F. Bassi and S. Rebay, A High-Order Accurate Discontinuous Finite Element Method for the Numerical Solution of the Compressible Navier-Stokes Equations, Journal of Computational Physics, vol.131, issue.2, pp.267-279, 1997.

A. S. Silveira, R. C. Moura, A. F. Silva, and M. A. Ortega, Higher-order surface treatment for discontinuous Galerkin methods with applications to aerodynamics, International Journal for Numerical Methods in Fluids, vol.79, issue.7, pp.323-342, 2015.

T. Hughes, J. Cottrell, and Y. Bazilevs, Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Computer Methods in Applied Mechanics and Engineering, vol.194, issue.39, pp.4135-4195, 2005.
URL : https://hal.archives-ouvertes.fr/hal-01513346

P. N. Nielsen, A. R. Gersborg, J. Gravesen, and N. L. Pedersen, Discretizations in isogeometric analysis of Navier-Stokes flow, Computer Methods in Applied Mechanics and Engineering, vol.200, issue.45, pp.3242-3253, 2011.

Y. Bazilevs, C. Michler, V. Calo, and T. Hughes, Isogeometric variational multiscale modeling of wall-bounded turbulent flows with weakly-enforced boundary conditions on unstretched meshes, Computer Methods in Applied Mechanics and Engineering, issue.199, pp.780-790, 2010.

Z. Wang, K. Fidkowski, R. Abgrall, F. Bassi, D. Caraeni et al., High-order CFD methods: current status and perspective, International Journal for Numerical Methods in Fluids, vol.72, issue.8, pp.811-845, 2013.

I. Lomtev, R. Kirby, and G. Karniadakis, A Discontinuous Galerkin ALE Method for Compressible Viscous Flows in Moving Domains, Journal of Computational Physics, vol.155, issue.1, pp.128-159, 1999.

J. Chapelier, . De-la-llave, M. Plata, F. Renac, and E. Lamballais, Evaluation of a high-order discontinuous Galerkin method for the DNS of turbulent flows, Computers & Fluids, vol.95, pp.210-226, 2014.

R. Duvigneau, Isogeometric analysis for compressible flows using a Discontinuous Galerkin method, Computer Methods in Applied Mechanics and Engineering, vol.333, pp.443-461, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01589344

L. Piegl and W. Tiller, The NURBS Book, vol.2, 1996.

B. Cockburn and C. Shu, The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems, SIAM Journal on Numerical Analysis, vol.35, issue.6, pp.2440-2463, 1998.

A. Harten, P. D. Lax, and B. Van-leer, On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws, SIAM Review, vol.25, issue.1, pp.35-61, 1983.

S. Gottlieb, C. Shu, and E. Tadmor, Strong Stability-Preserving High-Order Time Discretization Methods, SIAM Review, vol.43, issue.1, p.112, 2001.

V. Nguyen, An arbitrary Lagrangian-Eulerian discontinuous Galerkin method for simulations of flows over variable geometries, Journal of Fluids and Structures, vol.26, issue.2, p.329, 2010.

R. Duvigneau, CAD-consistent adaptive refinement using a NURBS-based discontinuous Galerkin method, Int. J. for Numerical Methods in Fluids, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02355979

H. M. Blackburn and R. D. Henderson, A study of two-dimensional flow past an oscillating cylinder, Journal of Fluid Mechanics, vol.385, pp.255-286, 1999.

J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications, 1 st, 2007.