Skip to Main content Skip to Navigation
Conference papers

What Is Beautiful Continues to Be Good

Abstract : Image recognition algorithms that automatically tag or moderate content are crucial in many applications but are increasingly opaque. Given transparency concerns, we focus on understanding how algorithms tag people images and their inferences on attractiveness. Theoretically, attractiveness has an evolutionary basis, guiding mating behaviors, although it also drives social behaviors. We test image-tagging APIs as to whether they encode biases surrounding attractiveness. We use the Chicago Face Database, containing images of diverse individuals, along with subjective norming data and objective facial measurements. The algorithms encode biases surrounding attractiveness, perpetuating the stereotype that “what is beautiful is good.” Furthermore, women are often misinterpreted as men. We discuss the algorithms’ reductionist nature, and their potential to infringe on users’ autonomy and well-being, as well as the ethical and legal considerations for developers. Future services should monitor algorithms’ behaviors given their prevalence in the information ecosystem and influence on media.
Document type :
Conference papers
Complete list of metadata

Cited literature [62 references]  Display  Hide  Download

https://hal.inria.fr/hal-02877678
Contributor : Hal Ifip <>
Submitted on : Monday, June 22, 2020 - 3:52:35 PM
Last modification on : Monday, June 22, 2020 - 5:02:21 PM

File

 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : 2022-01-01

Please log in to resquest access to the document

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

Maria Matsangidou, Jahna Otterbacher. What Is Beautiful Continues to Be Good. 17th IFIP Conference on Human-Computer Interaction (INTERACT), Sep 2019, Paphos, Cyprus. pp.243-264, ⟨10.1007/978-3-030-29390-1_14⟩. ⟨hal-02877678⟩

Share

Metrics

Record views

30