A. Agrawal, V. Kumar, A. Pandey, and I. Khan, An application of time series analysis for weather forecasting, International Journal of Engineering Research and Applications, vol.2, pp.974-980, 2012.

A. Amei, W. Fu, and C. H. Ho, Time series analysis for predicting the occurrences of large scale earthquakes, International Journal of Applied Science and Technology, vol.2, 2012.

D. M. Burns and C. M. Whyne, Seglearn: A python package for learning sequences and time series, Journal of Machine Learning Research, vol.19, issue.83, pp.1-7, 2018.

M. Christ, N. Braun, J. Neuffer, and A. W. Kempa-liehr, Time series feature extraction on basis of scalable hypothesis tests (tsfresh -a python package), Neurocomputing, vol.307, pp.72-77, 2018.

E. Jones, T. Oliphant, and P. Peterson, Scipy: Open source scientific tools for python, 2001.

S. K. Lam, A. Pitrou, and S. Seibert, Numba: A LLVM-based python JIT compiler, Second Workshop on the LLVM Compiler Infrastructure in HPC, vol.7, pp.1-7, 2015.

M. Lning, A. Bagnall, S. Ganesh, V. Kazakov, J. Lines et al., sktime: A unified interface for machine learning with time series, 2019.

B. Naul, S. Van-der-walt, A. Crellin-quick, J. Bloom, and F. Prez, cesium: Open-source platform for time-series inference, Python in Science Conference, pp.27-35, 2016.

R. Olszewski, Generalized Feature Extraction for Structural Pattern Recognition in Time-Series Data, 2001.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine learning in python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

P. Perron, The great crash, the oil price shock, and the unit root hypothesis, Econometrica, vol.57, issue.6, pp.1361-1401, 1989.

C. Ratanamahatana and E. Keogh, Three myths about dynamic time warping data mining, International Conference on Data Mining, pp.506-510, 2005.

H. Sakoe and S. Chiba, Dynamic programming algorithm optimization for spoken word recognition, IEEE Transactions on Acoustics, Speech, and Signal Processing, vol.26, issue.1, pp.43-49, 1978.

P. Schäfer, The BOSS is concerned with time series classification in the presence of noise, Data Mining and Knowledge Discovery, vol.29, issue.6, pp.1505-1530, 2015.

R. Tavenard, tslearn: A machine learning toolkit dedicated to time-series data, 2017.

S. Van-der-walt, S. C. Colbert, and G. Varoquaux, The numpy array: A structure for efficient numerical computation, Computing in Science Engineering, vol.13, issue.2, pp.22-30, 2011.
URL : https://hal.archives-ouvertes.fr/inria-00564007