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Abstract When defining virtual reality applications

with complex procedures, such as medical operations

or mechanical assembly or maintenance procedures, the

complexity and the variability of the procedures makes

the definition of the scenario difficult and time-consuming.

Indeed, the variability complicates the definition of the

scenario by the experts, and its combinatories demands

a comprehension effort for the developer, which is of-

ten out of reach. Additionally, the experts have a hard

time explaining the procedures with a sufficient level of

details, as they usually forget to mention some actions

that are, in fact, important for the application.

To ease the creation of scenario, we propose a com-

plete methodology, based on (1) an iterative process

composed of: (2) the recording of actions in virtual re-

ality to create sequences of actions, and (3) the use of

mathematical tools that can generate a complete sce-

nario from a few of those sequences, with (4) graphi-

cal visualization of the scenarios and complexity indi-

cators. This process helps the expert to determine the

sequences that must be recorded to obtain a scenario

with the required variability.

1 Introduction

To translate complex procedures into scenarios for vir-

tual reality (VR) applications, the variability of those

procedures complicates the task for the developers. For

instance, procedures with more than 1000 steps, and

with 10 or more acceptable ways of completing the

task are extremely difficult to translate into scenarios.

Indeed, complex and variable procedures are difficult

to formalize for the expert, because their explanations

contain implicit details that must, in fact, be explic-

itly described for the developer. They are also difficult

for the developer to create, because they take time to

understand, and to write.

We propose a novel method for the creation of VR

scenarios that aims to facilitate the expression of com-

plex procedures. This methodology is based on an (1)

incremental process including: (2) the recording in VR

of an expert, as well as the use of (3) the use of mathe-

matical tools to merge and generalize the observations

to synthesize a complete scenario, capturing the com-

plexity of the procedures. This complexity is also repre-

sented with (4) a graphic visualization and indicators.

In this paper, after the related works in Section 2,

we describe the solution in Section 3, through the ex-

ample of an automotive wheel replacement procedure,

in which the order of the nuts to tighten is important.
Finally, we illustrate the method with a use case de-

veloped in collaboration with medical staff for the for-

mation of nurses, in Section 4. We also conducted a

user study to evaluate our solution, which we present

in Section 5.

2 Related works

The problem of creating scenarios for VR applications

has been tackled multiple times with different kinds of

solutions.

2.1 Scenario models in VR

Several works have been proposed to integrate scenar-

ios in virtual environments. Since we focus on scenarios

engines that can be used by people that are neophytes

regarding coding, we here focus on scenarios engines
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Fig. 1: Our method lets the expert iterate to create the scenario through several recordings

that integrate a visual representation of the scenarios.

Although the abstraction brought by this visual rep-

resentation might diminish the precision compared to

coding [14], it helps the experts grasp the sequencing of

the interactions, without having to look at lines of code

of abstract concepts to understand it. There are several

scenario models with visual representations. For each

one of those models, the representation differs, accord-

ing to the kind of formalism chosen by its authors, and

the target use for the model. As an example, HAVE [9]

is designed to be easily usable by developers. As such,

its representation is based on UML notations, and more

specifically on activity diagrams, which make the sce-

narios understandable as is by a developer. However,

the experts are not always familiar with UML nota-

tions, and may need a phase of learning to be able

to use those scenarios. Another well-known represen-

tation is used in LORA++ [13], with Grafcet-like sce-

narios. Although those scenarios can be legible for both
the developer and the expert, the link between the sce-

nario and the virtual environment is difficult to grasp

with this representation. Because of this, it is difficult

to fine-tune the scenario once a first version of it is

obtained. To improve both the legibility of the repre-

sentation and the connection between the scenario and

the environment, some models are based on more ab-

stract concepts, which they specialize to make them us-

able with VR. One of those models is HPTS++ [17]. In

this model, the scenario is represented as a finite state

machine, with the use of scripts complementing this

scenario to connect it to the virtual environment [11].

Another use of finite state machines is proposed with

Story Nets [6], which integrates more closely the code,

although the state machine representation in itself is

not enough to represent all the concepts needed for the

scenarization of virtual environments: those additional

concepts are represented in the code. A possibility to

represent more visually those additional concepts is to

derive the original graph representation to make those

concepts clearer. In IVE [6] for instance, two concepts,

the actor and the preconditions, are added to the visual

representation to make it more expressive. This is done

by replacing the notion of places that can be found in

Petri nets with something that can manage both the

actor and the preconditions. Another manner consists

in extending the original concept. This solution can be

found in ABL [21] which extends finite state machines

for the definition of virtual agents behaviours. For a

more general use of scenarios, #SEVEN [10] extends

Petri nets to define the sequencing of the interactions

in the environment.

2.2 Process mining

An interesting method for the creation of scenarios is

Business Process Modeling (BPM), as its goal is to gen-

erate sequencing models, that can be seen as scenarios,

through a set of observations. The BPMN language1 is

an industry-standard domain specific language for mod-

eling business processes, that can be used to express and

analyze the workflow of an industrial or administrative

process, in enterprise information systems, for instance.

The semantics of the language is quite reminiscent of

Petri nets and the mapping of BPMN models to Petri

nets is a simple syntactic transformation [12]. Although

process mining allows to define scenarios from observa-

tions, the goal of process mining is to obtain compact

scenarios from large datasets. Creating those datasets

would require an important amount of time for the ex-

pert, which makes this solution not applicable in our

context.

Scenarios can also be generated through Petri Net

synthesis methods [4]. The synthesis method is a pro-

cess mining techniques [1], with the striking difference

1 https://www.omg.org/spec/BPMN/2.0/About-BPMN/



Unveiling the implicit knowledge, one scenario at a time 3

that scenario synthesis aims at enabling a variety of

possible behavior from few recordings, while process

mining methods follow the opposite aim of synthesizing

concise models from large datasets. A particular class of

nets, called Test and Flip (TF) [7], are used to model

scenarios. Using only a few recordings, the idea is to

generate a TF net representing the recordings given as

input. TF nets have been introduced as a mild exten-

sion of elementary nets systems (ENS) [3] and Flip-Flop

nets (FF) [23]. More details about test and flip synthe-

sis is given in Section 3.4.

2.3 Recording in VR

While all those models can help the expert understand

the scenario, it is still difficult to use them to author

the said scenarios. Indeed, the expert still needs to learn

the scenario model to be able to create scenarios. Usu-

ally, this learning includes some part of computer sci-

ence learning, which makes the models hardly accessi-

ble. An accessible and intuitive way to author content,

including scenarios, is the concept of creating by do-

ing. This concept is based on the transformation of a

demonstration into the content sought by the author.

An interesting example of this can be found in the work

of Angros et al. [2], where the user is recorded to gen-

erate a first version of the scenario. This first version

is then semi-automatically generalized through a sim-

plification process, which uses the objectives expressed

by the user to generate a possible scenario respecting

the constraints inherent to the objective. Although this

method is useful for the definition of short scenarios,

longer scenarios can only be defined by recording each

atomic procedure separately and connecting them after-

wards, which makes it more troublesome for the expert.

The recording of a user, during a performance in VR,

has been reused in different ways to provide a form of

replay of the actions, whether it is a movie replay or

a simple trace of the performance. An obvious use of

the replay is to capture the user’s movements and to

replay them as a movie. This has an interesting use for

the learning of dance moves, as presented in [8]. While

this kind of replay can be useful for this use case, it is

done by recording the movement as a continuous data,

without any segmentation. A similar effort can be found

in the work of Bailenson et al. [5], a solution to learn

martial arts in which the users can go back in time to vi-

sualize themselves. A major drawback of this approach

is that the user needs to wear clothes designed for mo-

tion capture. Because of this, the methodology is hardly

exploitable for a generic tool. Two works that use the

recording in an interesting way are Mystery at the Mu-

seum (M@M ) [15] and Environmental Detectives [16].

In those works, the actions performed by a user can

be replayed as a means to help the players remember

what they did. Unfortunately, their approach lacks de-

tails, and the replay feature seems to be limited, and

presented more as a textual log than a scenario that

could be re-injected in the environment. Another form

for the reused recording can be an animated movie, as

proposed in Heroes, Villains and Magicians [22]. In this

work, a story is influenced by the choices made by the

users. The choices are logged and then reused to gener-

ate a movie, where the choices of the user are respected.

Although this reuse of the recording is quite advanced,

the movie is still a passive medium, and cannot really

be re-injected in the environment to create a scenario.

2.4 Analysis

To conclude on the related works, we can notice that,

although the question of simplifying the creation of sce-

narios for VR is not new, authoring a scenario is still

hardly accessible for an expert. The main improvements

in the creation of scenarios have been done by propos-

ing scenario models that create a layer of abstraction.

While beneficial, this layer is still not enough for the ex-

pert to become the author of the content. To facilitate

the definition of those scenarios, process mining tech-

niques can be used, but a synthesis oriented method is

more efficient to manage the variability of the scenario.

Indeed, synthesis methods are better fit to generate sce-

narios with few observations. Moreover, while planifica-

tion methods can also help, they need the expert to be

able to formalize the problem, which is often not pos-

sible without help, and thus inadequate for our needs,
especially for implicit knowledge which is difficult to ex-

press. In parallel, some works focused on an approach

of creation through actions to create content through

the recording of a user. Unfortunately, none of those

works generates a scenario that could be re-injected in

a VR application.

3 Method

To ease the creation of complex scenarios, we propose

a novel method, combining the automatic transforma-

tion of the user’s actions into a scenario, and the use of

a mathematical tool to help the expert generalize the

obtained result. The method is separated into 4 steps,

illustrated in Figure 1: the recording of an expert’s ac-

tions to create a sequence, the merging and generaliza-

tion of the recorded sequences, the integration of the

obtained scenario in the environment, and the iteration

over the previous steps. First, the expert’s actions are
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Fig. 2: The wheel and tools for the ”changing wheel”

scenario

Fig. 3: The pattern to follow (it can be symmetrically

reversed, and started from any nut)

recorded to create a sequence, which can be used as

input for the generation. This part is presented in Sec-

tion 3.2. During this recording, some feedback is given

to the expert as a mean to monitor the progression,

as described in Section 3.3. Then, the mathematical

models presented in Section 3.4 are used to merge and

generalize the sequences, by inferring rules to generate

sequences that have not been observed before. Once

the new scenario has been generated, it is integrated

in the VR application, as presented in Section 3.5. To

illustrate the approach, we present how it can be used

with the very simple example of changing a wheel. This

example is presented in Section 3.1.

3.1 Changing a wheel

When changing a wheel, it is important to respect a

cross pattern when tightening the four screws, such as

the one in Figure 3. Indeed, doing otherwise puts the

wheel at risk of bending, because too much pressure

would be put on one side of the wheel. Out of 24 pos-

sibilities (4 nuts, hence 4! = 24 orders) for the order

of the nuts, that makes only 8 that are in fact accept-

Fig. 4: The expert manipulating the objects, with the

corresponding view on the left

able: in the other possibilities the cross pattern is not

respected. While the pattern is known by the experts, it

is difficult for them to write the scenario directly with

a scenario model. Although constraining the pattern

with planification would be possible, defining the goals

is a bit complicated: the final goal is to have all four

nuts tightened, but there is also an intermediary goal

in which two opposite nuts must be tightened. Because

of this, it is too complicated, even with this small ex-

ample, for the expert to define either the constraints for

a planification tool or a scenario with a scenario model.

The user starts with a new wheel, the car on which

the old wheel has been removed, a set of nuts to hold the

wheel, as in Figure 2. To obtain the complete scenario,

the expert needs to perform multiple variations of the

procedure directly in the virtual environment, with as

much variability as possible, so that the generation al-

gorithm gets enough input data. To help the expert in

finding which sequences must be performed to complete

as much as possible the scenario, the highlights show

the nuts that were tightened in the previous runs. In

addition to this, indicators such as the number of new

observed and generated variations are displayed, to in-

dicate how efficient the generation was, along with the

visualization of the scenario that was obtained. Thanks

to this, the expert is able to vary the sequences and give

more data to the generation algorithm. This provides

an important time gain for the creation of the scenario,

as well as the certainty that the scenario obtained this

way is exempt of any mistake that would occur when

writing it by hand.

3.2 Recording

The first step of the scenario authoring is the recording

of an expert’s actions, directly in the virtual environ-

ment, as in Figure 4. The goal of the recording is to

translate the actions of the user into a sequence.

In this work, we represent the scenarios, as well as

the sequences, with Petri nets, in which the tokens in
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Fig. 5: The translation of the actions into a sequence

the places represent the state of the virtual world, and

the transitions are triggered by the actions performed

by a user in the environment. The choice of Petri nets

is motivated by the compatibility with the generation

algorithm presented in Section 3.4.

The recording is done by detecting the actions done

in the virtual environment, and adding them to a se-

quence. At the beginning of the recording, the scenario

is only a single place. Each time the user executes an

action in the virtual environment, it is added to the

scenario under the form of a new transition and a new

place.

By doing this, the actions performed by the expert

are translated into a sequence containing all those ac-

tions, chained in order. This sequence has the apprecia-

ble property that it can be used as input for the genera-

tion, since the translation of the actions into transitions

is managed by the scenario model itself. This method

of translating each action to generate a linear sequence

is based on the approach presented in [19].

Although the translation of atomic actions is eas-

ier, it is possible to capture continuous actions, as long

as the conditions for the beginning and the end – and,

if needed, intermediary states – can be defined. Fur-

thermore, we base the interactions used in the scenario

on the object relation concept [20], which allows an effi-

cient connection with our scenario model, as well as the

preparation of the interactions prior to the recording.

Indeed, the object relation paradigm is strongly based

on the definition of abilities on the objects, and possi-

ble interactions in the environment, which is compatible

with our approach. Another advantage of the object re-

lation paradigm is that the interactions can be defined

by the experts themsleves, through visual programming

approaches such as the one in [18].

For the example of the cross mounting of a spare

wheel, the expert will perform four actions during the

recording, corresponding to the four nuts to tighten. As

shown in Figure 5, this will automatically be translated

in a sequence, with the correct formalism.

Another advantage of this method is that the ex-

pert does not need to formalize their knowledge to be

able to describe a scenario. Indeed, the recording in it-

self will make this knowledge explicit, by forcing the

expert to perform the different action. Thanks to this,

each action that would normally be ignored, because it

is considered as obvious for the expert or because the

formalism would not represent it, is in fact recorded

and taken into account in the final scenario.

Then, the generation tool is called with all the se-

quences recorded. The scenario obtained through the

generation is then re-injected in the environment, to let

the expert see how much of the variability is managed

by the current version of the scenario. This re-injection

is accompanied by a reset of the environment to the

state it was in before the recording of the sequence.

3.3 Feedback

To help the expert evaluate the completeness of the

scenario, two separate types of feedback are provided:

an in-game scenario interface, and highlights derived

from the recorded sequences.

3.3.1 Scenario visualization

The first feedback is done by having a scenario visual-

ization interface directly in the virtual environment, as

shown in Figure 6. The interface follows the user in the

virtual environment, and can be anchored at a given

point in space for more convenience. This visualization

offers three main features: the visualization of the se-

quence being recorded and the generated scenarios, the

controls for the generation process, and the creation of

sub-scenarios, to ease the segmentation of the whole

final scenario.

The in-game scenario visualization is used to show

the creation of the scenario in real time to the user, and

to provide controls for the recording of the sequences,

and the generation of new variations. This scenario dis-

played in the virtual environment helps the expert to

see how furnished the graph is, and therefore to get a

first idea of its state of completion.

To let the expert to control the recording of the

scenario, the visualization features interactive controls.

Through this interface, the expert is also able to start

and stop the recording of a sequence. At any moment

during the recording, the expert can start what is called
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Fig. 6: The main view of the scenario visualization in

the virtual environment

Fig. 7: The graphic visualization with the metrics asso-

ciated

a ”generation task”. A generation task consists in record-

ing several sequences to generate a scenario that takes

into account the sequences, and generalizes them. To let

the expert know how efficient the generation was, the

total number of variations, as well as the number of new

variations is displayed next to the resulting scenario, as

shown in Figure 7.

When the scenario presents the need for variability,

the expert can start by recording a simple scenario, and

start a sub-scenario (or task), which will make use of the

generation for more variability. This variability consists

of having different ways to attain the same objective,

with the same starting point. As such, it is extremely

useful for procedures where some tasks must be in a

certain order, but others do not for instance, and can be

performed in any order, or even interleaved. Once that

sub-scenario is completely recorded, the expert can go

back to the enclosing scenario to continue the recording.

Fig. 8: The currently known paths are displayed to the

user, along with the highlighted objects

3.3.2 Highlight of the variations

Another way to help the expert detect what paths are

lacking in the synthesized scenario, is to highlight the

actions already taken into account. Those highlights,

placed on the objects, give a visual indication to show

which actions already integrated in the obtained sce-

nario. Thanks to this, it is easy for the expert to detect

the actions that are missing from the scenario during

the authoring. The generation is an incremental pro-

cess, meaning that, at any point between the end of

a sequence and the beginning of the next, the expert

can either stop the generation if the obtained result is

deemed exhaustive enough, or continue with another

sequence a possible variation has not been yet added

by the generation.

For the changing of the wheel, once the expert has

recorded some sequences, the elements to tighten can

be highlighted according to the paths that have been

observed and inferred. An example of this is provided
in Figure 8, where both the top element and the left

one are highlighted to remind the expert that, in the

recorded sequences, one of them was used as the start-

ing point. The corresponding transitions in the scenario

are also highlighted to help the expert make the corre-

spondence between the scenario and the environment.

3.4 Merging and Generalization

A more complete scenario is generated once several se-

quences have been recorded in the environment. An ex-

ample of the generation result is presented in Figure 9.

The proposed approach falls in the field of process min-

ing techniques. The principle applied is to generate an

automaton representing the sequences given as input

dataset, relying on a particular structure named Test

and Flip net (TF net). This technique is able to gener-

alise possible transitions that are absent from the origi-

nal data and it also summarises the variability found
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{TBLR} + {LRTB} → {TBLR,LRTB}

{TBLR,LRTB} + {RLBT} →

{TBLR, TBRL,LRTB,LRBT,RLTB,RLBT,BTLR,BTRL}

Fig. 9: An example of scenario generation, where

3 observations result in 8 possible paths (T=Top,

B=Bottom, L=Left, R=Right). The transitions and

paths in blue are generated from the observations in

orange

across instances. While a traditional process mining

usually relies on very large set of instances, the genera-

tion of a scenario with TF net synthesis must deal with

a much smaller set, which may not include all the possi-

ble variations. Caillaud [7] introduced an initial version

that we have adapted here for effective application in a

VR environment.

A Petri net synthesis method, based on the theory

of regions [3], is used. It consists of the generation of a

particular class of 1-safe nets (each place can only bear

1 token at once), namely Test and Flip nets, which is a

more efficient representation for the synthesis.

Intuitively, a TF net does not represent the scenario

in itself, but the mechanics of activation and deactiva-

tion of possible actions in the scenario. This net can be

associated with its marking graph, which represents all

possible executions, and therefore more specifically the

expected scenario. Such a graph also defines a language.

TF nets are therefore a very dense representation.

They express concurrency, causality or conflict by con-

struction. The synthesis algorithm consists in finding a

certain TF net such that its marking graph define the

least language of TF nets containing initial examples.

All formal definitions used for formalization are given

in the paper introducing the synthesis algorithm [7].

The integration of this technique with scenarios us-

able in VR requires some adaptations. Initially, the syn-

thesis algorithm is used to generate a TF net. On the

contrary, here, only the marking graph of the TF net is

exploited that is an extension of the transition system

obtained by the product of initial examples.

Overall, the adapted synthesis unfolds as follows:

Fig. 10: The creation of the input scenario

1. Computation of a tree-like transition system, repro-

ducing exactly the input scenarios.

2. Folding of this tree into a transition system, that

may have cycle, but that matches the observation

power of TF nets. This means that two sequences

that can not be distinguished by any TF net well

reach the same state.

3. Region-based synthesis [3] of a TF net, using a fast

and scalable linear algebraic method [7].

4. Syntactic translation of the resulting graph into a

scenario Petri-net.

The rest of this section provides details on these

different stages.

3.4.1 From Petri Net to Transition System

The input scenarios are translated into sequence trees

and then unified. By this way, the equivalent states are

merged. We thus obtain some minor generalizations.

Note also that this is done by keeping all technical data

associated with events scenarios. This data will be used

later to reconstruct the complete scenario in the desired

form. Figure 10 illustrates this process.

3.4.2 Transition System Generalization using TF Net

Synthesis

The next step is to extend the transition system re-

specting the constraints of a model, namely TF net. Fol-

lowing definitions and principles specifies the method-

ology used. A TF net is a generalization of elementary

net, with 6 types of flow arcs, permitting a complete

orthogonality between the test of a place and the alter-

ation of the marking of a place. The firing of a tran-

sition is twofold: first, the markings of a set of places

are tested to 0 or 1, and then, the markings places are

eventually complemented. This leads to 6 possibilities

in the 1-place net shown figure 11.

More formally, a TF net can be defined as a tu-

ple N = (P, T, a, b, c,m0), such that P and T are re-

spectively sets of places and transitions, a, b, c are three

mappings defining the effect of a transition on the places

and m0 is the initial marking. The mapping a, b, c can
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Fig. 11: From [7], one place TF net (a) and its marking

graph (b). That graph defines the effect on a place of

each type of flow arc (no link[⊥], complement a marked

place [+], complement an unmarked place [−], comple-

ment a place [¬], needs a marked place [1], needs an

unmarked marked place [0].

Fig. 12: The ESSP problem on the wheel example

also be characterized through three functions with 0

and 1 as possible values:

– checks(place, transition): does the transition checks

the marking of the place?

– marked(place, transition): expected value of the place

to trigger the transition. We can note that this func-

tion has a use only if checks is true

– comp(place, transition): does the transition com-

plements the value of the place when triggered?

These functions somehow translate the TF net be-

havior. Moreover, a TF net can be associated with its

marking graph. For reasons of efficiency, this graph

is restricted to the markings and transitions that are

reachable from the initial marking. This transition sys-

tem is called the reachability graph of the TF net. The

TF net synthesis algorithm computes a TF net which

language of possible behaviors is the least language of

a TF net that contains all the input scenarios. In this

sense, the synthesis procedure is optimal, meaning that

no TF net will allow fewer sequences of actions, while

allowing all input scenarios. This algorithm is detailed

in [7] and the mathematical of Region-based Petri-net

synthesis can be found in [3].

Let us recall the essentials of the Theory of Regions,

in the context of TF net synthesis. The main concept is

that of Event-State Separation Problems (ESSP): given

a state s and an action t, such that t is not allowed in s,

the ESSP (s, t) consists in deciding whether there exists

a place of a TF net, that would refuse to perform the

action t in state s, while allowing all occurrences of t in

the input scenarios. The TF net synthesis method con-

sists in computing the places of the synthesized TF net,

one at a time, by solving all ESSPs of the input scenar-

ios. Therefore, each place of the synthesized net solves

at least one event-state separation problem (s, t), mean-

ing that the place forbids the firing of some action t in a

state s. For instance, with the cross-mounting scenario

in Figure 12, the ESSP is computed for each place, and

for each action not already allowed for this place (e.g.

for the state 0, only the Bottom action is missing, for

state 4, there is Top, Bottom and Right). The solveabil-

ity of the ESSP means that the transition should not

be added; and complementarily its unsolveability leads

to the creation of the transition.

The key result of [7] is that ESSPs can be encoded

as a system of linear Boolean equations, that can be

solved by classical XOR-Sat methods, based on Gaus-

sian elimination [24]. This guarantees the scalability of

the method, both in terms of the number actions, and

of the number of states of the input scenarios. Our soft-

ware implementation takes the different steps proposed

in [7], with some simplifications and optimizations to

improve performance. Namely, the last steps of the al-

gorithm (steps 4 and 5 of the cited paper) are not re-

quired, since only the reachability graph of the synthe-

sized net is used.

3.4.3 From Transition System to Petri Net

The transition system obtained can ultimately be trans-

formed into a Petri net. Each place in the transition

system corresponds to a place in the Petri net, while

the relations between the places become transitions as-

sociated with an incoming arc and an outgoing arc from

or towards the corresponding places. The technical data

associated with the transitions is included.

3.5 Integration

Once the scenario has been generated through the se-

quences, it is integrated in the virtual environment to

provide additional feedback to the user. Since the feed-

back consists in highlighting the elements that can be

used to move the scenario forward, it can also be di-

rectly used as is for the final application. However, the

experts may wish for other possibilities of integration
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Fig. 13: The operating table

of the scenario. To facilitate this, we provide tools to

reuse the scenario in different ways, to allow a reuse

adapted to the needs of each application.

The main possibility for reusing the created scenario

is to re-inject it as a guide for a user. Since the scenario

is created with the help of the scenario engine used to

read them, the scenario created is directly usable for

this kind of use.

For more complex reuses of the scenario, for which

it would be difficult for the expert to bring the fine

grain modifications needed to either the scenario or the

virtual environment, the intervention of a developer is

beneficial.

To help the developer continue the project after the

work is done by the expert, the scenario can easily be

sent along with the virtual environment, under the form

of a Unity (http://unity3d.com/) project. Thanks to

a graphic editor we provide, the developer can easily

modify the scenario afterwards.

To complete this modification, we designed tools to

use the scenario in different ways in the virtual envi-

ronment, either to guide the final user of the VR appli-

cation, or to add virtual agents capable of performing

parts of the scenario.

The final scenario provided for the final application

is fully integrated within the virtual environment, but

can also be read thanks to its graph format. In this

form, the scenario obtained through the recording pro-

cess can be extremely useful for the expert, as a support

to study their work process. Indeed, a quick look at the

scenario is enough to apprehend the complexity of the

scenario. Analysing the scenario in more details also

helps in understanding the process, and finding possi-

ble patterns that would not be detected otherwise.

4 Surgery training

The second use case we designed concerns the prepa-

ration of an operating table. The preparation of the

operating table is particularly difficult to learn, since

there are many objects to prepare, and each operation

needs a different preparation.

For the use case, we focus on the assembly of three

scalpels, as shown in Figure 13. As shown in Figure 14,

there are 80 possible variations of this scenario, deriving

Fig. 14: Multiple variations (the changes are displayed

in red) can impact the combinatory for the scalpel as-

sembly. Combined, those variables give 6×8×2=92 pos-

sibilities, out of which 80 are unique.

from 3 variables. Indeed, the scalpels can be assembled

in any order, making 3! = 6 variations. Since two of the

scalpels (the second and the third from the left) have

the same handle and blade, two blades can go for the

same handle (and vice-versa), multiplying the number

of variations by 2. Finally, for each scalpel, the user can

take either the handle or the blade first, giving 23 = 8

cases. In total, this gives 6 × 2 × 8 = 92 possibilities.

Once the doubles have been simplified, this leaves out

80 cases. It should also be noted that the scalpels are

just a part of the complete intervention, which consists

of preparing the whole table. Because of this, and al-

though the scenario may seem simple at first, it is in fact

quite difficult to model, as there is a lot of variability to

take into account (does the user take the blade or the

handle first, which blade goes with which handle, which

scalpel is assembled first, ...), making the 80 possibili-

ties in total in the complete scenario. It is to note that

this number does not take into account the hand used

to take the objects, and hence is less important than

what it could be in that particular case. Although the

scenario can be legible, and could be written by a de-

veloper given enough time, an important challenge here

is to write it without introducing any mistake, which is

tedious given the number of actions to encode. Writing

this scenario proves quite difficult, and hence requires

a lot of time and generates errors easily. However, it

takes into account whether the blade or the handle is

taken first, as it may matter for the sake of sanitizing.

To illustrate this complexity, the scenario for this use

case is provided in Figure 15.
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Fig. 15: The synthesized scenario for the scalpel assembly, from 8 observations (the generated transitions are in

cyan)

For this scenario, the main advantage of the gener-

ation is that it saves a lot of time to write the scenario.

Indeed, while it would take a few hours, even for the

developer, to write the complete scenario (assuming it

is written without any errors, and assuming that the

variability is perfectly known beforehand), it takes less

than half an hour to record the needed sequences and

get the final scenario. Indeed, eight sequences – if they

represent all the variability that may stem from this

problem – are enough to generate the whole scenario in

Figure 15.

Furthermore, and in the same manner as the cross

mounting use case, defining the constraints using only

the state of the world is rather difficult. Although it

would be possible to manage a part of the complexity

of the problem by defining that a handle and a blade

can be assembled only if they are of the same type, this

does not completely solve the problem. Indeed, defining

those constraints in the virtual environment requires to

add some code to the possible interactions, which would

mean that a developer is needed prior to the recording,

and that the developer should already be aware of the

constraints that are important to put in the virtual en-

vironment.

5 User study

In order to assess the benefits provided by our tool, we

designed a user study, with a total number of 30 partic-

ipants. The participants were divided into three groups,

depending on their level of expertise with coding: 9 with

no coding expertise, 14 had expertise in development,

and 7 had expertise with the coding of scenarios in VR

with the model used. After the explanation of the pro-

tocol and the consent form, we asked the participants

to state how they would formalize a scenario for a use

in virtual reality. In order to get a point of comparison

with the method they would naturally use for the defi-

nition of scenarios, the participants were asked to pro-

pose a solution for the definition of the wheel changing

scenario. After this, the proposed method of scenario

authoring was introduced to the participants, and they

were asked to fill a first questionnaire (previous experi-

ence in VR, previous experience in Unity 3D, SSQ).

Then, the participants were equipped with a HMD

(a HTC Vive), and immersed for a training session of

around 15 minutes, during which they could get famil-

iar with the controls of the virtual environment, and

create a first scenario with the proposed method. This

first scenario was a simplified version of the scalpels sce-

nario: with two scalpels, pick a blade and a handle, as-

semble the scalpel, and repeat with the second scalpel.

The order to follow for the sequences was given to the

participants, so that they could see the generation occur

at least once. After this first scenario, the participants

were free to continue with the first environment, until

they felt ready for the second task.

The main task of the experiment was the creation of

the wheel changing scenario with the proposed method.

During this task, the participants where completely free

to create the scenario how they wanted, without any

help from the experimenter. Once they estimated that

the obtained scenario was complete, they were free to
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Fig. 16: Perceived usefulness, ease of use, agreeableness,

and readiness for reusing the tool

validate and end the task. Out of the 30 participants,

2 obtained the wrong scenario (one did not generalize

enough, and one other did not respect the cross pattern

and obtained the 24 possible orders).

After this, the participants were asked to fill a sec-

ond questionnaire (NASA-TLX, SSQ, SUS and UTAUT2

in this order). In total, the experimented lasted between

half an hour (for the participants with a strong VR and

coding expertise) to 75 minutes (for some of the partic-

ipants with no coding expertise).

Overall, the results of the experiment show that the

participants appreciated the proposed tool. The per-

ceived usefulness, ease of use and agreeableness (from

the UTAUT2 questionnaire) mainly vary between 5 and

7 (cf Figure 16). The highest scores for the UTAUT2

questionnaire were obtained with the experts and the

scenario developer, who were overall really pleased by

the tool. However, the regular developers were less in-

clined to find the tool useful enough to be reused: al-

though they found it useful, they stated that it would

take, in their opinion, more time to use the tool than

to complete the proposed scenario with code. Also, the

scores for the regular developers vary much more than

the ones for the other two groups, especially for the

questions asking whether they would be ready to reuse

the tool or not.

6 Discussion and future works

We would like to highlight that this methodology does

not completely replace the role of the developer in the

process of creating a VR application. Indeed, there is

still the need to model the virtual environment be-

forehand, and to add interactions to it. However, this

methodology is able to help the experts easily create

scenarios for those environments and use those in sim-

ple ways. This is a powerful tool as it allows them to

take more place in the process, and helps both the ex-

pert and the developer to focus more on their respective

strengths.

In future works, we plan to include other types of

events that may trigger the transitions in the scenario,

such as time constraints, or a single collision. In the

same fashion, it would be interesting for the expert to

be able to add specific consequences to the transitions,

in order to customize more precisely the scenario ob-

tained from the recording. Those other events would

allow the expert to define more complex scenarios from

the environment, with the possibility to change the pace

and the behaviour of the scenario according to what

the user is doing. This kind of modifications would be a

powerful way to complement the control of the actions

sequencing in the environment.

A second improvement for the method would be to

take into account the wrong scenarios recorded by the

user or generated. Labelling those scenarios would be a

way to define counterexamples, and as such would help

in preventing overfitting.

7 Conclusion

In this paper, we proposed a complete method for the

creation of scenarios in VR, based on the recording of

an expert’s actions in VR, and the merging and gen-

eralization of the recorded sequences. To facilitate the

creation of the scenario with this method, an iterative

approach is proposed. With this approach, the expert

can first record a sequence of action, use a mathematical

tool to merge and generalize the sequences to create a

scenario. This scenario is then integrated automatically

in the virtual environment, to let the expert iterate over

the first two steps with visual indications showing what

is already managed by the scenario.

Thanks to this novel methodology, the experts are

able to define scenarios for VR applications easily. In-

deed, the recording helps them express their implicit

knowledge by performing the actions instead of having

to explain them, and the generation of new sequences

from the observations helps them manage easily the

variability of the procedures to scenarize. This method-

ology is an important tool to ease the communication

between the domain experts and the developers, who

often have difficulties when building VR applications

that require both the knowledge of the expert and a

certain amount of variability to get a scenario that is

really pertinent.
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