
HAL Id: hal-02884025
https://inria.hal.science/hal-02884025

Submitted on 27 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Optimal Algorithm for Enumerating Connected
Convex Subgraphs in Acyclic Digraphs

Chenglong Xiao, Shanshan Wang, Wanjun Liu, Xinlin Wang, Emmanuel
Casseau

To cite this version:
Chenglong Xiao, Shanshan Wang, Wanjun Liu, Xinlin Wang, Emmanuel Casseau. An Optimal Al-
gorithm for Enumerating Connected Convex Subgraphs in Acyclic Digraphs. IEEE Transactions on
Circuits and Systems II: Express Briefs, 2021, 68 (1), pp.261-265. �10.1109/TCSII.2020.3000297�.
�hal-02884025�

https://inria.hal.science/hal-02884025
https://hal.archives-ouvertes.fr

An Optimal Algorithm for Enumerating Connected
Convex Subgraphs in Acyclic Digraphs
Chenglong Xiao∗,Shanshan Wang∗,Wanjun Liu†,Xinlin Wang†, Emmanuel Casseau‡

∗Shantou University, China
{chenglong.xiao,celine.shanshan.wang}@gmail.com

†Liaoning Technical University, China
{liuwanjun,wangxinlin}@lntu.edu.cn
‡Univ Rennes, Inria, France
{emmanuel.casseau}@irisa.fr

Abstract

Reconfigurable computing system is emerging as an important computing system for satisfying the present and future
computing demands in performance and flexibility. Extensible processor is a representative implementation of reconfigurable
computing. In this context, custom instruction enumeration problem is one of the most computationally difficult problems involved
in custom instruction synthesis for extensible processors. Custom instruction enumeration problem is essentially enumerating
connected convex subgraphs from a given application graph. In this paper, we propose a provable optimal algorithm for enumerating
connected convex subgraphs in acyclic digraphs in the sense of time complexity. The running time of the proposed algorithm is
theoretically proved to be O(

∑
C∈CC(G)(|V (C)|+ |E(C)|)), where CC(G) denotes the set of connected convex subgraphs in

directed acyclic graph G, |V (C)| and |E(C)| denote the number of vertices and the number of edges in subgraph C respectively.
Experimental results show that the proposed algorithm is more efficient than the state-of-the-art algorithms in terms of runtime.

Index Terms

Reconfigurable Computing, Extensible processors, custom instruction, custom instruction enumeration, directed acyclic graph,
connected convex subgraphs.

I. INTRODUCTION AND RELATED WORKS

Extensible processor is one of the most important implementations of reconfigurable computing. Extensible processors are
becoming more and more popular as they can provide an excellent computational acceleration over regular embedded processors
while ensuring the flexibility [1]. Extensible processors improve the performance of time critical applications by replacing the
computation intensive codes with a set of custom instructions. These custom instructions are implemented on custom function
units. The flexibility is ensured through the custom instruction set that can be tuned to run the other applications in the same
domain.

Manual identification of custom instructions from a given application code is an intractable and time-consuming job. Thus,
an automatic and efficient compilation flow for identifying custom instructions is necessary [2]. In general, the automatic
compilation flow involves two computationally difficult problems: custom instruction enumeration and custom instruction
selection. As a custom instruction can be graphically represented by a subgraph, the custom instruction enumeration problem
is essentially a subgraph enumeration problem. In this paper, we focus on the subgraph enumeration problem.

Given an application code, a typical compilation flow transforms the source code to a control data-flow graph (CDFG). The
subgraph enumeration step tries to enumerate all the subgraphs satisfying micro-architectural constraints from data-flow graphs
(DFG) inside CDFG. In the custom instruction synthesis, the traditional approaches enumerate convex subgraphs (A subgraph
S is convex if there is no directed path between vertices of S which contains a vertex not in S.) under the maximum number
of input and output constraints imposed by the available register file ports [3]–[5]. Previous studies show that the subgraphs
with more input/output operands than input/output constraints may bring higher speed-up. Therefore, a class of works focusing
on enumerating maximal convex subgraphs have been proposed [6]–[8].

In recent years, some approaches aim at enumerating all possible connected convex subgraphs (cc-subgraphs) as candidate
custom instructions [9], [10]. For every connected acyclic digraph G with n vertices, the maximal number of connected convex
subgraphs (cc-subgraph) in G has been proved to be 2n+n+1−dn, where dn = 2 ·2n/2 for every even n and dn = 3 ·2(n−1)/2
for every odd n [11]. Since the number of possible subgraphs is potentially exponential, an efficient and optimal algorithm for
enumerating connected convex subgraphs from DFG is required.

In [9], Balister et al. present a top-down algorithm for enumerating cc-subgraphs. The algorithm produces the cc-subgraphs
by adding the ‘largest’ out-neighbor or ‘smallest’ in-neighbor and the vertices required to maintain convexity. The algorithm
makes 2 · |CC(G)|−n recursive calls. The time complexity of the algorithm is O(n · |CC(G)|). The authors of [10] describe a
more efficient algorithm that requires only |CC(G)| recursive calls to enumerate all the cc-subgraphs. The algorithm generates
the cc-subgraphs in a bottom-up manner by adding topologically sorted neighbor vertex to smaller subgraphs. Experimental

results reveal that the algorithm can achieve on average 3.29 times speedup over the algorithm proposed in [9]. Although the
algorithm makes fewer recursive calls and fewer computations inside each call, the time complexity of the algorithm is still
O(n · |CC(G)|).

In [12], the authors have raised an open question:“Is there an O(
∑

C∈CC(G) |V (C)|)-time algorithm for generating all
connected convex sets of a connected acyclic digraph G?”. In this paper, we propose an optimal algorithm for enumerating all
connected convex subgraphs from a DFG. This paper makes the following two contributions:
• The proposed algorithm is a provable optimal algorithm with time complexity of O(

∑
C∈CC(G)(|V (C)|+ |E(C)|)). On

the theoretical side, this work could be an answer to the open question raised in [12] .
• Experiments results reveal that the proposed algorithm outperforms the state-of-the-art algorithms. On the practical side, as

custom instruction enumeration problem is one of the most computationally difficult problems involved in custom instruction
synthesis, the proposed algorithm can be used to accelerate the process of custom instruction synthesis for extensible processors.

The rest of the paper is organized as follows. In Section II, the notations and terminologies are given. Section III presents
the proposed algorithm. The proofs of the correctness and the complexity of the proposed algorithm are given in Section IV.
Section V evaluates and compares the runtime of the proposed algorithms. Finally, conclusions are presented in Section VI.

II. NOTATION AND TERMINOLOGY

A data-flow graph (DFG) is a directed acyclic graph (DAG) G = (V,E), where V = {v1, ..., vn} is the set of vertices and
E = {e1, ..., em} ⊆ V ×V is the set of edges. Each vertex in DFG represents a primitive operation and each edge corresponds
to the data flow dependency between two primitive operations. For a DAG G, V (G),E(G) and CC(G) denote the set of
vertices, the set of edges and the set of connected convex subgraphs in G respectively.

Problem P : Given a DFG G = (V,E), enumerate all the subgraphs that satisfy the following constraints as custom
instruction candidates.
• Convexity: S is convex;
• Connectivity: S is connected .
The convexity constraint is applied to ensure that the identified custom instruction can be executed atomically. For example,

in Fig. 1, the subgraph {v1, v3, v4} is a convex subgraph, while the subgraph {v1, v4, v7} is not. A subgraph S is connected if
there is an undirected path between any pair of vertices in S. In Fig. 1, the subgraph {v1, v3} is a connected subgraph, while the
subgraph {v3, v4, v6} is a disjoint subgraph. A candidate subgraph may contain one or more disjoint components. Enumerating
disjoint subgraphs with multiple components may generate very large custom instructions that have very little chance of reuse
in an application or across applications [13]. Similar to the work presented in [13], we only enumerate connected convex
subgraphs as custom instruction candidates in this paper.

+

-

+

/

*

v1 +

-

v2

v5v4

v7

v6

v3

Fig. 1. The example data-flow graph
If uv is an edge of G, we say that u is a direct predecessor of v and v is a direct successor of u. The set of direct predecessors

of v is denoted by IPred(v) and the set of direct successors of u is denoted by ISucc(u). For a set X of vertices of G, its
direct predecessor (resp. direct successor) is IPred(X) =

⋃
x∈X IPred(x) \ X (resp. ISucc(X) =

⋃
x∈X ISucc(x) \ X).

For a set X ⊆ V (G), the subgraph induced by X is denoted by G[X].
A vertex u in a connected DAG is called an articulation point (or cut vertex) ‘iff’ removing u and the edges connecting it

disconnects the graph. As an example, removing vertex v2 and the edges connecting to v2 from the data-flow graph in Fig.
1 results in a disjoint subgraph {v1, v3, v4, v5, v6, v7}. Hence, vertex v2 is an articulation point. The articulation points in a
connected DAG G = (V,E) can be found in time O(|V |+ |E|) [14].

A vertex u in a DAG G is called a source (sink) vertex if it has no direct predecessors (direct successors) in G. In Fig. 1,
vertex v1 and vertex v2 are source vertices. Vertex v5 and vertex v7 are sink vertices.

Algorithm 1: Connected Convex Subgraph Enumeration Algorithm
Input: A data-flow graph G = (V,E), F : A set of must contained vertices
Output: CC A set of enumerated connected convex subgraphs
/* enumerate all cc-subgraphs in a top-down manner */

1 Procedure TD(C,F)
2 CC = CC ∪ C;
3 for each vertex u ∈ C do
4 if visited[u] == false then
5 call DFS(u, visited, seq, low, parent, A);

6 Y = (V \F)\A;
7 for each vertex s ∈ Y with |IPred(s)| == 0 or |ISucc(s)| = 0 do
8 C′ = C\{s};
9 call TD(C′, F);

10 F = F ∪ {s};
/* find all the cut vertices in C */

11 Procedure DFS(u, visited, seq, low, parent,A)
12 visited[u] = true;
13 seq[u] = low[u] = + + counter;
14 children = 0;
15 for each adjacent vertex v of u do
16 if visited[v] == false then
17 children++;
18 parent[v] = u;
19 call DFS(v, visited, seq, low, parent, A);
20 low[u] = Math.min(low[u], low[v]);
21 if parent[u] == NIL&&children > 1 then
22 A = A ∪ {u};
23 if parent[u] 6= NIL&&low[v] >= seq[u] then
24 A = A ∪ {u};

25 else if v 6= parent[u] then
26 low[u] = Math.min(low[u], seq[v]);

Lemma 1. Let G be a DAG, let X be a connected convex subgraph of G, and let s ∈ G be a source or sink of X and s is
not an articulation point of X . Then X\{s} is a connected convex subgraph of G.

Proof. Firstly, as s is not an articulation point of X , removing s and the edges connecting s in X will not result in a disjoint
subgraph. Therefore, X\{s} is a connected subgraph. Then, we prove that X\{s} is a convex subgraph of G. Suppose that
X\{s} is non-convex , then there is a directed path v, u, w where v, w ∈ X\{s} and u /∈ X\{s}. Since X is convex, we
can easily know that u = s. As u has at least one direct predecessor and one direct successor in X , this contradicts with the
assumption that s is a source or sink of X .

III. PROPOSED ALGORITHM

In this section, we propose a provable optimal algorithm for enumerating all the connected convex subgraphs from data-flow
graph. We assume the original data-flow graph is a connected DAG, if not we can simply deal with each piece separately.

The pseudo code of the proposed algorithm is presented in Algorithm 1 (we denote it by T D). The algorithm accepts a
data-flow graph G as input and generates all the cc-subgraphs. The algorithm works in a top-down manner. By Lemma 1 we
can see that if X is a cc-subgraph and s is a source or a sink of X and s is not a cut vertex, then X\{s} is a cc-subgraph.
Based on this observation, we find all the cc-subgraphs by recursively deleting a vertex that is not a cut vertex and is a source
or a sink of the current graph.

The algorithm outputs a cc-subgraph in each recursive call (line 2). Inside each recursive call, we first find all the cut vertices
of the current graph by calling a depth-first search method (lines 3-5 and lines 11-26), then we consider all sources and all
sinks of the current graph that are not in F and are not cut vertices. Before calling the depth-first search method, an array
visited[] is used to mark the vertex is visited or not, and the initial value of the elements in the array is false. A set A is used
to record the cut vertices found in C. For each source or sink s that is not in F , we call TD(C\{s}, F) and then add s to F
as a must contained vertex (lines 7-10). In such a way, for each sink or source s ∈ X the algorithm generates all cc-subgraphs
without s and all cc-subgraphs containing s.

In order to find all the cut vertices of a graph, we adopt a depth-first search (DFS) method proposed in [14]. The pseudo
code of the depth-first search method is shown in lines 11-26. Although the depth-first search method is originally proposed to
find the cut vertices from undirected graphs, in this work, we can use it directly to find the cut vertices from directed graphs
by ignoring the direction of each edge. The method traverses each vertex in depth-first order. In the DFS tree, a vertex u is a

v1

v2

v5

v4

v7

v6

v3

seq = 1

low = 1

seq = 2

low = 1

seq = 3

low = 1

seq = 4

low = 1

seq = 5

low = 1

seq = 6

low = 6

seq = 7

low = 7

Fig. 2. Depth first traversal of the DFG presented in Fig. 1, v2 and v4 are cut vertices.
{v1,v2,v3,v4,v5,v6,v7}

{v2,v3,v4,v5,v6,v7}

{v2,v4,v5,v6,v7} {v2,v3,v4,v6,v7}

{v2,v4,v6,v7} {v2,v4,v5,v7}

{v4,v6,v7} {v2,v4,v7}

{v6,v7} {v4,v7}

{v7} {v6} {v4}

{v2,v4}

{v2}

{v2,v4,v5}

{v2,v5}

{v5}

{v3,v4,v6,v7}

{v3,v6,v7}

{v3,v6}

{v3}

{v1,v2,v3,v4,v6,v7}

{v1,v3,v4,v6,v7}

{v1,v3,v4,v6}

{v1,v3,v6} {v1,v3,v4}

{v1,v6}

{v1}

{v1,v4}

{v1,v2,v3,v4,v6}

{v1,v2,v3,v4}

{v1,v2,v4}

{v1,v2}

{v1,v2,v3,v4,v5,v6}

{v1,v2,v3,v4,v5}

{v1,v2,v4,v5}

v6

v5

v5

v5

v5

v2

v2

v2

v4

v4

v3

v3

v3

v3

v3

v1

v1

v1

v1

v1

v1

v1,v4

v1,v4

v1,v2

v1,v2

v1,v2

v1,v2

v1,v5

v1,v5

v1,v5

Fig. 3. Search tree of the proposed algorithm for enumerating cc-subgraphs from the DFG in Fig. 1.

parent of another vertex v, if v is discovered by u (line 18). If a vertex w is adjacent to u and w is already visited, then we
say there is a back edge from u to w. A vertex u is a cut vertex if one of the following two conditions is true.
• u is a root of the DFS tree and it has at least two children;
• u is not a root of the DFS tree and it has a child v such that no vertex in subtree rooted with v has a back edge to one

of the ancestors of u in the DFS tree (lines 23-24).
In the DFS traversal, for each vertex, we count the number of its children (line 17). If the visited vertex u is a root and

has more than one child, then it is a cut vertex (lines 21-22). For the second condition, we maintain an array seq[] to store
visited sequence of vertices (line 13). For every vertex u, we need to find out the earliest visited vertex that can be reached
from subtree rooted with u through a directed path. Thus, we use low[u] to store the seq value of the earliest visited vertex
that can be reached from subtree rooted with vertex u. For every vertex u, low[u] is defined as follows.

low[u]=

 min(low[u], low[v]), if u is a parent of v
min(low[u], seq[v]), if (u, v) is a back edge and

v is not a parent of u

 (1)

As an example, Fig. 2 shows the DFS traversal of the DFG presented in Fig. 1. In Fig.2, each vertex is associated with two
values (seq and low). v2 and v4 are two cut vertices as their seq value is less than the low value of their children.

Fig. 3 presents the search tree of the proposed algorithm on the data-flow graph presented in Fig. 1. In Fig. 3, we can see
that the algorithm makes CC(G) = 37 recursive calls in total. Each recursive call outputs a connected convex subgraph.

IV. CORRECTNESS AND COMPLEXITY OF THE ALGORITHM

In this section, we first present the proof of the correctness of the proposed algorithm T D.

Lemma 2. Algorithm T D correctly outputs all cc-subgraphs of G, where G is a connected directed acyclic graph.

TABLE I
COMPARISON OF SUBGRAPH ENUMERATION ALGORITHMS (IN MILLISECOND)

Benchmark NV NE NS A(CT) BS(CT) T D(CT)
DOTPRODUCT 20 19 4082 16 5 3

MP3 43 66 181,533,673 775,440 221,554 107,377
IDCT 29 38 139,121 517 171 89
MESA 37 65 7,554,499 31,308 8,027 3,713

FFT 32 37 30,597 118 36 19
ARF 25 37 84,401 283 104 57
IIR 40 56 23,195,414 102,331 28,725 12,231

Proof. Firstly we show that each set C output by T D is a connected convex subgraph. According to the algorithm, each
subgraph is generated by deleting a vertex that is not a cut vertex and is a source or a sink of the current cc-subgraph. By
Lemma 1, we can easily know that each enumerated subgraph is a cc-subgraph.

Secondly we prove that if C 6= ∅ is a cc-subgraph of G, then C is output exactly once by T D. We first claim that for every
connected convex subgraph H with C ⊂ H ⊆ G, there exists a source or sink s ∈ H \C of the digraph H and s is not a cut
vertex. If the claim is true, by Lemma 1, we can obtain C by repeatedly deleting such sources or sinks.

To prove this claim, we will first show that for every connected convex subgraph H with C ⊂ H ⊆ G, there exists a source
or sink s ∈ H \ C of the digraph H . As H \ C is an acyclic digraph, H \ C has at least one source and one sink. If there
exists no arc from a vertex of C to a vertex of H \ C then any source of H \ C is a source of H . If there is an arc from a
vertex u to a vertex v of H \C, considering the longest directed path v1v2 · · · vk in H \C leaving v, we can observe that vk
is a sink of H \C and there is no arc from vk to any vertex of C otherwise C is a non-convex subgraph. Hence, vk is a sink
of H .

Then, we prove that for every connected convex subgraph H with C ⊂ H ⊆ G, there exists at least a source or sink
s ∈ H \ C of the digraph H and s is not a cut vertex. Suppose that every source and sink s ∈ H \ C of the digraph H is a
cut vertex. We may assume S = {s1, s2, ..., st} is the set of such sources and sinks. Consider H and a cut vertex s1, which
can divide H into at least two subgraphs SG1 and SG2(SG1 ∩ SG2 = s1). We know that C is only included in one of these
subgraphs. Let assume C ⊂ SG1. If SG2∩{s2, ..., st} = ∅, since SG2 has at least one sink and one source, then there exists at
least one sink or source vs of SG2 and vs 6= s1, which has no arc connecting to other subgraphs. Thus, vs ∈ H \C is a source
or sink of H and vs /∈ S. We arrive at a contradiction. If SG2 contains vertex(s) from {s2, ..., st}, then we can choose one
cut vertex si to divide SG2 into several subgraphs. Then, we choose one subgraph SG2i ⊂ SG2 and s1 /∈ SG2i. We repeat
previous steps for SG2i. Then, we will finally get a subgraph with at least a sink or source v′s, which has no arc connecting
to the other subgraphs generated by division. Therefore v′s ∈ H \ C is a source or sink of H and v′s /∈ S, a contradiction.

Next it suffices to show that there is a unique execution path outputting a cc-subgraph C. Suppose that there are at least two
execution paths outputting C. Let further assume the subgraphs yielding by the two execution paths are C1 and C2 respectively,
where C1 = C2. Consider the search tree of the algorithm, we track the reverse direction of the two execution paths, the two
execution paths should be converged at a point. Starting from this point, one of the two execution paths enumerates the
subgraph(s) excluding a vertex s, while the other execution path enumerates the subgraph(s) containing s. Therefore, C1 6= C2,
we arrive at a contradiction.

Then, we prove the running time of algorithm T D.

Lemma 3. The running time of algorithm T D is O(
∑

C∈CC(G)(|V (C)| + |E(C)|)), where |V (C)| and |E(C)| denote the
number of vertices and the number of edges in subgraph C respectively.

Proof. According to the call tree of the algorithm, we can see that each recursive call outputs a cc-subgraph at line 2. So, the
number of recursive calls is the same as the number of cc-subgraphs. Thus we have CC(G) recurve calls. Then, we will show
that the running time of TD(C,F) without recursive calls is O(|V (C)| + |E(C)|). Inside each recursive call, a depth-first
traversal of graph C is made to find all the cut vertices in C at lines 3-5. Each vertex and each edge of C is visited once
in the process of the depth-first traversal. It is easy to know that the depth-first traversal requires O(|V (C)| + |E(C)|) time.
The time to compute Y at line 6 is at most O(|V (C)|). Then, all sources and sinks can be determined in O(|V (C)|) time at
line 7. Therefore, each call of TD(C,F) without recursive calls runs in time O(|V (C)|+ |E(C)|) in total. Finally, the total
running time of the algorithm is O(

∑
C∈CC(G)(|V (C)|+ |E(C)|)).

It should be noted that the open question raised in [12] is:“Is there an O(
∑

C∈CC(G) |V (C)|-time algorithm for generating
all connected convex sets of a connected acyclic digraph G?”. As we know, both the vertices and edges should be visited when
a directed graph is traversed. Hence, we can claim that the proposed algorithm with running time of O(

∑
C∈CC(G)(|V (C)|+

|E(C)|)) is an optimal algorithm for enumerating connected convex subgraphs in acyclic digraphs.Lemma 4. The space complexity of algorithm T D is O(n2), where n is the number of vertices in the DFG G.
Proof. It is clear that the space complexity of algorithm T D is dominated by the space storing the graph. Therefore, the space
complexity of algorithm T D is O(n2).

0

1

2

3

4

5

6

7

8

9

S
p

e
e

d
u

p

Benchmarks

S(A/TD)

S(BS/TD)

Fig. 4. Speedup achieved by the proposed algorithm over the state-of-the-art algorithms
V. EXPERIMENTAL RESULTS

We compare the efficiency of our algorithm (denoted by T D) with the state-of-the-art connected convex subgraph enu-
meration algorithm of [9] (denoted by A) and the algorithm proposed in [10] (denoted by BS). Seven benchmarks with rich
arithmetic/logical operators are used in our experiments. These benchmarks are taken from Mibench [15] and Mediabench
[16] and fall into domains including telecommunication, multimedia, etc. The three enumeration algorithms are implemented
in Java under the compilation framework of GeCoS [17]1. The input to the enumeration algorithms is a DFG representing a
frequently executed basic block of each benchmark that has to be accelerated in practice using an extensible processor for
example. We have run all the experiments on a PC with a i3-3240 processor running at 3.4 GHz with 4GB memory.

Table I presents the characteristics of the benchmarks and the runtime results of the three enumeration algorithms on the
benchmarks. The first column of the table gives the name of each benchmark. The number of vertices and the number of edges
in the DFG are denoted by NV and NE respectively. The number of enumerated connected convex subgraphs is presented
in column NS. The runtime results of the three enumeration algorithms are given in column A(CT), BS(CT) and T D(CT)
respectively. The runtime unit is millisecond.

As expected, the three enumeration algorithms produce the same set of connected convex subgraphs for each benchmark.
According to the runtime results, we can find that the T D algorithm outperforms the two state-of-the-art algorithms. The
speedup achieved by the proposed algorithm over the A algorithm and BS algorithm on the seven benchmarks is given in Fig.
4. The proposed algorithm is on average 6.6 times faster than the A algorithm and 2.0 times faster than the BS algorithm.

It should be noted that the space complexities of the three algorithms are identical. The time complexities of BS and A
are O(n · |CC(G)|). The time complexity of T D is O(

∑
C∈CC(G)(|V (C)| + |E(C)|)). The BS algorithm enumerates the

cc-subgraphs in a bottom-up manner. The cc-subgraphs are produced by absorbing neighbor vertex to smaller subgraphs.
However, the proposed algorithm enumerates the cc-subgraph in a top-down manner. Each cc-subgraph is formed by deleting
a source or sink that is not an articulation point. The proposed algorithm may be accelerated using parallel techniques such
as multithread technique or cloud computing. The T D algorithm can be easily adapted to the parallel framework proposed in
[10]. Since the partitioning strategy proposed in [10] is independent of any specific algorithm running in each compute node,
we can simply replace the sequential algorithm running in compute node by the T D algorithm.

VI. CONCLUSION

This paper proposes an optimal algorithm for enumerating connected convex subgraphs from a given application graph in a
top-down manner. The proposed algorithm is proved to be an O(

∑
C∈CC(G)(|V (C)|+ |E(C)|))-time algorithm, which is the

first optimal algorithm for enumerating connected convex subgraphs in acyclic digraphs in the sense of time complexity.

REFERENCES

[1] Ammendola R, Biagioni A, Frezza O, et al. ASIP acceleration for virtual-to-physical address translation on RDMA-enabled FPGA-based network interfaces. Future Generation
Computer Systems,2015, 53:109-118.

[2] G. Zacharopoulos, L. Ferretti, E. Giaquinta, G. Ansaloni and L. Pozzi. RegionSeeker: Automatically Identifying and Selecting Accelerators from Application Source Code.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2019, 38(4):741-754.

[3] L. Pozzi, K. Atasu and P. Ienne. Exact and approximate algorithms for the extension of embedded processor instruction sets. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems,2006, 25(7):1209-1229.

1https://gitlab.inria.fr/gecos

[4] C. Xiao, and E. Casseau. Exact custom instruction enumeration for extensible processors. Integration, the VLSI Journal,2012, 45(3):263-270.
[5] J. Reddington and K. Atasu. Complexity of Computing Convex Subgraphs in Custom Instruction Synthesis. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems,2012,20(12):2337-2341.
[6] T. Li, Z. Sun, W. Jigang, and X. Lu. Fast enumeration of maximal valid subgraphs for custom-instruction identification. CASES 2009, pp.29-36.
[7] K. Atasu, W.Luk,O.Mencer, C.Ozturan, G.Dundar. FISH: Fast Instruction SyntHesis for Custom Processors. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems,2012,20(1):52-65.
[8] E. Giaquinta, A. Mishra and L. Pozzi. Maximum Convex Subgraphs Under I/O Constraint for Automatic Identification of Custom Instructions. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 2015, 34(3):483-494.
[9] P. Balister, S. Gerke, G. Gutin, A. Jojnstone, J. Reddington, E. Scott, A. Soleimanfallah and A. Yeo. Algorithms for generating convex sets in acyclic digraphs. Journal of

Discrete Algorithms,2009,7(4):509-518.
[10] S. Wang, C. Xiao and W. Liu. A Faster Algorithm for Enumerating Connected Convex Subgraphs in Acyclic Digraphs. IEEE Embedded Systems Letters,2017, 9(1):9-12.
[11] G. Gutin, and A. Yeo. On the number of connected convex subgraphs of a connected acyclic digraph. Journal of Discrete Algorithms,2009, 157(7):1660-1662.
[12] P. Balister, S. Gerke and G. Gutin. Convex Sets in Acyclic Digraphs. Order-a Journal on the Theory of Ordered Sets & Its Applications, 2009, 26(1):95-100.
[13] P. Yu and T. Mitra. Scalable custom instructions identification for instruction-set extensible processors. ACM CASES, 2004, pp. 69-78.
[14] R. Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing,1972, 1(2):146-160.
[15] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, R.B. Brown. Mibench: a free, commercially representative embedded benchmark suite, in: Annual Workshop

on Workload Characterization, 2001, pp. 3-14.
[16] C. Lee, M. Potkonjak, W.H. Mangione-Smith. Mediabench: a tool for evaluating and synthesizing multimedia and communications systems, in: MICRO, 1997, pp. 330-335.
[17] A. Floch, T. Yuki, A.E. Moussawi, A. Morvan, et al. GeCoS: A framework for prototyping custom hardware design flows, IEEE SCAM, 2013, pp. 100-105

