the movement itself is the goal of the skill – for 
example, a golf swing would be considered to be a closed motor task*. It is debatable 
whether certain forms of KP alone (such as non-augmented videos of performance) 
can yield substantial performance benefits – for example, Rothstein and Arnold 
[1976] showed that performance videos alone did not improve the participants’ 
performance, possibly due to a lack of specificity about the actions required to 
improve. However, it is clear that performance and learning outcomes are enhanced 
when KP is combined with KR (e.g., Wallace and Hagler’s study of basketball players 
[1979]). As with cognitive feedback, given the diversity of literature and their results, 
we defer details until reviewing interface methods in Section 4.2.  

                                                   
* Note that categorising tasks as ‘open’ or ‘closed’ is a different concept to open- and closed-loop 
motor control. The terminology is unfortunate because an open task requires closed-loop control. 



 

2.9 Guidance 
Physical guidance is a form of feedback where the learner’s limbs are externally 
manipulated in an attempt to assist learning physical movements, and results vary 
on its efficacy. For example, Armstrong [1970] showed that for learning complex 
elbow movements, mechanical limb control resulted in precise movements during 
training, but inaccurate reproduction once the controls were released. In contrast, 
when training was achieved without mechanical control but with visual feedback of a 
motion plot (either at the end of the trial or concurrently during it), participants 
produced the motions most accurately (once feedback was removed) when trained in 
the post-movement feedback condition. In other words, delayed and unconstrained 
feedback achieved the best learning outcome. Not all experimental results agree with 
this finding, and it seems likely that some form of coarse physical guidance may 
assist learners in their initial conceptualization of the required movement, 
particularly if the movements are large and relatively slow (e.g., teaching a child a 
kayak stroke).  

These results also emphasize important questions about the methodology used for 
evaluating skill acquisition and learning. In particular, the guidance hypothesis 
[Schmidt 1991] suggests that augmented feedback which improves early performance 
through guidance may impair retention of the performed skills once the guidance is 
removed. Consequently, most experiments in the psychomotor domain use separate 
experimental periods for training, retention (the trained tasks are evaluated later, 
often 24 and 48 hours after initial training), and transfer (where the skills are 
applied to a related but non-identical task).  

Although rare in current user interfaces, results on physical guidance may be 
relevant to interfaces that use force- and tactile-feedback, such as training aids for 
dentistry procedures [Rhienmora et al. 2010] and teaching the blind to write 
signatures [Plimmer et al. 2008]. Furthermore, many user interfaces exploit some 
form of dynamic visual guide, or ‘feedforward’, to assist users in performing their 
task. We return to specific user interface examples in Section 4.  

2.10 Other human phenomena influencing skill acquisition 
Although many of the effects described above are empirically reliable, there are also 
various human phenomena that complicate the deployment and analysis of 
interventions intended to aid transitions to expertise.  

Satisficing  
Rather than seeking to continually optimize performance, people have a tendency to 
‘make do’ with solution strategies that were first learned, even though they may be 
known to be suboptimal. Furthermore, once a suboptimal strategy has been learned 
and reproduced several times, it is likely to become habit, further reducing the 
likelihood of changing to faster alternative methods. Simon [1959] used the term 
‘satisficing’ to describe how decision-makers often lack the information and cognitive 
resources needed to make a rational optimal decision, and also that once the costs of 
calculating a rational near-optimal decision are accounted for there will be little 
difference between attempts to optimize and making a faster, approximate ‘satisficed’ 
determination. In user interface research, satisficing has been used to explain 
phenomena such as users failing to make more extensive use of keyboard shortcuts 
despite their using substantially the same interface for years or decades (Section 5.1). 

Gray and colleagues have extensively investigated the seeming paradox of 
prolonged suboptimal performance. Fu and Gray [2004] describe the tendency for 
users to persist with interaction methods that are well-practiced, are generally 
applicable, and which provide incremental feedback. Gray et al. [2006] also present 
evidence supporting their ‘soft constraints hypothesis’, which explains how short-
term interactions (of duration between ⅓ and 3 seconds) can be construed as locally 



 

optimal within those timeframes, although globally suboptimal. In explaining this 
seeming contradiction, they use the analogy of a person following instructions to 
build a toy – the globally optimal solution might involve memorizing the full set of 
instructions before assembling any components, but a locally optimal one might 
intersperse reading instructions with assembly.   
Arousal and personality 
The efficacy of certain training interventions has been demonstrated to interact with 
individual and environmental factors, which greatly complicates the process of 
determining which training methods are likely to be most effective for different 
people in different settings. For example, while it is known that performance 
generally follows an inverted ‘U’ shape with level of arousal (i.e., performance 
deteriorates when a person is under- or over-excited), there is evidence that 
personality differences such as introversion and extroversion result in different 
baselines of arousal, and consequently the same stimulus effect may increase 
performance for an extrovert while decreasing performance for an introvert [Revelle 
et al. 1980; Bullock and Gilliland 1993]. Revelle et al.’s study also showed 
interactions between several other factors, including time of day, other personality 
factors, and consumption of stimulants.  
Interaction with skill complexity 
Several studies have shown important interactions between the effectiveness of 
training interventions, the participants’ skill level, and the complexity of the skill 
conducted. Perkins-Ceccato, Passmore and Lee [2003] showed that low-skill golfers 
benefited more from instruction that focused attention on internal motor aspects of 
actions when compared to instructions that focused on external effects on the ball; 
conversely, highly-skilled golfers benefited more from externally focused instructions. 
Similarly, Wulf and Shea [2002] found that principles derived from the study of 
simple tasks do not generalize to more complex skills. They explained this effect with 
reference to the learner’s total cognitive load – when task demands are low, learners 
benefit from practice conditions that increase total load, whereas when task demands 
are high, practice conditions with more manageable workload are beneficial. 

2.11 Summary of Human Factors of Skill Acquisition 
Highly skilled task performance is characterized by automaticity, where the physical 
actions required for the task are executed quickly, efficiently, and with minimal 
conscious deliberation. Importantly, automaticity allows the performer to think about 
higher-level tasks during the execution of the skill. While high degrees of repetition 
are required for skilled execution to approach automaticity, different training 
interventions influence the way performers gain skill and understanding.  

This section reviewed some of the key human factors influencing psychomotor 
skill acquisition, with a focus on those most relevant to interaction with computer 
systems. As stated earlier, the aim was to provide a brief introduction to assist in 
understanding the objectives and methods of the interface techniques described in 
upcoming sections. 
3. FOUR DOMAINS OF INTERFACE PERFORMANCE IMPROVEMENT 

The following sections review research examining user interface methods that assist 
users in transitioning from novice to expert levels of performance. Typically, ‘high 
performance’ will be exhibited by rapid task completion, but in some interactive 
contexts the focus of improving performance may be on error reduction, or on 
increasing the quality of the product. Our focus is on methods that can be deployed 
within the user interface, rather than the broader range of methods that are external 



 

to the interface, such as offline training courses, the role of socialization in interface 
learning, or individual preference for learning style.   

The review is structured by considering four domains that characterize different 
opportunities for improving performance with user interfaces. These domains are 
derived from a conceptual deconstruction of interaction with an interface as 
consisting of the user’s performance characteristics with a set of alternative methods 
for activating a set of functions that are required to complete a task.  

Functions are the set of interface commands and capabilities that allow data, 
state, or view manipulations to be achieved. For example, a simple painting 
application may support functions for drawing lines, painting shapes, zooming, 
scrolling, and so on. Analyses of functionally rich interfaces have shown that even 
experienced users typically use only a small subset of available functions [Draper 
1984; Matejka et al. 2009].  

Each interface function can typically be accessed through more than one interface 
method. For example, a line-drawing function might be selected by clicking a palette 
icon, through pull-down and context menus, or via a keyboard shortcut; and a 
scrolling function might be controlled by dragging a scroll thumb, by rotating a 
scrollwheel, or by pressing keyboard arrow keys.  

Each method has associated performance characteristics, including a performance 
floor and ceiling, and each user will have attained performance ability somewhere 
between the floor and ceiling.  

The four domains of interface performance improvement described in the 
following subsections are as follows: 

1. intramodal improvement concerns the rapidity and magnitude of 
performance improvement with one particular interactive method (e.g., 
pointing with the mouse) for one particular function (e.g., selecting the bold 
function in a word processor);  

2. intermodal improvement concerns ways to assist users in switching to faster 
methods for accessing a particular function (e.g., switching from cursor-based 
interaction to keyboard shortcuts); 

3. vocabulary extension considers ways to help users broaden their knowledge 
and their use of the range of functions available in an interface; 

4. task mapping addresses higher-level issues of the strategies that users adopt 
when seeking to complete their tasks with a user interface. It concerns the 
coordination of functions to complete a task. 

Figure 1 visually characterizes the key objectives of intramodal improvement, 
intermodal improvement, and vocabulary extension, as well as their relationship 
with interface methods and functions. The height of each column in Figure 1a depicts 

   
(a) Performance 
characteristics of a method. 
Intramodal improvement 
concerns the user’s 
performance ability within 
one method. 
 

(b) Range of methods for a 
function. Intermodal 
improvement concerns the 
user’s transition to faster 
methods for activating a 
function. 

(c) Range of functions available. Vocabulary 
extension concerns the user’s knowledge and 
use of the functions available.  

Figure 1. Conceptual representation of a user interface: a. methods that have distinct performance 
characteristics; b. alternative methods for any function; and c. a range of functions. Task mapping (not 

shown) concerns coordinating functions for a task. 

Ceiling

Ability Alternative
methods Range	of	functions



 

the performance ceiling enabled by a particular interaction method for a particular 
function, and the blue shaded region depicts the performance level attained by the 
user (to reiterate, this characterization is not dependent on any particular measure of 
performance). Figure 1b depicts a range of alternative methods for one function, 
emphasizing that different methods have different performance characteristics. 
Figure 1c depicts the range of functions available in a user interface, showing that 
users may be unaware of certain functions. Task mapping (not shown in the figure) 
concerns coordinating a set of functions to achieve a task, and typically various 
combinations are possible for the same task.  
4. DOMAIN 1: INTRAMODAL PERFORMANCE IMPROVEMENT 

Based on Newell and Rosenbloom’s [1981] power law of practice, Figure 2 depicts 
how user performance improves with experience of a single interaction modality. In 
the description below, we subdivide this curve into three segments for initial 
performance, extended learnability, and ultimate performance. These three stages are 
suggestive of Fitts and Posner’s [1967; Anderson 1995] cognitive, associative, and 
autonomous stages of skill acquisition, described in Section 2.1.  

The following subsections describe factors influencing each of these stages, 
including the observation that some factors assisting performance at one stage can 
impair performance at another.  

4.1 Initial performance 
Interface design for the initial stages of learning is strongly promoted in most 
usability guidelines [Norman 1983; Norman 1983; Shneiderman 1992; Dix et al. 
1993; Nielsen 1993]. At this stage, users are unfamiliar with the interface, and must 
rely on their prior experiences, visual search, and recognition to find the commands 
they need. To optimize initial performance, designers aim to make interfaces easy to 
comprehend, with as high a performance floor as possible.  
 

 
Figure 2. Characterisation of the intramodal power law of learning performance curve across time of use 

for one particular interface method for accessing one particular function.  

Without prior experience to draw on, novice users are heavily reliant on visual 
search, and the time for visual search is a linear function of the number of candidate 
items that must be considered [Hornof and Kieras 1997; Wolfe 1998; Cockburn et al. 
2007; Cockburn and Gutwin 2009]. Novice performance, therefore, can be improved 
by reducing the number of controls displayed to the user. Carroll and Carrithers 
[1984] exploited this effect with their ‘Training Wheels’ interfaces, which 
intentionally reduced the number of commands displayed. Related ideas were 
pursued with ‘multi-layer interfaces’ [Shneiderman 2003], which increase the level of 
functionality and reduce instructional interventions as the user becomes more 
experienced. However, by presenting different interfaces to novice and expert users, 



 

there are risks of confusing users when making a transition to the more advanced 
user interface (introducing a ‘performance dip’, as discussed in Section 5).  

‘Ephemeral Adaptation’ [Findlater et al. 2009], shown in Figure 3, demonstrates a 
different approach to helping users quickly identify important commands. With this 

technique, a small subset of menu items are immediately shown when the menu is 
displayed, while the remaining items are gradually faded into view over a few 
hundred milliseconds.  

The notion that controls should be visible to be learned is also well expressed in 
most usability guidelines, but the corollary of making novice functionality visible is 
that expert functions are often suppressed, reducing the likelihood that they will be 
discovered. A related concept is that appropriate interface controls should be ‘ready 
to hand’ [Karat et al. 2000]: that is, controls and feedback should be available for use 
but not obstruct task completion. Dyck et al. [2003] observe that many computer 
games achieve the dual objectives of availability without obstruction through ‘calm 
messaging’ that uses non-abrupt and non-intrusive means for presenting 
information, such as transient text, animation, and audio.  

4.2 Extended learning 
Several factors influence the rate at which performance increases after initial 
familiarization, including the effort required during training and the use of guidance 
to assist performance. These factors also apply during intermodal improvement. 

Effortful learning 
In seeking to exploit findings from psychology suggesting that “deeper” mental 
encodings result in stronger memories [Craik and Lockhart 1972; Schmidt and Bjork 
1992] (Section 2.4), several interface researchers have examined interfaces that 
improve skill development. For example, Cockburn et al. [2007] examined the effects 
of using an intentionally effortful ‘frost brushing’ game to help users learn a gesture-
based method for text entry, called ShapeWriter [Zhai and Kristensson 2003]. The 
game involved bursting ‘balloons’ containing target words – each word appeared at 
the bottom of the display and floated up and off the display unless burst by correctly 
entering the word (see Figure 4). When using the frost brushing interface, the visual 
guidance normally provided by the display of keys on the keyboard was occluded by 
‘frost’ over the display. To show the underlying key, users had to brush away the 
frost by waving a stylus cursor over the key, and the frost quickly reformed. The 
design intention was to elevate deeper mental encodings of the spatial location of 
letters by enforcing the need for memorization. Experimental results showed that the 
frost brushing condition improved users’ memory of letter locations and of gesture 

 
Figure 3. Ephemeral Adaptation. Reprinted with permission of ACM ©, from [Findlater et al. 2009]. 

The most likely target commands are shown immediately, while others are faded in over a few 
hundred milliseconds. This technique can be used to draw a novice’s attention to the most likely 

commands, while maintaining the original menu layout.  



 

shapes compared to the traditional keyboard display (memory for gesture shapes was 
measured by asking users to create word gestures on an blank keyboard, with 
gesture quality reported by a recognition engine score function). However, the 
participants’ comments revealed design subtleties in choosing an appropriate level of 
effort. In experiment on learning letter locations the frost brushing condition was 
rated as more engaging and less frustrating than the normal interface; but an 
experiment involving the harder task of learning gesture shapes for entire words 
showed the frost brushing interface to be less engaging and more frustrating than 

normal. The results suggest that there is a fine balance between engaging and 
frustrating users, and that training interfaces should be neither too mundane nor too 
difficult. This finding reflects those of Wulf and Shea [2002] who observed that 
principles derived from the study of simple tasks may not generalize to more complex 
skill learning (Section 2.10).  

In examining interface methods that support the development of touch-typing 
skills, Yechiam et al. [2003] proposed using a secondary task during text entry that 
imposed a ‘moderate and immediate punishment’ for looking at the keys rather than 
the text output. While entering text, the secondary task required a rapid response to 
the periodic display of a blue square in the text output area. If the user failed to 
quickly respond to the blue square’s appearance, then the entire display would be 
temporarily dimmed. Users were much more likely to fail to notice the blue square if 
looking at the keys rather than the display. Experimental results confirmed that the 
inclusion of the secondary task improved participants’ touch-typing performance by 
encouraging users to rely on key memorization (and look at the text output area), 
rather than focus on the keyboard.   

A recent study by Kim and Ritter [2013] investigated learning, forgetting, and re-
learning a spreadsheet task when using mouse-and-menu interaction methods in 
comparison to keyboard-command interaction. Their findings suggest a tendency for 
mouse-and-menu users to forget methods sooner than the keyboard-command group. 
This finding is consistent with the depth of processing hypothesis, as suggested by 
Kim and Ritter’s characterization of mouse-and-menu interaction as relying 
predominantly on ‘knowledge-in-the-world’ in contrast to keyboard-command 
interaction relying on ‘knowledge-in-the-head’. 
  

 
Figure 4. The ‘frost brushing’ training game for ShapeWriter [Zhai and Kristensson 2003], reprinted 

with permission of ACM ©, from [Cockburn et al. 2007]. Letters on the keyboard are occluded by ‘frost’ 
that quickly reforms after being ‘scrubbed away’ with the stylus. A balloon bursts when its word-

gesture is correctly entered.  



 

Revelation, guidance, and rehearsal in marking menus  
Kurtenbach et al.’s research on marking menus makes several substantial 
contributions on supporting natural transitions from novice to expert levels of 
performance with user interfaces [Kurtenbach 1993; Kurtenbach and Buxton 1993; 
Kurtenbach et al. 1993; Kurtenbach and Buxton 1994; Kurtenbach et al. 1994].  

Figure 5, extracted from Kurtenbach et al. [1994], shows both the novice (left) and 
expert (right) modes for hierarchical menu item selection when using a marking 
menu. Marking menus are a form of radial menu, in which directional movements 
from a starting location select different items. Shortly after the user’s stylus makes 
contact with the surface (Figure 5, left) a radial menu is displayed; the user moves 
northward to select the ‘Groceries’ submenu, causing a sub-menu to be displayed; and 
moving rightwards then selects the ‘Fruit & Veg’ item. Alternatively, an expert user 
(shown in Figure 5, right) can make a rapid gesture of similar shape to quickly select 
the same item, but without needing to pause for guiding feedback.  

Marking menus were designed to adhere to a set of design guidelines, including 
revelation, guidance, and rehearsal [Kurtenbach et al. 1994], as follows: 

Revelation is used to provide interactive feedback to the user about the commands 
that are available and how the user can invoke them. Revelation is particularly 
important for gestural interaction, where the user’s actions need not have any 
associated representation on the display. Unlike buttons, scrollbars, and other 
graphical widgets that afford a particular method for activation (clicking, dragging, 
etc.), gestural interactions need not be conducted with reference to specific graphical 
entities. The revelation mechanism used by Kurtenbach et al.’s marking menus 
required a dwell timeout to expire before graphical feedback of the radial menu items 
was presented.  

The guidance principle states that the methods used for revelation should assist 
the user in specifying the complete command. In particular, guidance should not 
interfere with the user’s specification of intention. In the context of a hierarchical 
marking menu, the appearance of a second-tier radial menu part way through a 
gestural command (such as ‘Meat’ to ‘Staples’ in Figure 5) serves as guidance, while a 
pop-up dialogue box that removes attention from the task would not.  

Rehearsal states that the way that guidance is provided should require a physical 
rehearsal of the expert’s actions. In other words, the novice’s motor actions should 
rehearse the expert’s motor actions to assist the development of automaticity and 
muscle memory.  
  

 
Figure 5. A hierarchical marking menu selection being made in response to visual guidance (left), and 

without visual feedback using a previously rehearsed action (right). Reprinted with permission of 
ACM ©, from [Kurtenbach et al. 1994]. 



 

Guidance versus effort for attaining performance versus learning 
Kurtenbach et al.’s marking menu research was conducted in the early 1990s, with a 
focus on stylus-based input. The recent surge in popularity of finger-based gestural 
interaction on mobile devices has renewed interest in advanced techniques for easily 
learned and high performance gestural interaction techniques.  

‘OctoPocus’ [Bau and Mackay 2008], shown in Figure 6, uses dynamically adapted 
guidance to assist users in performing and learning gestures. The technique assists 
performance of specific gestures (intramodal improvement) as well as learning other 
gestures that have similar initial gestural shapes (vocabulary extension). When the 
finger makes contact with the surface, the available gestures are shown, with initial 
paths emphasized and fading with distance. Once the user begins tracing the 
gesture, the ‘feedforward’ portrayal of the required remaining gestural action adapts 
to the completed gesture components – for example, the path for ‘Paste’ is removed in 
the right-hand image of Figure 6, and the path for ‘Cut’ is deemphasized by making 
its path thinner. OctoPocus was evaluated in comparison to traditional Help menus 
and marking menus, showing positive results. Several researchers have examined 

related gesture prediction methods: [Freeman et al. 2009; Appert and Bau 2010; 
Bennett et al. 2011; Kristensson and Denby 2011]. 

Anderson and Bischof [2013] conducted experiments to determine whether 
Schmidt’s [1991] guidance hypothesis applies with guidance-based interactive 
methods (Section 2.9). They compared user performance using four different 
interfaces for providing guidance: ‘crib notes’, which provided static representations 
of the gestures, continually displayed in the corner of the display; ‘static-tracing’ 
representations, which showed non-responsive versions of all gestures at the starting 
location of the gesture; ‘dynamic-tracing’, equivalent to OctoPocus; and ‘adaptive-
tracing’, which was identical to the ‘static-tracing’ condition except that the guide 
disappeared at a progressively earlier point through the training set (disappearing at 
the end of the gesture in the first training event, and at the start of the gesture in the 
last training event). Importantly, their experimental method analyzed both 
performance during training, as well as learned retention of the gestures, measured 
24 hours after the training session. 

Their results confirmed the guidance hypothesis – the conditions that maximized 
performance during training (static- and dynamic-tracing conditions) performed the 
worst in the retention tests, and vice versa. These results reflect those generated by 
Cockburn et al.’s [2007] frost-brushing experiments, in which the frost-brushing 
condition slowed user performance during training, but resulted in better results 
during subsequent testing conditions. Similar results have been generated for 

 
Figure 6. Dynamic gestural guidance with OctoPocus. Reprinted with permission of ACM ©, from [Bau 

and Mackay 2008]. Initially (left), three alternative gesture commands are possible, but as the user 
gestures upwards and rightwards, guidance for ‘Paste’ is removed and ‘Cut’ fades, leaving only the 

remaining guidance for ‘Copy’. 



 

intermodal improvement, such as Grossman et al.’s [2007] study of hotkey learning, 
described in Section 5.1.  

These results have important implications for the design of training systems, as 
designers must understand whether their goal is to assist users in rapidly attaining 
high performance, or whether learnt outcomes and the ability to transfer the 
learning to related interactions are primary objectives.  

4.3 Ultimate performance 
The final characteristic of the intramodal curve is the asymptote, or performance 
ceiling (Figure 2). Card, Moran and Newell [1983] provide models and empirical 
evidence of ‘expert performance of routine tasks’, including analysis of one user who 
repeated the same editing task thousands of times to study the progression to 
automaticity. Scarr et al. [2011] identify four interface characteristics that contribute 
to high performance ceilings, as follows. 
Flat command structures 
GUIs typically contain more controls than can be easily displayed at once, 
necessitating interface partitions such as windows, tabs, and menu hierarchies. 
Navigating through these partitions takes time, and consequently there are potential 
performance benefits in flattening the command structure to make more items 
accessible at once [Scarr et al. 2012]. Commands issued by command line interfaces 
(CLIs) and hotkeys are exemplars as they have global interface scope (e.g. <Ctrl>-C 
executes ‘copy’ regardless of the interface state). Several research and commercial 
systems have used CLIs to improve interface performance: e.g., Quicksilver†, 
Spotlight‡, Enso§, and GEKA [Hendy et al. 2010]. Although empirical results for CLI 
benefits over GUIs have been mixed (e.g. Whiteside, Jones, Levy and Wixon [1985]), 
it is widely accepted that CLIs enable higher efficiency, and power users are strong 
advocates (e.g. [Barrett et al. 2004]).  
Terse and expressive input 
Powerful interface commands communicate a lot of meaning in rapidly expressed 
actions. For example, a single alphabetic character can discriminate 26 commands, or 
52 with case sensitivity; increasing to 2704 with two case-sensitive characters. 
However, there is often a tension between supporting terse, expressive power and 
meaningful mappings: for example, Alt-shortcuts in Office 2007 allow access to most 
interface controls, but they are often abstract and hard to remember (e.g., the key 
sequence ‘<Alt> n, nu, t’ inserts a page number in Microsoft Word).  

Revisitation/history support 
Users’ interactive behaviour is often repetitive (e.g., command use [Greenberg and 
Witten 1993] and web navigation [Tauscher and Greenberg 1997]), and interfaces 
can aid efficiency by explicitly supporting command repetition. For example, web 
browser URL address bars and the Google search box memorize previous activities 
and offer type-ahead shortcuts for them: e.g., the keystrokes ‘cn<Return>’ become a 
shortcut for a user who frequently visits CNN’s website. Like marking menus, such 
interactions lie on the cusp with intermodal transitions, but we categorize them 
within intramodal improvement because the initial mechanisms for interaction are 
identical for both novice and expert modalities.  
  

                                                   
† http://www.blacktree.com 
‡ http://support.apple.com/kb/HT2531 
§ http://humanized.com 



 

Spatial predictability 
Studies have demonstrated that spatial stability allows users to make rapid decisions 
about items’ locations rather than relying on comparatively slow visual search (e.g. 
[Cockburn et al. 2007]). Despite the desirability of spatial stability, this principle is 
often compromised due to display space constraints or to reconfiguration of the 
display – interface controls are often elided and repositioned as window geometry is 
manipulated, and this is necessary because widgets typically do not scale. However, 
this is a technical, rather than a human, limitation: Scarr et al. [2013] examined the 
robustness of users’ spatial memory to various forms of spatial transformation 
(including scaling), finding that users were able to quickly locate items in spatially 
stable views that had undergone a uniform spatial transformation.  

In their ‘InfoCockpit’ project, Tan et al. [2001] examined whether items displayed 
on multiple monitors wrapping around the user would enhance interaction based on 
the spatial predictability of items. Spatial audio was included to assist memorization 
of place, and their results showed a 56% increase in object memory compared to 
standard desktop systems.  

 
Section 8 provides a brief summary of key findings for each of the domains, 

including intramodal improvement. 
5. DOMAIN 2: INTERMODAL PERFORMANCE IMPROVEMENT 

Most interfaces support more than one interaction method for accessing the same 
function (Figure 2b). Once a user approaches their intramodal performance 
asymptote, any further performance improvement requires shifting from one method 
to another that offers a higher performance ceiling. For example, a user’s 
performance in clicking a word processor’s bold button will improve as they learn the 
icon’s location, but substantial further performance improvement is possible if the 
user switches to a keyboard shortcut instead. Intermodal performance improvement 
concerns these transitions between interface methods.  

However, Scarr et al.’s [2011] analysis of intermodal performance improvement 
postulated the existence of an important ‘performance dip’ that occurs when the user 
switches to another method, as depicted in Figure 7. The existence of this 
performance dip is likely to deter users from switching to new methods for 
interaction, even though doing so may offer long term productivity gains – the 
prospect of encountering a short term productivity loss may cause users to postpone 
switching to the new method, possibly forever. Factors acting as deterrents or 

 
Figure 7. Performance curves characterising improvement within one interface method (left, 

‘intramodal improvement’) and the performance dip that occurs when switching to a new, higher 
performance ceiling, method (right, ‘intermodal improvement’). Adapted with permission of ACM, from 

Scarr et al. [2011]. 



 

barriers to intermodal transitions, and methods to overcome them, are reviewed in 
the following subsections, which address two critical points on the intermodal 
performance curve shown in Figure 7: first, factors influencing the initial switch to a 
new interface modality; and second, the performance dip that a user is likely to 
experience when switching from a familiar interface to an unfamiliar one.  

5.1 Making an initial switch 

Awareness of the new modality 
The first stage of supporting a transition to an alternative method for interaction is 
to make the user aware of the modality. Such awareness can be achieved through a 
wide variety of means, with varying impact and effectiveness. For example, 
traditional menus typically display a keyboard shortcut for each menu item, but 
users may not attend to them; and toolbar items often display rollover tooltips that 
include the hotkey, although a dwell timeout prior to displaying the tooltip means 
that users are unlikely to see the hotkey during normal interaction.  

Interfaces can be forceful in their awareness mechanisms, requiring users to 
experience the new modality by demanding that actions are completed using it. 
Grossman [2007] experimented with a variety of schemes for assisting hotkey 
learning. These included visual and audio schemes to expose users to the hotkeys, a 
delay-based technique to deter use of the GUI (i.e., making the system unresponsive 
for 2 seconds after each selection), and a technique that forced hotkey use after each 
menu selection. Their results showed that forced use and audio feedback worked 
well, with 72.8% and 66.6% of experimental selections completed with hotkeys, and 
no adverse subjective response. In similar work, the HotKeyCoach [Krisler and 
Alterman 2008] showed a dialog box whenever an item was selected with the mouse, 
requiring either an extra click to proceed, or the hotkey to be issued. Although 
experiments showed these methods to be successful in increasing hotkey use, forced 
use of hotkeys and audio feedback may be unacceptable to users outside lab settings.  

A less forceful approach to awareness was demonstrated by a system called ‘Blur’, 
which aimed to promote a transition from novice point-and-click interaction to higher 
performance command-line interaction by supporting command-line control of 
unaltered commercial GUI interfaces [Scarr et al. 2011]. When a GUI command was 
selected with the mouse, Blur’s ‘calm notification’ showed a transparent window that 
temporarily slid onto the corner of the screen, displaying a command line alternative 
for the selection – the aim was to make command information available, but without 
requiring or demanding attention. Figure 8a shows Blur’s calm notification window 
overlaid on the Microsoft Word ribbon following selection of the Align Left toolbar 
icon ( ). To use Blur’s command-line, the user pressed the Escape key, typed part of 
the command to show alteratives, and pressed return to select. Figure 8b shows 
Blur’s command recommendations after the user types ‘<Esc> al’.  
Perception of the new modality 
Once the user is aware of an alternative modality, the probability that they will 
switch to using it is influenced by their perception of its future efficiency, so all of the 
intramodal factors described above play a role. Importantly, though, several studies 
have demonstrated that predicted and actual experience differ (e.g. [Czerwinski et al. 
2001]), and that users can mistrust their abilities, leading to under-estimates of 
potential benefit with the new modality. For example, Cockburn and McKenzie 
[2002] showed that users predicted that they would perform poorly in a spatial task, 
but subsequently rated their actual performance much higher. Similarly, studies 
have consistently shown that keyboard shortcuts offer a higher performance ceiling 
than mouse selection [Odell et al. 2004; Lane et al. 2005; Malacria et al. 2013], yet 



 

Tak et al. [2013] found that some participants did not use known hotkeys because 
they believed toolbar selections were faster.  

Even when users correctly predict the benefits of switching to a new modality, 
they may not do so due to the ‘paradox of the active user’ in which users “are likely to 
stick with the procedures they already know, regardless of their efficacy” [Carroll and 
Rossen 1987]. In seeking to understand this paradox, Fu and Gray [2004] formed 
theoretical cognitive models of different tasks and gathered data traces of their 
actual execution. Their findings showed that users are biased towards procedures 
that are (1) well-practiced and generic, and (2) composed of interactive components 
that are fast and incremental. They noted that these biases tend to impair task 
completion times. 

To encourage users to improve their efficiency, Malacria et al. [2013] proposed the 
use of ‘skillometers’, which are lightweight interactive components that encourage 
users to reflect about their performance during interaction. Figure 9 shows an 
example skillometer evaluated in [Malacria et al. 2013], which shows the time taken 
to complete recent interface tasks, together with the time that might have been taken 
if an alternative method were used. The area labelled A in Figure 9 shows the time 
taken to select each of the last six commands (red if selected by pointing with the 
mouse; green if selected using a hotkey), as well as showing the hotkey binding for 
each of those commands. The area labelled B shows an aggregate performance meter, 
which is programmed to weight the most recent selection most highly to provide a 
clear ‘reward’ for hotkey use; and area C shows an estimate of the total time that 
might have been saved by switching to hotkeys. Comparative evaluation of a simple 
task with and without the skillometer showed that it caused a substantial increase in 
hotkey use. The ‘Search Dashboard’ [Bateman et al. 2012] is another example of a 
reflective widget (a form of skillometer), that improved user performance in web 
search queries. 

Malacria et al.’s skillometer calculated time savings based on Keystroke Level 
Model [Card et al. 1983]. However, there are interesting possibilities in exaggerating 
the benefits to overcome the inertia induced by satisficing. Adar et al. [2013] provide 
a general discussion of the role of ‘benevolent deception’ in user interface design; 
however, if the deception is obvious users will distrust the system and stop using it. 

 
(a) Blur’s calm notification of the command line alternative (‘Align Left’) for the GUI selection of 

the  toolbar item. The window disappears after 1 second and can be clicked through so as 
to not prevent pointer-based interaction with underlying widgets. 

 
(b) Command recommendation and command line completion in Blur. The user has typed ‘al’, 

and the first predicted command is ‘align left’, which is selected by pressing Return.  

Figure 8. Blur’s transient and transparent user interface. Reprinted with permission of ACM ©, from 
[Scarr et al. 2011]. 



 

 
Figure 9. A skillometer widget, designed to encourage users to reflect on their own performance with a 
user interface and assist them in transitioning to interaction methods that offer a higher performance 

ceiling. Reprinted with permission of ACM ©, from [Malacria et al. 2013]. 

5.2 Performance dip after switching 
The size of the performance dip that occurs after switching to a new interface will be 
influenced by the magnitude of the differences between the interface techniques 
(methods, functions, or strategies) used before and after switching. The rehearsal 
methods used by marking menus (Section 4.2) demonstrate minimising the 
performance dip (or eliminating it) by making the novice interface technique a 
rehearsal of the expert one.  

 ‘ExposeHotKey’ [Malacria et al. 2013] used Kurtenbach’s [1993] rehearsal design 
guideline to promote hotkey learning and use. Normally, keyboard shortcuts are only 
displayed when the pointer rolls over a toolbar item or when a menu is shown. 
However, once the pointer has reached the item or menu, pointer-based selection is 
almost complete, so the user is likely to complete selection by pointing. Consequently, 
the user’s intention to learn a hotkey must be mediated by a non-hotkey modality 
(the pointer), which violates the principle of rehearsal. To facilitate hotkey rehearsal, 
‘ExposeHotKey’ displayed all keyboard shortcuts at once, overlaid on top of the 
normal graphical widgets, whenever a modifier key is pressed. Consequently, users 
could reveal and rehearse hotkeys without using the pointer. Experimental results 
showed that ExposeHotKey led to substantial increases in hotkey use, with 94% of 
selections completed using hotkeys with ExposeHotKey, compared to 50% without it.  
6. DOMAIN 3: VOCABULARY EXTENSION 

Many interfaces allow access to extensive functionality, often including hundreds or 
thousands of commands [Hsi and Potts 2000; McGrenere et al. 2007], yet users 
typically know only a small subset. For example, a study of expert Unix users showed 
that they typically used ~45 of the ~570 commands available [Draper 1984]; and 
recent analyses of AutoCAD have shown that command vocabularies are typically 
~30-40 among the ~1000 available [Matejka et al. 2009; Li et al. 2011]. This implies 
that users’ performance is often impaired by not using appropriate functions, possibly 
due to a lack of awareness or to subconscious satisficing.  

The conceptual deterrents and barriers to vocabulary extension are similar to 
those described for intermodal improvement – users need to be aware of commands 
before using them, and they need to understand the magnitude of improvement that 
they will enable. Consequently, several of the methods described in the intermodal 
improvement section could also be used to increase the user’s vocabulary, such as 
calm notification or skillometers. Similarly, the methods used for explicit task 
instruction (described in Section 7), could also be used to extend the user’s 
vocabulary. In this section, we focus on other interface methods for extending 



 

vocabulary, particularly those that use ambient suggestions and recommendations, 
rather than explicit instruction.  

Researchers at Autodesk have conducted several studies aimed at improving 
users’ knowledge and use of helpful interface functions. Two interrelated themes of 
their research concern understanding the best interface mechanisms for presenting 
recommendations to users, and devising methods to generate high quality 
recommendations. Their key interface goals are that the assistive content should be 
dynamically updated to maintain contextually relevant assistance [Ekstrand et al. 
2011]; that it should be continually available to the user; and that it should be 
presented in an ambient manner that allows access at a glance, thus minimizing 
impediments to access [Matejka et al. 2011]. Figure 10 from Matejka, Grossman and 
Fitzmaurice [2013] shows their ‘Patina’ interface adaptation method, which uses 
colored heatmap overlays to emphasise command recommendations without 
impeding access to them. Related concepts of using stencils to direct the user’s 
attention to salient interface objects were also presented by Kelleher and Pausch 
[2005] (in online tutorials).  

In generating high quality recommendations, they focus on algorithms that 
produce recommendations that are both novel (rather than familiar) and useful 
[Matejka et al. 2009; Li et al. 2011]. They compared two forms of collaborative 
filtering algorithms: user-based algorithms, which generate recommendations based 
on the group of individuals that a particular user is most similar to, selecting those 
commands that are frequently used by the group of similar users; and item-based 
algorithms, which generate recommendations based on the similarity between the 
user’s active command and other commands selected by the community of users. 
Evaluation results of their ‘CommunityCommands’ system suggest that an item-
based collaborative filtering algorithm performs best, generating the highest number 
of useful recommendations as well as the fewest number of unuseful ones. While 
CommunityCommands uses one form of collaborative information to assist 
vocabulary extension, several other researchers have noted that other forms of social 
influence are also important. For example, Banovic et al. [2012] showed that social 
influence was important for encouraging tool palette customization; Peres et al. 
[2004] found that users were more likely to use keyboard shortcuts if they worked 
with others who did so; and Bateman et al. [2012] found that the queries issued to a 
search engine became more expert when the interface showed aggregate information 
about the user’s past searches together with examples from experts’ profiles. 

7. DOMAIN 4: TASK MAPPING AT THE INTERFACE 

Domains 1-3 (intramodal improvement, intermodal improvement, and vocabulary 
extension) stem from a structural decomposition of the user interface into the 
performance characteristics of methods and the various methods and functions 
supported by the user interface (Figure 1). Domain 4, in contrast, focuses on interface 
techniques that assist with task comprehension, strategy selection, and 
customization.  
  

 
Figure 10. Patina uses a coloured heatmap to recommend commands to users. Reprinted with 

permission of ACM ©, from [Matejka et al. 2013]. 



 

7.1. Task training: Manuals, Online Help and Tutorials 
A new user of a computer system must find ways to understand the system and the 
functions and methods that can be used to execute their tasks. In early HCI research, 
several studies observed the successes of exploratory learning in video games, 
leading to suggestions that designers of office systems should seek ways to 
intrinsically motivate users to explore the interface [Malone 1980; Carroll 1987; 
Shneiderman 1987]. However, subsequent studies have shown that exploratory 
learning for intrinsic interest is rare. Instead, users tend to focus on accomplishing 
real work tasks, and resort to tutorials, manuals, and trial-and-error as ‘just-in-time’ 
coping strategies [Rieman 1996]. Interfaces to online help systems have evolved 
substantially since Rieman’s study, but more recent studies indicate that online help 
is still predominantly used as material of last resort [Novick and Ward 2006]. 
However, this situation may evolve as systems improve at extracting the user’s task 
context (e.g., [Ekstrand et al. 2011]) and adopt ambient presentation to assure that 
help is continually ready to hand (e.g., [Matejka et al. 2011]). 

Like online help, there has been a recent surge of research on online tutorials, 
with contributions from Autodesk being particularly prominent. Four emerging 
directions are described in the following paragraphs: gamification, community input 
into tutorials, leveraging transfer effects, and distribution of practice.  
Gamification 
Deterding et al. [2011] define gamification as “the use of design elements which are 
characteristic for games in non-game contexts”. Typically, gamification is used to 
increase the user’s motivation to engage in an activity and to improve their 
performance at it, although other benefits such as increased collaboration and 
creative leadership may also occur [Reeves and Read 2009]. McGonigal [2011] 
describes four key characteristics of games that engender intrinsic motivation, 
reflecting those described in Section 2.8: (1) provide a goal to give the user a sense of 
purpose; (2) use rules that limit how the goal can be achieved; (3) provide feedback to 
show progression towards the goal; and (4) voluntary participation, which engenders 
acceptance of the rules and feedback.  

Researchers have contemplated or demonstrated gamification in a wide range of 
application domains, including education [Linehan et al. 2011], in-car aids [Diewald 
et al. 2013], learning software applications [Dong et al. 2012; Li et al. 2012], software 
calibration [Flatla et al. 2011] and business practice [Reeves and Read 2009]. As yet, 
there have been relatively few formal studies of gamification’s success. Two 
exceptions are Flatla et al. [2011] and Li et al. [2012]. Flatla et al. proposed using 
gamification to encourage users to undergo software calibration procedures that are 
sometimes necessary to optimize software to specific user characteristics, and their 
lab studies showed that users found gamified calibration procedures to be 
significantly more enjoyable, without compromising the calibration outcomes. Li et 
al.’s [2012] ‘GamiCAD’ tutorial system was designed to provide an engaging 
introduction to high functionality AutoCAD software. GamiCAD incorporated various 
gamified components, including a ‘mission console’ for navigating the game, a 
scoreboard, speed bonuses, step-by-step instructions, and various task-specific mini-
games. Formal evaluation of GamiCAD in comparison with a non-gamified tutorial 
showed that participants completed tasks faster and more accurately when using 
GamiCAD, and that they preferred using it to a traditional tutorial.  

Gamification is an emerging area of research, and we anticipate future results 
from field-testing studies.   
Community input into tutorials 
Lafreniere et al., [2013] describe and evaluate a tutorial system called ‘FollowUs’, 
which aims to integrate online tutorials into the associated application. They argue 



 

that the lack of integration creates several limitations in tutorial material, 
particularly the inability for individuals and communities to update and improve 
tutorial content. FollowUs uses an ‘application-in-tutorial architecture’, where the 
application lies within the tutorial system, allowing the tutorial to capture the user’s 
workflow while following the tutorial, and providing easy mechanisms to record 
alternative or improved methods that might augment the original tutorial.  

A formative evaluation compared user performance in a series of tasks when 
using FollowUs and when using a condition that differed only in the exclusion of 
community-sourced tutorials. Task completion rates were higher and frustration 
lower when using FollowUs.  

In general, recent work on crowd sourcing and improvements in recommender 
algorithms are creating interesting opportunities for bringing relevant tutorial 
material to the user’s attention. However, Lafreniere et al. note that there are 
substantial challenges in designing interfaces that present this content to users in a 
manner that is helpful and timely, without being distracting.  
Systems that exploit transfer effects between software versions 
Ramesh, Hsu, Agrawala and Hartmann [2011] examined interface methods to help 
users transfer existing knowledge of one software system or version to another 
related system/version. Their ShowMeHow system allowed users to inspect the 
translation of commands between applications within the same domain, 
incorporating two main capabilities: the ability to click on a façade representing the 
known software to reveal related components in the new system; and text searches 
for command names in either application, based on manually constructed data 
structures describing terms used in both the original and new applications. An initial 
user study showed that users could locate unfamiliar commands in an interface much 
faster when using ShowMeHow, and a second study demonstrated that users could 
repurpose tutorials written for one application to learn another.  
Using temporal distribution of practice in training systems 
Finally, HCI researchers have used psychology findings on the effects of temporal 
distribution of practice (Section 2.6) to assist with learning motor aspects of interface 
performance. For example, studies by Zhai et al. [2002; Zhai and Kristensson 2003] 
examined users learning new keyboard layouts, with results suggesting effective 
memorization when users were trained using expanding rehearsal intervals.  

7.2. Support for advanced task strategies 
Bhavnani and John [2000] observe that knowledge of tasks and tools is insufficient 
for users to become efficient with user interfaces, and that users additionally need to 
attain an intermediate ‘strategic’ layer of knowledge. This strategic knowledge 
facilitates the efficient mapping from user tasks to system tools. Delaney et al.’s 
[1998] investigation of task performance also shows that overall task improvement is 
best analyzed with consideration to the user’s strategy.  

Bhavnani and John’s analysis of strategic interaction highlights efficient 
strategies that generalize across a variety of application domains. For example, they 
contrast the novice strategy of ‘Sequence by Operation’ (exemplified by the window 
drawing task shown in Figure 11, top) with the more expert ‘Detail, Aggregate, 
Manipulate’ strategy (shown in Figure 11, bottom); other strategic examples are 
‘Aggregate-Modify (all)-Modify (exception)’ and ‘Locate-Aggregate-Manipulate-
Modify’. Bhavnani and John provide strong examples of the expertise benefits 
enabled by supporting these strategies in word processors (e.g., through the use of 
formatting styles) and Spreadsheets (e.g., formulae that work across multiple cells).  



 

 
Figure 11. Two strategies for drawing three windows. Novice’s “sequence by operation” strategy (top); more 

efficient “detail-aggregate-manipulate” strategy (bottom). Adapted with permission of ACM, from 
[Bhavnani and John 1996]. 

More recently, researchers have examined the use of automated capture, analysis 
and review of workflows [Grossman et al. 2010; Kong et al. 2012], to assist users in 
reflecting on their interaction strategies. For example, the Chronicle system 
[Grossman et al. 2010] provides a zoomable timeline that allows the user to visualize 
and examine workflows for completing image editing tasks, with formative 
evaluations suggesting that they are useful tools. Autodesk now releases Chronicle as 
a technology preview, so results of field-testing may appear in future research.  

7.3. Task disruption and locus of control 
Feedback relevance and likelihood of disrupting the user are important 
considerations for any interface. Research by Bødker [1995] suggests that there are 
two types of task interruption: breakdowns and focus-shifts. Breakdowns result in 
severe disruption, forcing the user’s attention to a new activity. Focus-shifts cause 
only a brief attention switch, and cause less disruption. Interfaces such as Microsoft’s 
Clippy have been shown to be quickly abandoned after a few untimely interruptions 
[Shroyer 2000]; but conversely, less obtrusive feedback, such as Blur’s ‘calm 
notification’ [Scarr et al. 2011], may go unnoticed, resulting in a missed opportunity 
for improvement.  

The related concept of locus of control concerns the nature of the stimulus for 
presenting information to the user. Information may be pushed by the system 
without any apparent triggering action from the user – for example, a ‘tip of the day’ 
message [Fischer 2001]. Alternatively, the user may explicitly pull the information – 
for example, intentionally dwelling on a button to view a hotkey. Often, however, 
interface methods are more subtle interaction than explicit push or pull modalities. 
For example, a type-ahead feature in a web browser’s URL field might offer 
‘wikipedia.org’ after the user types ‘w’, with the recommendation accepted by 
pressing <enter>. Once the user is familiar with this interaction, they might 
habitually use ‘w <enter>’ as a shortcut, effectively ‘pulling’ the feature.  

The success of the designer’s approach to locus of control is influenced by many 
factors, including the probability that system feedback accurately reflects the user’s 
intention, the ease with which causal relationships between action and effect can be 
learned, their stability and predictability, the temporal connection between action 
and response, the user’s degree of focus on the work environment, and the potential 
costs of interruption. Many of these design factors are discussed in the context of 
autonomous services and intelligent agents under the topic of ‘mixed initiative user 
interfaces’ [Horvitz 1999].  
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7.4 User interface customisation and adaptation 
User interface customization facilities are an extreme form of user-centered locus of 
control, where the user changes the interface configuration to better match their 
needs. Adaptive systems lie at the opposite extreme of the locus of control spectrum, 
with the interface undergoing automatic reconfiguration based on some prediction of 
improved fit with user needs. Both interface customization and adaptive interfaces 
are substantial research areas that are beyond the scope of this review. However, 
some of the primary limitations of customization and adaptation are similar to those 
discussed above. In particular, Simon’s ‘satisficing’ (Section 2.10) and Carroll’s 
‘paradox of the active user’ (Section 1) deter users from customizing their interfaces; 
and automatic adaptations are likely to cause a temporary performance dip (Section 
5) due to the need for the user to identify and comprehend the interface adaptation. 
Those interested in interface customization and adaptable user interfaces are 
directed to Bunt et al. [2007] and Gajos et al. [2006]. 
8. SUMMARY OF RESULTS FROM THE FOUR DOMAINS 

The previous sections reviewed four domains of research that explore ways of helping 
users move from novice to expert performance. The four domains – intramodal 
improvement, intermodal improvement, vocabulary extension, and task mapping – 
characterize different opportunities for improving performance, and are derived from 
a conceptual view of interface interaction as consisting of the user’s performance 
characteristics with a set of alternative methods for activating a set of functions that 
are required to complete a task (see Figure 1).  

Intramodal improvement concerns the rapidity and magnitude of performance 
improvement with one particular interactive method. Key results from this domain 
include: 

• Making an interface method visually salient can improve initial performance. 
However, long-term performance with advanced methods (e.g., shortcuts) will 
be impaired if they are removed from the display to raise the prominence of 
novice methods.  

• Memory for interface methods can be improved by inducing greater mental 
effort about them (prompting deeper encodings, Section 2.4). Doing so may 
give long-term performance benefits, but at the cost of slower initial 
performance (also with risks of user frustration). This effect has important 
implications for the use of guidance in assisting novice users complete their 
tasks, as too much guidance may impair memory development.  

• The principle of rehearsal states that making physical actions in novice 
actions as similar as possible to the form of the expert’s actions will (i.e., 
novices rehearse expert behavior) will facilitate skill development.  

• Flat command hierarchies with predictable methods for selection (e.g., spatial 
or syntactic consistency) reduce the number of actions required to select 
commands, facilitating high performance ceilings. 

 
Intermodal improvement concerns ways to assist users in switching to faster 

methods for accessing a particular function. Key observations from this domain 
include: 

• Switching to a new interface method is likely to cause a temporary dip in 
performance. The existence of this dip may deter users from changing 
methods.  

• Interfaces that force users to encounter or use faster methods, or punish 
them for not using faster methods, can succeed in the lab but may not be 
acceptable in practice.  



 

• Subtler presentation schemes (such as ‘calm notification’) that show faster 
methods without demanding attention may be more acceptable to users. 

• Encouraging users to reflect about their performance may assist in reducing 
the tendency to persistently maintain suboptimal methods. 

 
Vocabulary extension considers ways to help users broaden their knowledge and 

their use of the range of functions available in an interface. Key results from this 
domain include: 

• Most users only know a small subset of the many commands that are 
available in an interface. 

• The conceptual deterrents and barriers to vocabulary extension are similar to 
those described for intermodal improvement, and many of the same 
strategies and techniques from that domain can also be used here. 

• Two important parts of vocabulary extension are the generation of good 
recommendations, and the presentation of those recommendations in the 
interface. 

• Presentation should be dynamically updated to the user’s context, should be 
continuously available to the user, and should be presented in an ambient 
manner that allows quick access without interrupting task execution. 

• Generation mechanisms should produce recommendations that are both new 
to the user, and useful given their current context and task. 
 

Task mapping addresses higher-level issues of the strategies that users adopt 
when seeking to complete their tasks with a user interface. Key findings from this 
domain include: 

• Several novel training approaches have been investigated – for example, 
gamification can increase engagement and performance; involving the user 
community can increase the coverage and accuracy of tutorials; and explicitly 
supporting knowledge transfer can aid users as they switch between systems.  

• Knowledge of tasks and tools may not be enough for a user to achieve high 
performance; supporting users in gaining strategy knowledge is also 
important. 

• The presentation of training information should fit within the user’s current 
context and should avoid interruptions that break the flow of work.  

9. DISCUSSION 

This survey focused on interface techniques that are designed to assist users in 
gaining UI expertise. Underlying human factors that may influence the success of 
these techniques were briefly reviewed in Section 2. Four domains of interface 
performance improvement – intramodal, intermodal, vocabulary extension and task 
mapping – were then introduced in Section 3, and techniques within each of these 
domains were reviewed through Sections 4-7. Potential avenues for further work 
were introduced throughout the paper, with particularly promising research 
opportunities highlighted in the following subsections.    

9.1 From lab studies to field studies  
Nearly all of the interfaces described in Sections 4-7 were evaluated in controlled 
laboratory settings, yet several papers observe that lab studies produce more 
favorable findings than those conducted in the field (e.g., [Duh et al. 2006; Fitchett et 
al. 2014]). As results from human factors research show that skill acquisition can be 
influenced by subtle variations, it is highly desirable that the laboratory findings are 
validated in the field. However, developing systems that can be used in field studies 
of real work is extremely difficult. 



 

The software that people use for everyday office work is often proprietary, and the 
lack of access to source code constrains researchers’ ability to modify system behavior 
and monitor its use. Ideally researchers will have a relationship with the software 
provider, allowing direct access to source code – for example, Autodesk’s ‘Chronicle’ 
research system has now been released for actual use (Section 7.2).  

When source code is unavailable there are often application programming 
interfaces (APIs) that allow limited control of software systems running on a 
particular platform. Typically, these APIs form part of the accessibility framework 
that assists development of software for users with special needs. Several researchers 
describe tools that assist with monitoring and logging interaction with unaltered 
software systems (e.g., [Kukreja et al. 2007; Alexander et al. 2008; Morgan et al. 
2013]), and these methods can also be extended to enable some control over 
proprietary systems, as demonstrated by the Blur and Skillometer systems (Section 
5.1), which ran on Microsoft Windows and Apple Mac OSX. However, these 
techniques have several limitations, including access to only a subset of controls, 
reduced system responsiveness, and increased frequency of software crashes, which 
make them impractical for studies of real use.  

Open source systems permit modifications enabling longitudinal analysis of 
expert use (e.g., Murphy et al.’s [2006] analysis of Java developers using the Eclipse 
IDE), but for productivity applications, the user base is often smaller than major 
commercial systems. 

9.2 Understanding the costs and benefits of intermodal methods 
Methods for intermodal improvement, such as keyboard accelerators, are already 
commonly used in state-of-the-art interfaces. While researchers have examined 
methods to minimize the intermodal performance dip (Figure 7), there are 
opportunities for more broadly examining the costs associated with providing more 
than one method for activating a function. For example, Olson and Nilsen [1988] 
showed that users who knew two methods for entering formulae into a spreadsheet 
were significantly slower than users who knew only one, and they attributed the time 
cost to the additional cognition required to plan and decide between methods. 
Similarly, Quinn et al. [2013] recently demonstrated that the decision costs 
associated with choosing between alternative cursor pointing paths negated the 
benefits of a shortcut pointing method that allowed users to wrap the cursor around 
display edges.  

9.3 Rehearsal and guidance interfaces 
As described in Section 4.2, Kurtenbach’s [1993] marking menus were designed so 
that the novice’s motor actions were a physical rehearsal of those used when expert. 
Recently, several researchers have generalized the principle of rehearsal in other 
forms of interaction, including dragged finger gestures [Bau and Mackay 2008] and 
hotkeys [Malacria et al. 2013]. It seems likely that the principles of rehearsal can be 
deployed in other forms of interaction to facilitate expertise development.  

For example, FastTap [Gutwin et al. 2014] is a recently proposed interactive 
technique for improving command selections on tablets – when novice, the user’s 
selections are visually guided by the display of a spatially stable grid of menu items, 
but once expert multiple selections can be made by chorded taps on the known 
locations without the need to wait for visual guidance.  

As well as devising new interface techniques based on the principle of rehearsal, 
there are extensive research opportunities in better understanding how interfaces 
can best support users through different forms of guidance. Anderson and Bischof’s 
[2013] study (Section 4.2) provides a recent example, demonstrating that progressive 
removal of guidance has learning advantages over its continual availability.  



 

9.4 Deliberate practice, its timing, content and acceptability 
Section 2.3 reviewed Ericsson’s research, emphasizing the role of deliberate practice 
in the development of elite levels of skill. Section 2.4 then reviewed the connection 
between the depth of mental engagement in activities and their resultant 
memorization.  Section 2.6 also reviewed how the distribution of practice sessions 
influences learning.  

There are relatively few examples of user interfaces that explicitly draw on these 
factors to promote skill development with the interface; consequently, there are many 
opportunities for further work. These include the following: work on algorithms for 
identifying potentially beneficial methods, functions, or strategies that the user 
appears to be unaware of, as well as determining appropriate times and methods for 
their presentation – for example, Li et al.’s [2011] collaborative filtering algorithms, 
Section 6); user interface techniques for presenting engaging practice sessions to 
users – for example, gamification (Section 7.1); and research on how to optimize the 
level of effort required across various tasks and skill levels (e.g., an adaptive form of 
the frost brushing interface described in Section 4.2, Figure 4).  

9.5 Speed/accuracy/quality tradeoffs across expertise 
Most of this review has focused on task performance time, but accuracy and the cost 
of errors are often critical to successful interaction, and they can vary substantially 
between interaction techniques. For example, a missed pointer-based click on 
Microsoft Word’s ‘bold’ icon is likely to be quickly identified by the absence of icon 
highlighting, and correcting the error will be fast because the cursor is already near 
the target. In contrast, a user who mistakenly believes the hotkey for ‘bold’ is <Ctrl-
L> will need to infer their error from the change of display state, and then undo the 
error, home their hands to the mouse, point to the ‘bold’ icon, dwell to view the 
tooltip, memorize the hotkey, home their hands back to the keyboard, and activate 
the hotkey. Research is needed to better understand the role of accuracy and error 
correction in expertise development. Related research questions arise when 
considering the quality of the work product rather than outright task time (e.g., the 
quality of a design for a designer working with a CAD package).   

9.6 Interface methods for notification, and their underlying algorithms 
Commercial and research user interfaces have made substantial improvements to 
interaction through increased use of ‘mixed initiative’ interactions [Bunt et al. 2007], 
in which the system offers non-intrusive notifications that aim to assist the task 
during execution (such as URL type-ahead, Section 4.2). Four directions for 
subsequent research on mixed initiative interactions are: 1. examining how to use 
new sources of information for generating recommendations, such as crowd-sourcing 
help recommendations [Chilana et al. 2013]; 2. improved algorithms for generating 
recommendations, such as AccessRank [Fitchett and Cockburn 2012]; 3. clarifying 
the relationship between post-action feedback and during-action feedforward (e.g, 
Vermeulen, Luyten, Hoven and Coninx [2013]); and 4. new mixed initiative 
interactions (e.g., Octopocus, Section 4.2).  

9.7 Generalisability of previous results 
Human factors literature, summarized in Section 2, shows that many factors 
influence skill acquisition. Interaction with computing systems introduces new and 
important factors that have not been extensively studied. It is therefore important 
that research findings are validated in varied settings, with diverse user groups and 
over prolonged periods. Factors that might influence results include different input 
and output configurations, and how these configurations interact with task factors. 
For example, it is common for users in high workload situations (such as air traffic 



 

control, stock trading, or emergency dispatch) to use multiple displays to monitor 
concurrent activities. While there has been research on how highly trained experts 
coordinate their activities in such settings [Hornof et al. 2010] there is scope for 
research into skill acquisition in such settings. Other factors that might be examined 
include user factors (culture, stress, age, etc.), task factors (e.g., high cognitive 
demand versus low, workload, task pace), input device (e.g., touchscreen, keyboard, 
mouse, trackpad), and output configuration (e.g., the size and location of data on 
single or multiple displays, and the effect of output modalities such as sound and 
haptic feedback). 
10. CONCLUSIONS 

Graphical user interfaces have become the primary medium through which office 
work is conducted. A primary factor contributing to their success is the ease with 
which they can be learned – newcomers can quickly attain sufficient competence to 
adequately complete their work. While ease of learning is highly desirable, it is 
common for office workers to continue using substantially similar interfaces for 
months, years, and decades, so optimizing designs for initial learnability rather than 
long-term efficiency can be counterproductive. Current interface guidelines attempt 
to account for novice learning and expertise by advocating for shortcut facilities, but 
this strategy is known to fail as few users make the transition to expert methods – 
instead, users maintain the adequate but inefficient strategies they learned first.  

There has been a recent surge of research interest in resolving these problems of 
graphical user interfaces tending to trap users in a beginner mode of operation. 
While some of these research projects are founded on established findings from the 
human factors literature, others are not. This paper provided a review of key findings 
from the human factors literature that are relevant to supporting transitions from 
novice to expert performance with user interfaces, as well as summarizing the state 
of the art in interface research supporting the transition. We provided directions for 
further work and look forward to a new generation of user interfaces that facilitate 
expertise as well as ease of use.   
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