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Abstract

In the Rank Pricing Problem (RPP), a rm intends to maximize its pro t through the
pricing of a set of products to sell. Customers are interested in purchasing at most one
product among a subset of products. To do so, they are endowed with a ranked list of
preferences and a budget. Their choice rule consists in purchasing the highest-ranked product
in their list and whose price is below their budget. In this paper, we consider an extension of
RPP, the Rank Pricing Problem with Ties (RPPT), in which we allow for indi erence between
products in the list of preferences of the customers. Considering the bilevel structure of the
problem, this generalization di ers from the RPP in that it can lead to multiple optimal
solutions for the second level problems associated to the customers. In such cases, we look
for pessimistic optimal solutions of the bilevel problem : the customer selects the cheapest
product.

We present a new three-indexed integer formulation for RPPT and introduce two resolu-
tion approaches. In the rst one, we project out the customer decision variables, obtaining a
reduced formulation that we then strengthen with valid inequalities from the former formula-
tion. Alternatively, we follow a Benders decomposition approach leveraging the separability
of the problem into a master problem and several subproblems. The separation problems
to include the valid inequalities to the master problem dynamically are shown to reduce to
min-cost ow problems. We nally carry out extensive computational experiments to assess
the performance of the resolution approaches.

Keywords: Combinatorial Optimization, Pricing Problems, Integer Programming, Bilevel
Programming, Benders Decomposition
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1 Introduction

A key decision for a company is its pricing strategy, i.e. the choice of the best possible price for
their products considering customers’ behavior. More generally, considering a set of customers
with certain preferences over the products available, what should be the price of each product
S0 as to maximize the company’s pro t?

Pricing problems are challenging due to their bilevel structure, since they take into account
customers’ purchasing decisions when setting the prices of the products. Customers’ choice
rule can be modeled in a variety of ways. In the Rank Pricing Problem (RPP), customers are
unit-demand (i.e. interested in purchasing at most one unit of one product) and they possess
their own ranking of the candidate products yielding to an incomplete list of preferences for
each customer. Once the prices are set by the company, customers purchase their highest-
ranked product among the ones they can a ord (if any). Modeling customers’ behavior through
a ranked list of preferences is versatile and o ers a general framework. It allows to model
customers’ choices based on both compensatory decision processes (like assigning a utility to
the products and purchasing the highest-ranked one) and noncompensatory decision processes
(such as ranking product attributes in terms of importance, and comparing them following a
lexicographic rule).

In this work, we consider a generalization of RPP in which customers are not forced to de ne
a strict preference between all the pairs of candidate products. Instead, we allow for indi erence
and consider ties in the list of preferences. We name this problem the Rank Pricing Problem
with Ties (RPPT).

Considering ties in the preference lists of the customers leads to a di erent bilevel structure
of the problem. As detailed in Calvete et al. [8], in the RPP (without ties), the second level
problem associated to each customer has a unique optimal solution for a given vector of prices of
the products. However, in this extension, the indi erence results in second level problems that
may have multiple optimal solutions. In RPPT, we consider the pessimistic optimal solution. In
case of indi erence, the customers’ selection of products is the most natural for the customers
since it is based on the price - they purchase (one of) the cheapest products.

To the best of our knowledge, the study of RPPT has not yet been addressed in the literature.
In this paper, we tackle its resolution by means of exact optimization methods. Speci cally, we
begin with a formal introduction of RPPT and propose an integer linear model with three-
indexed variables. Next, we derive two resolution methods for our three-indexed model.

The rst method is based on a reduced model for RPPT that uses a much smaller set
of variables. Since the linear relaxation of this reduced model provides a weaker bound, we
project out the variables of the three-indexed model by means of Farkas’ Lemma to obtain a
set of valid inequalities strengthening the Reduced Model. Due to the particular structure of
the rank pricing problem, the separation problem relative to these valid inequalities can be
transformed into a min-cost ow problem. In this way, we avoid solving a linear problem with



a commercial solver and instead apply a suitable resolution algorithm, making the separation
procedure computationally e cient.

The second resolution approach is based on Benders decomposition and takes advantage of
the structure of the problem. First we reformulate the three-indexed model, obtaining a master
problem with a set of constraints whose separation can be done by solving linear subproblems.
Then we are able to identify a small (polynomial) subset of constraints from the previous set to
obtain a reduced master formulation that constitutes a valid formulation for RPPT. The rest
of the constraints (now valid inequalities) are separated in our resolution method and included
dynamically, in a branch-and-cut framework. Although the valid inequalities are di erent from
the reduced model ones, the separation procedure is analogous to the rst one. To speed up the
cut separation in the linear relaxation phase, we include an in-out method, a technique used to
stabilize and accelerate the convergence of the cut loop.

We also provide a preprocessing techniques section where we reduce the size of the instances
by making use of the properties of the problem. We conclude our paper with the results of
extensive numerical experiments, where we compare the two resolution methods proposed in
terms of number of nodes of the branching tree, integrality gap and computational time, and
we show the e ciency of the valid inequalities and the preprocessing techniques.

The article is organized as follows. In Section [2 we provide a literature review. Section 3|
states the notation used throughout the paper and Section[4]is devoted to the presentation of the
three-indexed model. Section [5] includes all the results regarding the reduced model. In Section
[6] we provide the results concerning the Benders decomposition resolution approach. Section
includes the preprocessing techniques, and Section [8 contains the computational study. We
provide some conclusions in Section [9

2 Literature review

The Rank Pricing Problem as stated here (but under a di erent name) was introduced by
Rusmevichientong et al. [27]. Motivated by the availability of data from a website o0 ering car
recommendations to customers, they proposed pricing problems with unlimited supply and unit-
demand customers, and three di erent objectives, namely a min-buying, a max-buying and a
rank-buying objective. They show that those problems are NP-complete in the strong sense and
introduce a heuristic approximation algorithm together with performance bounds. Aggarwal et
al. [1] and Briest and Krysta [/] take up the work in [27] and present complexity results and
approximation algorithm schemes for RPP and variants of it. To the best of our knowledge,
Calvete et al. [8] proposed the rst formulations for the RPP, and thus [8] is a good starting
point when tackling RPPT.

Pricing optimization problems in combination with ranking-based customers’ preferences
are scarce in the literature, since many of them consider the maximization of the customers’
utility. However, the modelization of the customers’ selection rule by means of a ranked list



of preferences appears in many related elds. A closely related problem to our own is the
Product Line Design (PLD) problem. This problem aims at selecting a subset of products to
be produced (generally from a bigger given set) in order to maximize the company’s revenue.
The modelization of the customers in PLD is typically made in two ways. In the probabilistic
choice behavior (studied by Green and Krieger [15, [16], McBride and Zufryden [23], Dobson and
Kalish [12] and Belloni et al. [3], among others), each segment of customers probabilistically
chooses from the available options. In the rst-choice (also called ranking-based) behavior,
customers deterministically select the product from the o ered line that maximizes their utility.
Some references are those by Chen and Hausman [10], Schon [28] [29] and Kraus and Yano
[20]. A very recent work by Bertsimas and Misic [5] studies the PLD problem, introducing a
new mixed-integer formulation, theoretically analyzing it, and presenting a solution approach
based on Benders decomposition that signi cantly outperforms the previous results. As we will
address in the following sections, this paper has been the motivation for introducing Benders
decomposition as a plausible technique to tackle the resolution of RPPT.

A similar modelization of the customers’ selection rule can also be found in the eld of
Discrete Location. More speci cally, the Simple Plant Location Problem with Order (SPLPO)
consists in locating a set of facilities assuming that customers rank the potential facilities and
they attend their most preferred among the open ones. SPLPO was introduced in 1987 by
Hanjoul and Peeters [18], who developed a heuristic and was further studied by Hansen et al.
[19], Vasilyev and Klimentova [3I] and Canovas et al. [9]. Other works deal with a particular
ordering of the facilities through the concept of closest assignment. Espejo et al. [13] give a
thorough review and comparison of the di erent closest assignment constraints encountered in
the location literature, and study their generalization in the case of ties between distances.

Although the optimality criteria di er from our own, bipartite matching problems with pref-
erences also model the customers’ choice by means of a ranked list of preferences. In particular,
very well-known problems like the Stable Marriage (SM) problem include preference lists as the
agents’ choice. The rst integer formulations were introduced by Vande Vate [30] and by Gus eld
and Irving [17]. An extension of Vande Vate’s model to include incomplete lists of preferences
was given by Rothblum [26]. More recently, extensions of these models have been introduced by
Kwanashie and Manlove [21] and Delorme et al. [1I] to tackle a one-to-many generalization of
SM problem, namely the Hospital-Residents (HR) problem, as well as the Stable Marriage with
Ties (SMT) and the Hospital-Residents with Ties (HRT) generalizations. An in-depth review
on structural and algorithmic results on matching problems with preferences can be found in
Manlove [22].

3 Notation and relationship with problem PLD

The aim of RPPT is to establish the prices of the products of the company so as to maximize
its revenue, taking into account that we assume unit-demand customers who, once the prices
are settled, will purchase their highest-ranked product among the ones they can a ord (if any).



Besides, if a customer is indi erent between two products and he can a ord both, he will purchase
the cheapest one (or one of the cheapest randomly if there are more than one).

set of products. Each customer k 2 K has a subset of acceptable products 1* 1 so that k
would rather not make any purchase than purchasing a product i 2 1*. Similarly, we say that
a customer k is acceptable for a product i if it belongs to K; := fk 2 K : i 2 1*g. Without loss
of generality, we assume 1* & ; 8k 2 K, K; & ; 8i 2 1.

The acceptable products for k (i.e. the products in 1*) are ranked by k from the best to the
worst in a preference list. However, some customers may not be able to de ne a clear strict
preference over certain products, and they are allowed to express indi erence in their preference
lists. We denote i ;. j when we say that a customer k 2 K prefers product i to j, and we use
i ,]Jifkisindi erent between two products i and j. Therefore, there exists a weak order on
the set 1* for each k 2 K. Furthermore,  is an equivalence relation (re exive, symmetric,

i rjandi2Sk j2sk withn<nifi ,j. Notice that for a given customer k,  de nes
a total order on the set of the equivalence classes S *.

Each customer k is endowed with a budget. In order to keep notation consistent in the
formulation, and given that di erent customers may have the same budget, we de ne set M =

Th™g.,20r as the set of di erent budgets, so that b < b™2 if m; < m,. Further, we de ne
a function : K ¥ M such that (k) = m if the budget of customer k is the m-th smallest
budget b™.

As explained in Rusmevichientong et al. [27], there is always an optimal solution of RPP in
which the prices of the products are equal to a customer budget b, m 2 M. Since this result
is also valid for RPPT, we de ne M; :=fm 2 M : 9k 2 K; with (k) = mg as the set of indices
of budget values that are candidates to be the optimal price of product i. Moreover, for k 2 K;,
Mf =fm2M,;:m (k)g represents the set of indices m of candidate prices b at which k
can purchase i in a feasible solution. Finally, we de ne Mg = [iZShMik as the subset of indices
m 2 M of candidate prices b™ at which k could purchase some product i 2 SE.



Table 1. Preference matrix, vector of budgets and an optimal solution to an instance of RPPT

Prod. 1 Prod. 2 Prod. 3 Prod. 4 Prod. 5 Budgets

Customer 1 1 3 1* - 2 120
Customer 2 2 1* 1 - - 95
Customer 3 1 2 4 1* 3 82
Customer 4 - 3 1 3 2* 82
Customer 5 - 1 3 2* - 79
Customer 6 2 - 1 2 1* 65
Customer 7 3 2 5 1 4* 64
Customer 8 1 4 2 - 3* 53

Optimal prices 95 120 79 53 585

Example 3.1. Table [1| shows an instance of RPPT with jKj = 8 and jlj = 5 and an optimal
solution. The entry (k; i) of the preference matrix denotes the index n of the equivalence class
Sk to which i belongs for k (the symbol - indicates that the corresponding product i 2 IF).
Clearly, the smaller the entry of the preference matrix, the greater the preference of the customer
over that product. Customer 1 is thus interested in all products except for product 4, that is,
I' = f1;2;3;59, and from the preference matrix we deduce 1 {3 {5 ; 2, so we have
jS'i=n; =3 and S} = f1;3g, Si = 59, S = f2g. Similarly, the acceptable set of customers
for product 1 is K; = f1; 2;3;6; 7; 89.

Following the notation, (1) =7, i.e., customer 1 has the 7** smallest budget (i.e. the greatest
one), (2) =6, (3) = (4) =5, et cetera. Furthermore, the last row of the table shows a
vector of optimal prices along with the objective value (585). The purchasing decision of every
customer in this optimal solution is represented by an asterisk next to the entry of the matrix
associated to the product he purchases.

The set of indices of budget values that are candidates to be the optimal price of product 4 are
M, = £2;3;4;5g, and in the optimal solution, 4 has price b* = 79. Likewise, the set of indices
of candidate prices at which customer 6 may purchase product 4 is M$ = £2;3g. And the set
of indices of candidate prices at which customer 6 may purchase a product from S = f1; 4g is
'V'sg =f1;2;3g.

Notice that, even if there are less products than customers and six customers interested in
product 1, this product remains unsold in the optimal solution. One could think that, since
customer 7 purchases a product with price 53 but he has a budget of 64 and prefers product 1,
setting the price 64 for product 1 would lead to a feasible solution with greater objective value.
However, the fact that ties are allowed in RPPT prevents this solution from being optimal.
Indeed, in this case customers 1 and 3 would also purchase product 1 (given that they are
indi erent between 1 and the product they are currently purchasing but 1 has a smaller price),
and therefore the revenue would be 525 instead of 585.



In order to relate the RPPT with the Product Line Design problem (PLD), let us rst
properly introduce the latter. In PLD, we are given a set of products S with xed prices, and
the aim is to select a subset of them S® S of size p to build a product line. We are also
given a set of unit-demand customers K. Each customer k 2 K is interested in a subset of
products S* S and ranks the products in S* creating a list of preferences (the preferences are
strict). Thus, i  j fori;j 2 S* if k prefers i over j. Once the product line is established, each
customer is assumed to purchase the highest-ranked product in S’ \ S¥, if any. The problem
consists in  nding the product line that maximizes the pro t of the company.

Now, let us assume we have ties in the list of preferences of the customers in PLD. We can
name this problem the Product Line Design problem with Ties (PLDT). In such case, since all
the products have a xed price, there are no ties between two products with di erent prices
(because if a customer ranks two products equally and one is cheaper, he purchases the cheapest
one when possible). Therefore, there can only be ties between products with the same price.
Furthermore, for all product lines in which there are two products i; j 2 S™\S* for some customer
k,and i  j, k will purchase either i or j. In sum, PLD and PLDT have the same structure,
and PLDT does not require additional constraints to translate the pessimistic assumption.

Clearly, assuming p = jSj in PLD (or PLDT), RPPT is a generalization of PLD where the
prices of the products are not xed. Furthermore, we now show that RPPT can be seen as a
particular case of PLDT with a larger number of products and in which the number of products
to select in the product line p = jSj.

The prices of the products are given in PLDT. On the contrary, in RPPT they are not xed,
but the candidate prices belong to the sets th™g,,,2s Of budgets of the customers. Therefore, to
transform an RPPT instance into a PLDT instance, we de ne the set of products S := (i; b™) :
i 2 1;m 2 M,g. Similarly, we de ne S¥ := f(i;b™) : i 2 1¥*;m 2 Mfg S. Regarding the
customers’ lists of preferences, we assume that i  j for i;j 2 I* implies (i;b™) 4 (j;bmo)
8m2M;, m'2M,. Asfori;j21*withi ,jin RPPT,itholds (i;b™) & (j;b™) if m <m’
and (i:b™) 1 (j;b™") if m = m'.

Let (i;b™) and (i;bmo), with m < m’, be two products of the PLDT version of an RPPT
instance. If they both belong to S’, then 8k 2 K with (i;b™); (i; bmo) 2 S* it holds (i;b™)
(i; bmo), so product (i; bmo) is not sold. Hence, we do not need to add any additional constraint
imposing that each product can only be sold at one candidate price. This also implies that at
most jlj products will be sold in any optimal product line S, even if we do not impose a limit
on its size p.

4 Three-Indexed Model for RPPT

In this section, we propose a mixed-integer formulation using two sets of variables. Firstly, we
de ne binary variable v, 81 2 I, 8m 2 M;, that takes value 1 if the price of product i is equal
to the m-th smallest budget b™. For each k 2 K, and considering the partition S*, we de ne



customer k purchases a product i 2 S* at price b™.

With these sets of variables, we present a rst model called the Three-Indexed Model (3IM)
for RPPT:

X X X
(3IM) max pmykm (1a)
VY ok n2 Nk m2 Mg
X n
s.t. vit 1 8i2l; (1b)
"R <
yrmo 1 8k 2 K; (1c)
nZNk mZMSh
<
ykm vi*  8k2K;n2N*m2Mg; (1d)
i2SK
< , X ., X X :
m km km
v," + Y.+ Y0 1
mriozmj; m:;l\jrsnh nd=n+1 mOZMSEO
8k 2 K;n2N*i2skm2MF, (le)
v;"210;1g 8i21;m2M;; (1)
ye™ 2 0;1g 8k 2 Kin 2 N*;m 2 Mg: (19)

Constraints ensure that each product price is unigue. Constraints guarantee that
each customer purchases at most one product. Constraints state that if a customer k
purchases a product from class S* at price b™, then there exists i 2 S* at price b™. And
constraints are the preference constraints, and they ensure that F;the preferences of the
customers are satis ed in any feasible solution. Thus, if the rst sum mizMmk: v;”o is equal to

mom

1, then k can purchase i at a price smaller than or equal to b™'. So the second and third sums
of the LHS of are equal to 0, ensuring that k does not purchase either a product from a
class S¥ with n’ > n, or any product from S% at a higher price b™’, m’ > m.

Remark 4.1. Formulation (3IM) is also valid for RPP.

Now we prove that the integrality of the set of y-variables can be relaxed:

Proposition 4.2. The integrality of variables y;™, 8k 2 K, 8n 2 N¥, 8m 2 Mg, can be
relaxed in formulation (3IM). Indeed, family can be replaced with family

ye™ 0 8k2K;n2NFm 2 Mg )

Furthermore, for a given xed feasible vector (v;*) 2 f0; 19! ™ and a xed customer k, the
optimal values of variables y*™ for (3IM) with instead of are as follows.

xX X
1. If vi* =0, then y™ =08n 2 N*;m 2 M.

i2IK m2 MK



H — mi n k. P P m ©
2. OtherW|se,rI]etn =min n2N": i25% m2ymk Vit 1,

m :=min M2Mg : o Vi* 1 .Then,yy =1,y =0for (n;m)& (n;m).

Proof. In Appendix [Al O

Example 4.3. Let us describe the variables used to solve the instance given in Table [I] with
formulation (3IM). First, we de ne the v-variables associated with each product. For instance,
for product 5 we de ne variables vi* for m 2 M5 = f1;2;3;5;79. Regarding the y-variables,
for customer 2 we have that n, = 2, and S? = f2;3g, S = flg. For the products in S?,
Mgz = f1;2;3;4;5;69, so we de ne variables y?m for m 2 Mgz. As for S2, we de ne y2™ for
m 2 Msg = f1;2; 3;5; 69 (there are no customers with budget b* = 74 interested in product 1, so
1 will not have price 74 in an optimal solution). In the optimal solution, customer 2 purchases
2 2 S? at price b*, so y?* = 1.

Formulation (3IM) yields very good linear relaxation bounds. The main drawback of this
formulation is that it has a large number of variables and constraints, and therefore it is not
suitable for instances with a large number of customers or dense matrices of preferences.

5 Projecting the customer decision variables on the Reduced
Model

In this section, we discuss how to project out formulation (3IM) on a formulation of a smaller
size, the Reduced Model (RM). The projection results in a set of valid inequalities for (RM) for
which we develop a separation algorithm.

First, we de ne the sets of two-indexed variables of (RM). We use variables v, 8i 2 I,
m 2 M;, that represent, as in (31M), the price of a product. Considering once again the partition

decision variables that take value 1 if customer k purchases some product i 2 S¥, and zero
otherwise. And nally, to be able to model the pro t of the company, we de ne continuous
variables z¥, 8k 2 K, 8n 2 N*, that represent the pro t associated to a customer k and an
equivalence class S*. In a feasible solution, the value of z* is equal to the price of the least
expensive product from S¥ provided that customer k purchases a product from S¥, and zero

otherwise.

Using these variables, the Reduced Model (RM) for RPPT is:

X X .
A (32)
s.t. vi" 1 8i2l; (3b)
xt 1 8k2K; (3c)
n2Nk



xX X

xk vi*  8k2K;n2N¥ (3d)
25K m2MK
=< x)
v+ x¥ 1 8k2K;n<nki2sk (3e)
szik nd=n+1
zk pexk 8k 2 K;n2 N¥; (3f)
>
zh b0+ b p® v 8k2K;n2N5i2sk  (3g)
mZMik
v;" 2 10; 1g 8i21;m2M;; (3h)
xF 2 f0;1g 8k 2K;n2NF; (3i)
z8 0 8k2K;n2Nk 3))

Constraints ensure that each product price is unigue. Constraints guarantee that
each customer purchases at most one product, i.e., that all customers are unit-demand. Con-
straints prevent a customer k from purchasing a product i 2 S* when he cannot a ord
it. Constraints are the geference constraints, and they guarantee that if a customer k can
a ord a product i, that is if m2MK v;" =1, then k does not purchase any other product j 4 i,

ie. PZ::TLH x¥ = 0. The sets of constraints and model the pro t. Constraints
ensure that if customer k does not purchase any product from S¥ (x® = 0), then z* = 0 and
the corresponding pro tis zero. When customer k can a ord a product j 2 1*, then constraints
(3g) ensure that the pro t associated to k and a class S¥ is the minimum of the prices of the
products in Sf. Indeed, when v;"® =1 for some my  (k), then = . v =0 and the RHS
is equal to bo®)  (bmo  bo(k)) = o, Since z* is bounded by the price of all the products
i 2 Sk, it is actually bounded by the price of the cheapest product from the set. Finally, the
objective function represents the pro t of the company, that is maximized.

5.1 Comparison of models (RM) and (31M)

In this subsection, we compare the bounds given by the linear relaxations of models (3IM) and
(RM). The proof of Proposition is detailed in Appendix [Al

Proposition 5.1. The upper bound given by the linear relaxation of formulation (3IM) is always
less than or equal to that of formulation (RM).

Table 2: Preference matrix of a small instance of RPPT

Prod. 1 Prod. 2 Prod. 3 Budgets

Customer 1 1 3 2 2
Customer 2 - 2 1 4
Customer 3 2 1 1 8

10



Example 5.2. Let us show through the small example illustrated by Table [2] how the linear
relaxation bound given by model (3IM) can be strictly less than that of (RM). An optimal solution
of this example is obtained when we assign price b' = 2 to product 1 and price b?> = 4 to product
2 (and product 3 remains unsold). For this price vector, customer 1 purchases 1 and customers
2 and 3 purchase 2, so the optimal value is 10.

The upper bound given by the linear relaxation of model (RM) is 14. The fractional values
of v-variables are vi = 1, v3 = v = 0:5 (and the rest equal to zero). Likewise, the values
of x-variables di erent from zero are x} = 1, x = x2 = 0:5, x} = 0:75, x3 = 0:25, and the
values of z-variables are z{ =2, z} =23 =2, z} =6, z3 = 2. However, if we use the same v-
values in (3IM) and calculate the y-values by means of constraints , we obtain yi! =1,
y3? = y3? = 0:5, y;? = 1. This solution yields an objective value of 10 in (3IM) In fact, the
upper bound given by the linear relaxation of model (3IM) is 12.

As we will see in the computational experiments of Section [, the upper bounds given by
the linear relaxation of model (31M) are usually strictly less than those given by model (RM).
Regarding the previous instance from Table [I, the upper relaxation bounds given by the linear
relaxation of models (RM) and (3IM) are, respectively, 640 and 588 (recall that its optimal value
is equal to 585).

5.2 Strengthening the Reduced Model (RM)

The linear relaxation of model (31M) generally yields a smaller upper bound than that of model
(RM). By projecting out variables y*™ in (3IM), we can derive a set of valid inequalities to
strengthen model (RM).

We rst extend formulation (31M) adding x-variables and the correspondm%)constralnts from

(RM) relating them to the previous variables. By de nition, we have x* m2Mg ykm and
k=" Sy o bmykE™ for all k 2 K, n 2 N¥. Using x- and z-variables in place of y-variables
when p055|ble in formulation (3IM) leads to:
xX X
(3IM+) Vrg%z z, (4a)
k2K n2Nk
s.t. vit 1 8i2l; (4b)
xt 1 8k2K; (4c)
n k
2Nk oo
yhm v 8k2K;n2Nk;m2Msh; (4d)
25K
>
xk vt 8k 2 K;n2N¥; (4e)

125K m2MK
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mZMSh
<
zk byFm 8k 2 K;n 2 N¥; (4h)
mZMs,k,
v;"210;1g 8i21;m2M;; (41)
yr" 2 0;1g 8k 2 Kin 2 N¥;m 2 Mgy; 4j)
xk 2 f0;1g 8k 2 K;n 2 N¥; (4k)
z8 0 8k2K;n2N* (4l

Constraints (1b), (1), and from (3IM) correspond to (4b)), (4c), and (4f)),
respectively. As for (RM), constraints (3b), and are, respectively, constraints (4b)),

and (4€). Constraints are a subset of (3€), whereas constraints and are no
longer necessary due to the addition of (4h). Finally, even though and are added as

inequality constraints, in any optimal solution they will be satis ed as equalities. This is clear

for constraints (4h) because of the objective. As for constraints (4g)), suppose Wich> the aim of

contradiction that there exists an optimal solution (v;y; x; z) of (3IM+) with x* > m2M.. ykm
P Sn

for some k 2 K, n 2 N*. On the one hand, imply
because of the integrality constraints this leads to 5y« 2 Mg yRm =0,s0 o ykZF=0
due to (@h). On the other hand, x* =1 and (@) imply m21, Vi* = 1 for some i 2 Sk. Asa

result, customer k can a ord product i but 5« zF =0, so the solution is not optimal.

k km
ngvk Xn = 2Nk m2pg Yn o and
n

Proposition 5.3. Consider a xed customer k 2 K and a xed set of products S¥ 2 S*. Then
the following family of constraints

(@) 1
<X X < . X <X X
zZy Xy o+ @1 v XA+ vt (5)
m2Mgy izsk: md m nd=n+1 m2Mgk i2sK:
n mZMik n mZMik
is valid for (RM) if for all 0, m O0fori2Sk, m2MF, ™ 0form2 Mg, it holds
> > ]
+ ;o ™o 8m 2 Mgk: (6)

mOZMSk: i2sk:
T mizmk
ml<=m mM°2My

Furthermore, the linear relaxation of (RM) plus the set of valid inequalities is exactly the
projection of the linear relaxation of (3IM) on the space of variables (v; X; z).

Proof. For xed k 2 K, n 2 N*, we are going to project out the y-variables of formulation
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(3IM+) to obtain and prove the statement. We make use of and from (3IM+),
and we associate dual variables , ™, ™, to the corresponding constraints (4g), (4f), (4d),
(4h)), respectively. By Farkas’ Lemma, we have the following result: given a feasible solution
(v; X; z) of the linear relaxation of (RM), there exists a vector y satisfying (d)-(f) if and only
if it holds

(@) 1

<X X < , X <X X
zy  Xh o+ @1 vy XA+ v ()

m2M, sk i2sK: md m nd=n+1 m2M, Sk i2sK:

mZMk mZMk

8k2K,n2N* and8( ; ; : ) O such that
-

+ g+ ™o 8m 2 Mgxk: (8)

mi2M . izsK:
n 0opmk
ml=m mM°2My

If >0, We obtain if we normalize by setting =1.

If =0, the obtained inequality is dominated by and the nonnegativity constraints on
varibles v;* and xE_ It is indeed easy to see that for any feasible solution of (RM), the RHS of
(5.2) is nonnegative. O

Proposition [5.3| provides a family of valid inequalities for (RM) of in nite size. Therefore,
their inclusion in the model requires the election of a subset of them following a separation
procedure. Below, we formally determine the separation problem and show that it is equivalent
to a minimum cost ow problem (MCFP).

Let us assume we are given a fractional optimal solution (vI™; x¥; z¥) of the linear relaxation

of (RM) or a current solution at a given node of the search tree. We solve a separation problem
for each customer k and equivalence class Sk 2 S*.

First of all, the special structure of conditions () implies that to minimize of RHS in (5)), we
can set, for each m, at most |%ne toa pgitive valug, More precisely, for each m, we de ne

im 2 @rg Minp g,k 1 i Z::nﬂ xk, and thenset ™ =08i2Sk, i6&ip,.
Hence, the separation problem (SP’“) can be stated as:
1
L < LooX & X X

(SP;) min n v X G o + A (92)

wo rwzmk : nd=n+1 m2Mgc izsk:

m2M¥
st + ;7"1“0 + P 8mM 2 Mg (9b)

mi<m

s im0 8m 2 Mgk: (9¢)

Problem (SPF) is linear and the matrix associated to constraints is binary and possesses
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the Consecutive Ones Property: the elements equal to 1 in each column appear consecutively.
This property permits to solve the problem as a MCFP, see e.g. page 304 in Ahuja et al. [2].
We now describe how to derive this MCFP.

To begin with, we sort the budgets b™;m 2 Mg« by increasing order of their values. Then,
we transform the constraints in into equle__llities by introdulgng slack variatl):Les ™ for each
row min (@b). We also add therow 0 +0 = oy /" +0 oy ™+0 oy ™ =0
These modi cations lead to an equivalent formulation with the same objective function and
the following constraints:

2 32 3 2 3
1 0 0 bt
m
1 1 001 0 0 1 0 im b2
T LZ=8 11
11 100 1 0 0 1 bo (k)
00 000 0 0 O 0 m 0

o ™m0 8m 2 Mgk:

To nish the transformation, we carry out a row operation foreach m = (k); (k) 1;:::;1
in this order: we subtract the m-th constraint to the (m + 1)-th one. The equivalent linear
formulation (SP-MCFP¥) obtained is:

O 1
. X < X < <
H m m m m
min X + i Bl v Xpo (S + v, (10a)
7 m2Mgy miz2mK nd=n+1 m2M izskK:
n Im SAH n
m0 m m2mKk

1 1 100 10 0 1 m bo (k)

Dm0 8m 2 Mgk (10c)

The constraint matrix in (10b) is the incidence matrix of a graph G = (N;A). Each row
corresponds to a node in N = Mg« whose supply/demand is given by the corresponding RHS
of and each column corresponds to an arc. Hence, the variables represent uncapacitated

ows on the arcs and the objective function consists in minimizing the total cost of the ow.
The node corresponding to the last row is the unique sink with demand b?(*) and all other nodes
are sources with o er equal to the di erence of two consecutive budget values in Mgx. The
MCFP corresponding to problem (SP-MCFPF) is illustrated in Figure Given that there is
no capacity on the arcs and there is only one sink, the problem can be solved in Mgk steps, by
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Figure 1: MCFP corresponding to (SP-MCFPZ). Next to each node we have its supply/demand,
and variables ( ; ; ; ) are associated to the ow of the corresponding arc

computing one shortest path from each source to the sink.

To solve RPPT with formulation (RM) we thus use a branch and cut algorithm that adds
violated inequalities from at the root node as well as at every node of the branch and bound
tree of depth less than 4. Algorithm [I] details the di erent steps of the separation procedure.

Algorithm 1 Resolution of the separation problems (SP¥)

Let (v7™; x%; z¥) be an optimal fractional solution of the linear relaxation of (RM) or a solution

1! n'=n
found in a node of the search tree of depth less than 4.
For every customer k 2 K and integer n 2 N*, do
. . R n P 0 P?’Lk k o
Step 1. Obtain i, 2 argmin;zgx 1 mt m Vi mh=n+1Xp  8M 2 Mgk.

Step 2. Transform the instance of (SPY) into an instance of the MCFP.

Step 3. Compute an optimal ow on the corresponding graph of the instance of MCFP,
obtaining , [, ™ 8m 2 Mgk.

im’

Step 4. Incorporate constraint

(@] 1
k k am >< m? k > m >< m
zn axy+ Bim B1 Vi, TG+ 5 vj
m2M mi2mk - nd=n+1 m2M_ izsk:
Sn im Sn n
m0 m m2M=<

to (RM) provided that it is violated.

6 Solution of (3IM) via Benders Decomposition: the Benders
Model

Formulation (3IM) vyields very good linear relaxation bounds but it has a large number of
variables and constraints. However, as shown in this section, its structure allows for its resolution
by means of a Benders decomposition.

First, we introduce the Benders Model (BM). To reformulate (31M), we need to be able
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to relax the integrality on the set of y-variables. However, this result is shown in Proposition
(4.2). We address the Benders reformulation of (3IM) and relate it to the Benders Model in the
following subsections.

We de ne continuous variables z*, 8k 2 K, that represent the pro t from customer k. With
this set of variables and the set of v-variables used for (3IM) and (RM), we present the Benders
Model (BM) for RPPT:

>
(BM) max z" (11a)
v,z k%lé
s.t. vit 1 8i2l; (11b)
m2MiX >
z" b™v™ 8k 2 K; (11c)
X X
z" ™+ b b7 v+ bV
m2MK j21k m2 Mjk
J K!
8k 2 K;i 21" (11d)
v;"210;1g 8i21;m2M;; (11e)
¢ 0 8k2K: (11f)
Proposition 6.1. Model (BM) is valid for RPPT.
The proof of Proposition [6.1] is fully detailed in Appendix [Al
6.1 Benders Reformulation
We can proceed with a Benders reformulation of (31M):
>
(BRyas)  max zF (12a)
v,z k%
s.t. vit 1 8i2l; (12b)
m2M;
¥ PFv); 82K (12¢)
v;"210;1g 8i21;m2M;; (12d)
¢ 0 8k2K: (12¢)
where 8k 2 K, P*(v) is de ned as the optimal value of
X X
(BRgypk) max h™y (13a)
Y n2NK mZMSh
xX X
s.t. yoroo 1 (13b)
n2 Nk m2]\/fsh
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X

ym vi"  8n2N"m 2 Mg (13c)
i2SK
< ., X X <
Yoot Yoo 1 Vi
mUZMSk: nd=n+1 mOZMsk miz2mKk:
m? mn nd m0<rrl1
8n 2 N¥;i2sF:m2 Mk, (13d)
yo' 0 8n2NFm2 Mg (13e)

In (BRgypk), we drop the upper index k of the y-variables for the sake of notation. Con-
straints ensure that every product price is unique. This guarantees the feasibility in
problem (BRgyp«) for a given integer solution (vi™) of (31M), since the RHS of constraints (13b)-
is always nonnegative. Furthermore, constraint ensures that (BRgypk) is bounded.
Therefore, by linear optimization strong duality, the optimal value of problem (BRgyp«) is equal
to the optimal value of its dual problem, (BRgyppk). Associating variables ; ™; " to the cor-

L

responding constraint from sets (13b), (13d), (13c), respectively, (BRgyppk) can be stated as

o) 1
_ X X X > :
(BRgupp«) Otn'n + @1 vt A
o n2Nk iZS,k>m<2M}-k< meZMik:mo<m
+ Vit (14a)
n2NK 28K m2 MK
X X X X
s.t. + m o4+ iy m
nP=128K; mi2 Mk 28K moz2mk:
md m
8n 2 N*;m 2 M; (14b)
D7 00 8n2NFm 2 Mg i 2 S): (14c)

Now, we can rewrite problem (BRyas) making use of subproblems (BRgygpk). Thus, de ning
D* for each k 2 K as the set of feasible solutions ( *; *m; km) for the dual subproblem
(BRguppk), We have:

>
(BRymas) max z" (15a)
s.t. vit 1 8i2l; (15b)
m2 Mi o 1
X X X X 0
AR @1 virA pm
n2Nk i2SK m2Mk mI2MK:md<m
X X
+ v kme gk 2 K ()2 D (15c)

n2NK i25K m2MK
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vi"210;1g 8i21;m2M;; (15d)
¥ 0 8k2K: (15e)

Finally, we state (the proof is in Appendix that model (BRyag) obtained by means of a
Benders reformulation is in fact a reinforcement of the previous Benders Model (BM):

Proposition 6.2. The sets of constraints (11c) and (11d) are included in (15c).

6.2 Resolution Approach

The classical Benders resolution approach begins by solving to optimality the master problem
(BRyMas) Without constraints (15c). Then, a subset of constraints from is obtained by
solving problems (BRgyppk) for all k 2 K, and the violated constraints are added to the master
problem, which is again solved to optimality. This process is done iteratively until none of the
constraints from is violated, and thus the solution is optimal for (BRyas). The drawback
of this method is that (BRyas), that is an IP, is solved many times, which can take a considerable
amount of time.

In the lazy approach, however, the resolution starts by solving the linear relaxation of
(BRyMas) without the set (I5c), obtaining a fractional solution and an upper bound on the
optimal value. In order to decrease this bound, the subproblems (BRgyppk) are solved for each
customer using the fractional solution of the master problem, and a set of constraints is added
to the problem. Constraints are added at this phase until the bound is no longer improved. The
second step of the resolution is to solve the integer problem with the usual branch-and-bound
algorithm. In this phase, constraints are added in the so-called lazy fashion, i.e. only checking for
them when the resolution of a node in the search tree leads to an integer solution. In such case,
if a constraint is violated, the cut is pulled into the active node and the solution is discarded.
Otherwise, the solution is feasible for (BRyiag). At this step, constraints from (15c¢) may also
be added at a current fractional node of the branching tree. The interested reader may nd the
advantages of this method thoroughly explained in Naoum-Sawaya and Elhedhli [24].

In this work, we solve the Benders Model (BM) instead of (BRyiag). The advantage is that,
since (BM) gives feasible solutions for RPPT, we no longer need to solve (BRgyppk) in order
to check the validity of an integer solution of the master. Nevertheless, we can still add valid
inequalities from to cut o fractional solutions of (BM), thus strengthening the model.

Resolution of the dual subproblem (BRgygpk))

Solving problem (BRgyppk) for fractional solutions of (BM) is interesting because it allows for
the incorporation of valid inequalities in the linear relaxation phase, thus helping to decrease
the upper bound before solving the integer phase. An analogous procedure to that of the
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resolution of the separation problem (SP%) in Subsection can be applied to (BRgygpk). In
this case, it su ces to consider the lexicographical order in the rows of matrix (that is,
(n;m) < (" m") if n < n’or n =n’and m < m") in order to state that it also satis es the
Consecutive Ones Property. Thus, (BRgyppk) can be transformed into a MCFP and solved by
means of an e cient implementation of an existing algorithm.

For our implementation, we have selected the Successive Shortest Path (SSP) Algorithm
to obtain the solution of the MCFP. In each iteration, this algorithm selects a shortest path
between a supply and a demand node and increases the ow along the path (it also modi es
the reduced costs of the arcs used to_compute the shortest path and the residual network in
each iteration). Since our graph has 5y« jMgkj + 1 nodes, solving the problem for a given
customer k can take at most 5y« jMgx] iterations. When the preference matrix is dense, this
amounts to jN*j (k).

Figure 2: Structure of the MCFP graph corresponding to (BRgyppk). Source nodes appear in
white and sink nodes appear in gray

Leveraging the special structure of our MCFP, we have reduced the number of iterations
in which a shortest path is computed. The structure of the graph associated to our MCFP is
depicted in Figure[2l As in the graph from Figure [T} the white nodes represent sources, the gray
ones represent sinks and sending ow through -arcs (the arcs from a node to the previous one)
has cost equal to zero. Hence, we need not compute the shortest path between a node with excess
supply (n; m) and a node with unful lled demand (n’; m%) whenever (n;m) > (n’; m%). In the

rst phase of the algorithm, we select a source (n; m) and a sink (n%; m® with (n; m) > (n% mY),
and then apply the SSP algorithm without computing the shortest path. Then, when for all
supply node (n;m) and demand node (n’; m®) it holds (n;m) < (n%; m"), we continue with the
second phase, where we apply the SSP algorithm in the standard way. This preprocessing of
the MCFP reduces the number of iterations in which an algorithm to obtain a shortest path is
executed to at most (k) iterations. Thus, the amount of computational time saved during the
rst phase is signi cant.

Finally, note that the transformation of the subproblems into a MCFP can also be used to
solve the subproblems of the Benders decomposition proposed by Bertsimas and Misic [5] for
the resolution of PLD. Indeed, the Consecutive Ones Property holds in this case as well.
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In-out stabilization method and overall resolution approach

In this subsection, we present our resolution strategy to solve model (BM) as well as an in-out
stabilization method implemented to speed up the linear relaxation phase of the resolution.

The procedure is divided in two phases:

1. Linear relaxation phase. The linear relaxation of (BM) is solved, obtaining a fractional
solution and an upper bound on the optimal value. In order to decrease this bound, the
corresponding MCFP of subproblems (BRgyygp«) are solved for each customer and for the

xed fractional solution of the master, and a set of valid inequalities from is derived
and added to the formulation. Valid inequalities are added at this phase until the upper
bound is no longer improved.

2. Integer phase. The integer problem with the subset of constraints derived in the previous
phase is solved to optimality by means of a branch-and-cut. Due to the fact that it is very
time consuming, no more valid inequalities from (15c) are added in this phase.

As we have proved, the SSP algorithm used to solve the transformation of subproblems
(BRgyppk) into a MCFP constitutes an exact algorithm of separation. In this sense, it nds at
least one violated constraint for any solution of (BM) which is infeasible for (BRyas). On the
other hand, when the problem size is large, computing these inequalities is time consuming, and
frequently the upper bound decreases very slowly and many cuts are generated in the process.
In order to speed up this cutting phase, we implemented an in-out stabilization method with
the aim of generating less cuts of better quality. The steps of the cutting plane in-out algorithm
are detailed in Ben-Ameur and Neto [4] and Bonami et al. [6].

Let D represent the domain given by all the constraints of problem (BRyas), and P D
the domain given by the constraints from (BM). Then the in-out stabilization method is based
on the election of good separation points. Speci cally, at each loop iteration of the linear
relaxation phase three points are considered: a point (Vout; Zowt) 2 P n D given by the optimal
solution of the linear relaxation of the current reduced master problem (BM), a feasible interior
point (Vin;Zin) 2 D, and a separation point (Vgep; Zsep), Which is a convex combination of the
previous tWo: (Vsep; Zsep) :=  (Vouts Zout) + (L )(Vin; Zin) With 2 (0; 1]. At each iteration, two
possibilities can occur. If (Vsep; Zsep) 2 D, then we use it instead of (Vout; Zows) @s a separation
point to solve the dual subproblem (BRgyppk), since the inequalities provided by this point
are expected to be more e cient. We nish the iteration by solving the new optimization
problem and obtaining a new point (Vout; Zoutr). Otherwise, (Vgep; Zsep) 2 D, and in this case
solving the dual subproblem does not provide new violated cuts. Therefore, in this iteration
no constraints are added but (v;,;z;,) is replaced with (Vsp; Zsep), Which is a feasible point
with greater objective value. As we can see, at each iteration either (Vi,; Z;n) O (Vout; Zout) are
updated, until convergence is obtained because the relative di erence between the two points
is lower than a xed tolerance . Although is a scalar that can change in every iteration,
preliminary testing led us to set = 0:99 for all iterations. As for the interior point (Vi,; Z;n),
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it is frequently obtained using the barrier algorithm with crossover.

In our case, an interior point (v;,;z;,) 2 D can be very easily derived by exploiting the
particular structure of the problem. To do so, it su ces to build a non-degenerate convex
combination of jI Mj+ jKj+ 1 points of the polytope and then compute the centroid. Point
(i;m) of the rst feasible set of j M’j points was created taking vi" = 1, vglo = 0 for
(i% mP) & (i;m), z = 0. Point k of the next jKj points is z¥ = b®), z¥' = 0 for k! & k, v = 1
for i = minfi 2 Sfg, m = (k), v’ = 0 for (i’%; m") & (i;m). Finally, we used (v;z) = 0.

7 Preprocessing

In this section, we present a preprocessing procedure with the aim of reducing the size of the
problem by xing variables to zero. Note that, even though the results are stated for models
(RM) and (3IM), they also apply to subproblems (BRgyppk) during the resolution of model
(BM). This preprocessing is based on the one described in Calvete et al. [8] for RPP problem.
We de ne a recursive function U’ : K ¥ S X that assigns the index n of an equivalence class
Sk 2 S* to each customer k 2 K. Function U’ is de ned as follows, for the set of customers
ordered according to their budgets in decreasing order:

1. If (k) = jMj, then u'(k) := 1.

2. 1f (k)<jMjanditholds I¥* [ o S, , then

0
&Y= ) (k%)
0

u(k) :==min Nn2NF¥:Sk> [ k. S];O(kﬂ)

«H=> (k)

3. 1f (k)<jMjanditholds 1" [ wox: Sk

, then U'(k) := n*.
W= o W) ()

Proposition 7.1. For (RM) (resp. (3IM)), there exists an optimal solution (v"; x¥;z¥) (resp.

A ()

(vy";yk™)) such that xk = 0 (resp. y&™ = 0) for all k 2 K, n > 1'(k), m 2 M.

Let C,, r = f1;2; 3g, be such that k 2 C,. if and only if u'(k) has been de ned for k making
use of item r of the de nition of u’. Finally, we give a condition under which an optimal solution
can be found by inspection.

Corollary 7.2. If C3 = ;, an optimal solution of (RM) (resp. (31M)) can be found by inspection.

The proofs of Proposition [7.1 and Corollary [7.2] can be found in Appendix [Al

8 Computational results

Extensive computational experiments were carried out to compare the performance of (RM)
and (BM) in terms of the number of nodes of the branching tree, computational time and
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integrality gap, as well as the performance of the valid inequalities derived for both models and
the preprocessing techniques. We implemented both models by means of Mosel version 4.0.3
of Xpress-MP, Optimizer version 29.01.10, running on a Dell PowerEdge T110 Il Server (Intel
Xeon E3-1270, 3.40 GHz) with 16 GB of RAM.

Regarding the instances, we modi ed those proposed in Calvete et al. [8]. This set was
designed following a model based on the Characteristics Model proposed by Fernandes et al.
[14]. Calvete et al. generated instances for jKj = 50, jKj = 100 and jKj = 150 customers and
0:1jKj, 0:5jKj and jKj products. For each size, they generated four instances modifying j1%j.
Out of the four, we consider the instances with three sizes, namely j1*j = d0:2jlje, j1*j = d0:5jl je
and jl1*j = jlj. The budgets of the customers and their ranked lists of preferences were randomly
generated between 1 and 2jKj.

These instances were proposed in [8] for RPP, so we modi ed them by adding ties in the
ranked lists of preferences of the customers. Thus, for each size we generated three instances
varying the number of ties in the list of preferences (denoted Ties in Tables and in the
following), with 1, 2, 3, 5 or 10 ties depending on the instance. This parameter establishes the
relationship between j1*j and n* = jS*j in the following way: jl*j Ties = n*. We generated
5 instances of each size, 365 in total. The time limit was set to 3600 seconds, and the default
setting of Xpress was used.

For completeness, we report the results of the computational experiments in three tables
grouped in Appendix [B] Tables [4] 5] and [6] contain all the data concerning the instances of sizes
JKj = 50, jKj = 100 and jKj = 150, respectively. In the remaining of the section, the most
signi cant information from those tables is summarized by means of several gures. Models
(RM) and (BM), as well as models (RM) and (BM) with the corresponding branch-and-cut
procedures and preprocessing techniques, are shown in the legends of the gures as RM, BM,
RM+VI+prepro and BM+VI+prepro, respectively.

Figure[3)is a performance pro le that shows the percentage of instances having an integrality
gap less than or equal to the value on the x-axis. For models (RM) and (BM), the integrality gap
is RLGap = 1002, BY. where UB represents the upper bound given by the linear relaxation,
BV is the best value found by any of the models for such instance and OV is the best objective
value found by any of the models (the optimal value in most cases). As for models (RM) and
(BM) with the branch-and-cut procedure and the preprocessing techniques, the integrality gap
represented corresponds to: RGap = 100YBE-OY where UBC is the upper bound obtained
after adding the cuts in the root node. Figure [3shows that the linear relaxation bound given by
model (BM) is in general much smaller than that of (RM), which in some cases goes up to a gap
of 50%. Moreover, the cuts added in the root node are very e cient in both cases in reducing
the gap. Adding these cuts leads to gaps 2-3% in 80% of the instances, and gaps smaller than
14% in all the instances. As we explained throughout the paper, the upper bound in this case is
in fact the bound provided by formulation (31M), and this is why the integrality gap is roughly
the same for both models (since the value BV used is the same in all cases). Hence, Figure
illustrates the decisive role of the valid inequalities derived in Sections [5] and [6] when reducing
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Figure 3: In the y-axis, the percentage of instances with an integrality gap less than or equal
to that of the x-value is represented for models (RM), (BM) and (RM) and (BM) with the
branch-and-cut procedures and the preprocessing techniques

the upper bounds to close the integrality gap and reach optimality.
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Figure 4. Percentage of solved instances with jKj = 150, depending on their size. The size of
the set of products is included at the bottom of the corresponding group of bars, the number of
products in the list of preference of any customer (jl*j) appears after the letter p in the notation
of the instances, and the number of Ties of every customer is shown after the letter t

Models (RM) and (BM) solved to optimality the majority of the instances with 50 customers,
and the same models including the branch-and-cut and the preprocessing solved all of them. As
for the biggest instances, Figure (] shows the number of instances with 150 customers solved
by each of the four models, depending on their size. As we can see, the relationship between
the number of customers jKj and products jlj determines the di culty of the instance: the
instances with jlj = 0:5jKj (the ones in the middle of the table) are generally the most di cult
ones. Only (RM) and (BM) with the branch-and-cut and preprocessing are able to solve some
of the instances with jKj = 150 and jlj = 75. The fact that they are more di cult than those
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with jlj = 0:1jK]j is explained because the preference matrices of the latter ones are less dense
and they have a much smaller number of variables and constraints, so the branch-and-cut and
the branching procedures are faster. As for the instances with jKj = jlj (the ones at the right of
the table), they are easier due to the preprocessing techniques, which eliminate a great number
of customer decision variables when the number of products is big compared to the number of
customers. Within the instances with the same amount of customers and products, the increase
in the numbers of products in the list of preferences of each customer (jl*j) also increases the
di culty of the instance, as well as the growth in the number of Ties.

100
— R

———————— = = RM+VI+prepro

—— BM

= = BM+VI+prepro

Solved instances (%)

1 10 100 1000 10k 100k
MNodes in the branching tree (logarithmic scale)

Figure 5. Percentage of solved instances depending on the number of nodes explored in the
branching tree by models (RM), (BM), and (RM) and (BM) with the corresponding branch-
and-cut procedures and the preprocessing techniques

We also compared the performance of the four models in terms of the number of nodes
explored during the branching process. Figure [5 shows the percentage of solved instances de-
pending on the number of nodes explored in the branching tree by models (RM), (BM), and
(RM) and (BM) with the corresponding branch-and-cut procedures and the preprocessing tech-
niques. It is clear that (BM) outperforms (RM), solving a greater percentage of instances by
exploring the same amount of nodes, and that the models with the branch-and-cut and prepro-
cessing explore far less nodes than without these improvements. It is not so straightforward to
compare the performance in terms of number of nodes between models (RM) and (BM) with
the valid inequalities. However, we can see that for greater number of nodes explored, (RM)
slightly outperforms (BM), since the former solves around 3% more instances than the latter.

Finally, the percentage of solved instances with respect to the time (up to a time limit of
one hour) by the four models is illustrated in Figure @] This gure shows results coherent
with the previous ones, in the sense that it shows that model (BM) outperforms (RM), but the
opposite occurs if we consider the models with the valid inequalities and the preprocessing. It
is remarkable how model (RM) solves 44% of the instances in less than 3600 seconds, whereas
the same model with the improvements solves twice as many.
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Figure 6: Percentage of instances solved (with a time limit of 3600 seconds) by models (RM)
and (BM), with and without the corresponding branch-and-cut procedures and the preprocessing
techniques

Overall, it is clear that the branch-and-cut and the preprocessing techniques applied con-
stitute a major improvement in the performance of both (RM) and (BM). Comparing the two
formulations with the upgrades, it can be seen that the linear relaxation gap is always smaller
for model (BM) than for (RM). However, the cuts added in the root node are very e cient in
both cases in reducing the gap, and after adding them the gap is the same for both models.
From the number of nodes explored in the branching tree, the average time and the number of
instances solved, it is clear that model (RM) slightly outperforms model (BM). The reason is
that computing the valid inequalities for model (BM) is harder and time consuming. Indeed, we
compute one inequality for each customer for (BM), but we obtain one inequality per customer
and product in the case of model (RM). The fact that valid inequalities added to (RM) can be
separated by products makes the processes of computing the inequalities and branching a lot
more e cient.

Motivated by the results obtained by Bertsimas and Misic [5] with a Benders decomposition
procedure to tackle PLD, we decided to test the performance of our models using some large-
scale instances. In [5], they use a real data set with 3584 candidate products and 330 customer
rankings, and vary the number of products available in the product line creating instances with
alineof up to 2, 3, 4, 5, 10, 20 and 50 products. We generated two instances of RPPT of similar
size, that is, with 350 customers, all with di erent budgets, and 10 products. As explained in
Section [3| this is equivalent to having 3500 di erent products (if we consider a product with its
candidate price for PLD). And setting jlj = 10 also implies that the product line will have up to
10 products. We tested both instances with models (RM) and (RM) including the corresponding
branch-and-cut procedures and the preprocessing techniques, and the results are shown in Table
Bl
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(RM)+VIs+prepro

LR phase Cuts phase MIO phase Total

Ins Nodes _.
Best Bound Time (s) Best Bound Time (s) Obj Best Bound Time (s) time (s)
1 217071 0.5 155889 3534.5 148414 148414 8575.4 21113 12109.9
216549 0.6 154642 5482.7 143469 143483 72255.2 276914  77737.9

(BM)+ VlIs+prepro

LR phase Cuts phase MIO phase Total
Ins Nodes _.
Best Bound Time (s) Best Bound Time (s) Obj Best Bound Time (s) time (s)
1 172006 1.1 155889 21540.3 148414 148414 2103.7 23279 23644
2 170810 0.9 154642 21805.8 143469 143481 3487.1 120415  25292.9

Table 3: Results of two large-scale instances (jKj = 350, jlj = 10) given by models (RM) and
(BM) including the branch-and-cut method and the preprocessing techniques. The LR phase
of the table shows the bound and time of the linear relaxation phase. The Cuts phase includes
the bound after the cuts in the root node and the time to generate them. And the MIO phase
shows the best solution (Obj), the best bound and the time. We set a nal integrality gap of
0.01% or lower for this integer phase. Finally, the table shows the number of nodes explored in
the branching tree and the total time in seconds

The results show that the time needed to solve the Cuts phase is much smaller for formulation
(RM), with times of around an hour for the rst instance and an hour and a half for the second.
Model (BM), on the contrary, takes nearly six hours to add the cuts in the Cuts phase. These
results are consistent with the ones obtained in the previous experiment.

Nonetheless, we can see a di erent performance in the MIO phase. Model (BM) takes less
than an hour to close the gap and reach optimality for both instances. Regarding instance 1,
the MIO phase for model (RM) takes two hours and a half. But for instance 2, this phase takes
72255 seconds, i.e. more than 20 hours. Comparing the number of nodes explored during the
MIO phase with the time taken to solve instance 1, we see that both models explore a similar
amount of nodes, but model (RM) takes four times longer. We observe a similar pattern for
instance 2. Therefore, it is clear that exploring a node is much faster for model (BM) than for
(RM), and this is decisive in the reduction of the MIO phase time.

9 Conclusions

In this work, we presented a three-indexed integer formulation for RPPT, a problem which
consists in setting the prices of a set of products to maximize the pro t of a company, taking
into account the customers’ choice. We then developed two resolution approaches. The rst one
started with a smaller formulation (RM) of the problem which in general yields worse upper
bounds. To strengthen it, we projected out the customer decision variables of smaller size,
obtaining a set of valid inequalities. An ulterior transformation of the linear separation problem
into a MCFP was developed to take advantage of its features. The second resolution approach
is based on a Benders decomposition. We rst reformulated the problem into a master problem
and a series of subproblems. Then we derived a set of constraints from the subproblems to make
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the master problem feasible and a separation procedure to include them dynamically. We also
proved that a very small set of them can be included to make the master feasible while the
rest of them are still separated, thus linking the Benders reformulation with model (BM). We
completed the paper with preprocessing techniques designed to reduce the size of the instances
and extensive computational experiments to test the overall performance of both methods.

Computational experiments show that the valid inequalities and the preprocessing techniques
highly improve the performance of models (RM) and (BM). In particular, the valid inequalities
signi cantly reduce the upper linear relaxation bound and the preprocessing techniques reduce
the size of the instance, making the linear relaxation and the branching phases faster. Together
they allow for the resolution of up to 40% more of the instances proposed within the same
time limit. When comparing both models, (BM) generally yiels better linear relaxation bounds,
but (RM) slightly outperforms (BM) when we consider both with the valid inequalities and the
preprocessing techniques due to the amount of time the generation of the valid inequalities takes
for model (BM). Regarding the two instances with 350 customers proposed, the performance of
the models is consistent with that obtained for the smaller instances. In this case, we can clearly
see how model (BM) takes more time when computing the valid inequalities than model (RM)
but less time when exploring each node of the branch-and-bound tree, thus reducing the linear
relaxation bound faster than (RM). All in all, the theoretical study of a novel three-indexed
model with very tight upper bounds results in the development of two di erent exact resolution
approaches including models of a much smaller size that maintain the linear relaxation bounds
of the former model through the addition of valid inequalities.
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A Complementary proofs
Proof of Proposition 4.2

1. This is a direct consequence of (1d).

xX X
2. If vi" >0, let n, m be asstated, and i 2 fi 2 S* :v™ = 1g. Then for all

i2IK m2 MK
n2N* m2 Mgk, (n;m) & (n ;m ), it holds
If (n;m) < (n;m ) (with the Iexiclgqraphic order), then by the corresponding con-
straint from we obtain y~m i2sk V" = 0.

If (n;m) > (n ;m ), then we turn to the constraint from given by (n;i;m) =

(n;i;m):
< X X X
m m m
V" + Yo + Yo
mizmK : mi2m Kk - nd=n +1mi2M, %
i Sn Sno
ml m m0=>m
< o, X X
J— m m .
=1+ Y, t Yo 1.
mOZMSk : nd=n +1 mOZMSKO
mi>m n

We distinguish two cases:

P
{ 1fn=n,then m>m and y*™ belongs to the sum m02My md>m yhm,

If n>n , then y*™ bel P P k!
{ Ifn>n, theny;™ belongsto  ;»_, ., mi2Mgic Ynoo -
Hence, in both cases the constraint implies y*™ = 0.

We just proved that y*™ = 0 8(n;m) & (n ;m ). Finally, for y*» | we have that constraints
and reduce to y**  dwithd 1. As for constraints (I€), y** may belong to
the second or third sum of the LHS for a given k. If y*» belongs to the second sum, then
m > m and hence the sum of v-variables 5,0 mv{”0 is equal to 0. Otherwise,
)(;L" belongs to the third sum, so n < n and the IWay n is de ned once again implies

mO2 MKl mvgno = 0 for such i 2 Sk. Therefore, yi is free, and it will take value 1 in

the optimal solution because its coe cient in the objective function is positive.

Proof of Proposition

Consider a feasible fractional solution (v;y) of the linear relaxation of (3IM) that yields an
objective value v(v;y). We build a fractional solution (¢;%;2) of (RM) with an objective value
V(% %;2)  v(v;y). In this way, if v(v;y) is an optimal solution of the linear relaxation of (31M),
we obtain vV(RM)  v(¥%;%;2) v(v;y) = v(3IM) ,where v(RM) (resp. v(3IM)) is the optimal
value of the linear relaxation of (RM) (resp. (31M)).
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P P
We de ne ¢ 1= v, &k = mmskngm,z\ﬁ:: m2)Mgy bmykm 8k 2 K, m 2 MF, n 2 N,
i 2 Sk,

First, we prove that this solution is feasible for the linear relaxation of (RM). Constraints
hold because hold. Fixing v and ¢, the problems are decomposable by customers, so
we assume a xed customer k in the following, and we prove that the associated constraints
from sFe;ts . hold. As for the corresponding constraint from (3c), using the above we

have =,k RE n2Nk m2Mg ykm, and the last sum is less than or equal to 1 because

P P P
of (1c). As for the constraint from 1) it translates to | 5, ” ykm 2k mamk Vi

which_holds because of constraints (1d) (summing up on m). Regardlng thePconstramt from

k nk

n k km
B ok ¥ R R 1' it translates © o\ VE+ o1 2w Sk, Ynt

1, which is exactly the inequality from set for such k and m = (k), so it also holds.
Constraint 2k bRk from set (3f) holds trivially using the de nition of % and 2, since
M= m2)Mg brykm - po(k) m2 Mg ykm = oK)k And nally let us prove the feasibility

of the corresponding constraint from . To begin with, we knlc:>)w that for a given customer
0

k and product i 2 I*, and imply w2 Emd<m Vi + 2 Mgyt _ykm18m
such that m 12 MF. Let us suppose MF :=f1;2;:::; (k)g. Then, multiplying the previous
constraint m such that m 12 Mf by b™ b™ ! (where b® = 0) and adding together all the
constraints, we obtain:

$) > o o o
pm pm 1 V;m + p™ ™ 1 yTlim p™  p™m 1 :ba(k): (16)
m=1ml=1 m=1ml=m m=1
The LHS of is equal to
H TR 0
p  pm Vzm + b pm 1 yﬁm
m=1mbl=1 m=1ml=m
o1 o ot 0
— h™  p™m 1 Vzm + h™  p™m 1 yrlim
mi=1 m=m? mi=1 m=1
o1 >
ba( bmﬂ V,Lmo + me mel — bo-(k) p™ V’Lm + z‘k
mbi=1 mbi=1 md2 Mk

All in all, we obtain that constraint 2% + PmUZMik bok)  pm’ v’ pe(k) s satis ed, so the
corresponding constraint from holds. On the other hand, if Mf (fL;2;:::; (K)gitsu ces
to multiply each constraint associated to m 2 M} by b™  b™", where m’ = fmaxfm® 2 fog
[ Mf:m® <mg instead, and the same result is obtained applying the previous procedure.

Finally, we need tolgrove that v(¥; X; 2\|)__) v(\lljy) But this is straightforward by de nition
of 2, since V(% %;2) = ox nZNkz\k = k2K n2NK m2Mg bmykm = v(v;y).

Proof of Proposition
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Constraints (11¢) guarantee that if customer k cannot a ord any product, then z* = 0.
When k can a ord several products, the RHS of (11c) is an upper bound on the value of z*.

Constraints model the preferences and ensure that k purchases his most preferred
product (at the cheapeslt:)pricel_g\ case of ties). Indeed, given an integer feasible solution (v;z),
letn c=minfn 2N*: " 0 oycvi 19, and i 2argminggc T )b g, Clearly,
Sk is the rst class (according to the ranking) from which k is able to a ord a product, whereas
i is one of the cheapest products from S¥ . So assuming vi* = 1, we need to prove that it
holds z* = *  ,,x b™v™ = b™ . Since we are maximizing the objective, it su ces to prove
that all the RHSs bf and for such k are all greater than or equal to b™ , and that
at least one is equal to b™ . We have one constraint per product i 2 1*, so to begin with we
distinguish two cases:

iP i.In tr|1:i)s case, the last sum of the corresponding constraint from (11d)
j2rk i mewmk DTVY = 0. We have three subcases to consider:
i J

{i ,i.Thenkcannota ordioranyj i, sothe RHS of (T1d) is equal to ho(*),
an upper bound on the pro t from k.

{ i=1i . In this case, the RHS of (11d) is equal to b™ :
>
ba(k) + h™ bo(k) Vljn :ba(k) + pm bo(k) =pm -
m2MK
{i ,i,i6&i. Inthiscase, by de nition of i we know that v* = 1 for some

M m. 1t > (k), then the RHS of (I1d) is equal to bo(¥). Otherwise, we have
ok DTV =™ p™ and it holds

X

bo(k) + h™ ba(k) Vzm — ba(k) + bm bo(k) — bm:
m2MK
i ;i. Then it holds
X X X X
b ™) + b b7 v+ bV bV b
m2MK i21k: m2 Mk i21k: m2 Mk
! § ki 1 § ki 1

where the last inequality holds because v;* = 1 belongs to the previous sum.

Proof of Proposition [6.2]

We drop the k index from the variables for the sake of notation. Constraints (11c)) are

obtained, for a xed customer k, when xing =0, ™:=08i21* m2 M} ™m:=pm
8n 2 N¥, m 2 M. Thedescribed ( ; : ) belongsto D* because constraints (I4b) are triviall
sk ( ) gs,to D* be train y

. . - n 1 m m?

satis ed, since foreachm 2 Mgk itholds  + ., 56k mi2ME i g2sk  mizmks T
n mi<m

m m — bm

n n -
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As for constraints (11d), consider for

assume M = f1;:::; (k)g. Let us set the values :=b!, ™ :=pm+!
m< (k), 7 ._o, Po=08iei, m2ME o=hren<n,m2Mg, [
forn_ n,m2 Mg. Thenitfollows . ™= o0 prtl pr = poh)

and m2]\/[k :m ml z = bo®)
correspondlng constraint from (15c) is
@)

+
n2NKi2SK m2 MK

mo

b™ for m' 2 MF.

XXX(% x 0§ X X X
1 S

mizmk:

xedk 2 K, n 2 Nfandi 2 S*

1

m m
Vit on
n2NX 25K m2 MK
m

1
> ) X X X
— m mpm
it v;"b
m2MK m02Mk n<n 25K m2MK
o)
L > x >
= bl + m v{"bm
mZMik mOZMik m2Mk l2|k- mZMk
m mo
L, X X
— b1+ bcr(k) bl ba(k) h™ Vz'm + mpm.
mI2 MK i21k: m2MK
11

which is equal to the RHS of (I1d) for customer k and product i 2 S* .

To check whether ( ;

1% and
b™ for m 2 MF :
=0

bl

Therefore, we have that the RHS of the

) belongs to D*, and knowing that the vectors are nonnegative by

de nition, it is left to prove that (14b) hold 8n 2 N*, m 2 Mg, i 2 S} To do so, we study

three cases depending on n 2 N*:

n<n . Then for given m 2 Mg, we have the LHS of (14b) equal to

> X X

-+ .
7

n'=1;25K) mo2prk
n i

n=n . Then it holds for m 2 Mgx:

<! X X , X X

+ i+
nP=1 ;25K md2 Mk 28K mizmk:
mi<m

0

< X

m — pm.
m = pym,

125K miamk:
ml<m

~ SD
+

ZmO:bl_'_ h™ bl
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Il
+

m02Mik :

mi<m
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n>n . Then for given m 2 Mgk, we have the LHS of (14b) equal to

<L X X X X D
+ HE T+ =+ im:bo'(k):
ni=1 25K, mo2 MK 25K mo2mk: mi2 MK
mi<m
In the three cases, the LHS of (14b) is greater than or equal to b™, so the given ( ; ; ) satis es
(14b) and thus it belongs to DF.
If Mf ( 1;2;:::; (K)g, the proof follows analogously applying the previous procedure to

the same and , but de ning ™ :=b™ b™, where m’ = minfm® 2 M* : m® > mg, for

m2Mfm< k), /%:=0, rm:=08i6&i, m2M.\

Proof of Proposition [7.7]

We shall prove the statement for model (RM), since the proof for model (3IM) is analogous.
Thus, suppose we have an optimal solution (07; ®F; 28) not satisfying the statement conditions.

7 1™

Our aim is to build another one which does satisfy them. We will proceed by induction on k.

To begin with, it is clear that the statement holds for all customers k with budget b,
Indeed, since these customers can a ord any product, they always get one of their favorite ones,
so one in the set S¥, and &% =0 for n > 1 = u’(k). Now, let kg 2 K be such that the statement
holds 8k 2 K with (k) > (ko) but ®%0 =1 for some n > u’(ko). Then it is clear that kg 2 Cs.
Besides, from the de nition of u’ we know there is a product ig 2 Sfj(?(ko) nL (kl;il((:ko) Sﬁo(k), and
we also know that iy remains unsold in this solution.

Hence, consider the vector of prices v;" obtained by modifying the price of ig: v;" = ¢
8i & ig;m 2 Mf, v;‘o(’“’) =1 vy=08m#& (ko). Given this vector of prices, customers k
with (k) < (kg) can a ord the same products than in solution (Of;k’fl;?ﬁ), so they make
the same purchase. Customers k with (k) > (kg) were already purchasing in the previous
solution a product that they liked better than ig. And customers k with (k) = (ko) might
purchase product iy in the new solution, but in this case, since they pay their whole budget, the
objective value does not decrease with respect to the previous solution. Therefore, (¢;"; RE. phy
is an optimal solution that meets the statement requirements for customer ko. Applying the
procedure iteratively, we can obtain an optimal solution satisfying the statement.

Proof of Corollary

We will prove the statement for formulation (RM), and the proof for (3IM) is analogous.
Let us de ne a solution (v™;x¥; zF) of (RM) and prove its optimality.

T 't tn

We begin by de ning the vector v of prices in the following way: 8i 21 :i 2 Sﬁo(k) for some
k 2 K, then v;"® =1 for my := maxfm 2 M; : 9k 2 K with (k) = mg;i 2 Sﬁo(k)g, vt =0
8m&my,and8i 2l suchthat fk 2 K :i 2 Sgo(k)g = ;, then vlmo =1 for mg := maxfm 2 Mg,
vi" =0 8m & my.

Now let us see the customers’ purchasing decision based on vector v. Thus, given k 2 K
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we have that 8i 2 S¥ with n < u'(k), it holds by de nition of u’ that i 2 Sﬁo(ko) for some
K': (k%) > (k), and therefore v* = 1 for some m > (k) and thus k cannot a ord i. Hence,
we have x® = 0 8n < u'(k). Moreover, since k 2 Cs, there exists iy 2 Sfo(k) such that v;'o(k) =1.
This combined with the fact that 8i 2 Sﬁo(k) it holds v = 1 for some m (k) by de nition of
v, implies that customer k purchases ig, so xﬁo(k) =1 and zﬁo(k) = po(k),

P
Given that the objective value of this above derived feasible solution is =, b”*), which is
an upper bound on the pro t the company can obtain, solution (v™; x%; z*) is optimal.

(I (2 1

35



‘Buissaocoadaid pue sanujenbaul pijea syx yum ((NG)
‘dsat) (NY) [9pow Joyg awes ayy st 1 ‘((ING) “dsaa) (INY) 19pow ul steadde Ajuo (deoy) deb Anjeabaqul ayl ybnoyye ‘1eyy ad110N "SpU0ILS
009€ JO 1IWiI| 3wy ayy ueyl sso| ul Aljewnndo 01 paAjos seauelsul Jo saquinu ayl pue ‘((s)1) seaueisul ayy anjos Ajjewnndo 01 papaau swiy abelane
3yl pue ‘(sspoN) 931 Bulyouelaq ayl Jo sspou Jo Jaquuinu ayy ‘(desy) spou 1004 3yl Ul SINJ 3yl Jalye uolrexejal Jeaul] ayy Jo deb Aijeibaiul syl
‘(s3nD) 12101 Ul pappe sailifenbaul pijea Jo Jaquinu abeiane ayl ‘(deoyT) uonzexe|al Jeaul] ayl jo deb Alipesbalul syl sapnjoul osje 1l ‘|spow ayl
uo Buipuada@ (se1L) san Jo saquinu aya pue ([, |1) paisaisqul si Jawoasnd A1anse yoiym ui syonpoud jo saquinu ayy ‘(1) syonpoud jo Jsquinu syl
SMOUS 3]0} 8y} pue ‘s1awoisnd oG = [l aney ssouelsul |1 “(sull Jad pabelane seouelsul G) saouelsul ayl e 01Z] uoioas ul paquasep sanbiuyssl
Buissesoudaud syl pue poylsw 1no-pue-ydsuelq syl Buipnpur (NG) pue (AY) siepow yum (IANG) pue (INY) S|epow jo uostredwod 7 9jqel

S T 1 00 g€ S 8% ¢l 0 S T ¢ 00 08I 1 168T $96556 V0 0T 0% 0¢
S 0 I 00 ¥ I A | 0 S 0 I 00 €C ¥ 19L 8T6SHT T°0 ¢ 05 0¢
S 0 I 00 ¢ I A | 0 S 0 I 00 2l ¥ 8¢L €ISTI9T 0°0 ¢ 0% 0¢
.B S ¢ 1 10 IS ) 20T 1 S € L 10 102 S PPT €988 ST 0T Sz 0¢
S S T 1 00 91 g ¢ I 0 S 0 I 00 19 g 9T TS VO ¢ Gz 0¢
n S 0 1 00 el S T I 0 S 0 1 00  SF S LT 0L V0 ¢ gz 0¢
mu.v g 1T 1 AV e S T 2Nt z S 1T ¢ z0 691 g €T 69%¢ €F ¢ 0T O0¢
— g 0 I 10 02 g 0 1 0 S 0 1 10 LL g C a1 8T ¢ 0T 0¢
m S 0 I 00 1T S 0 1 0 S 0 1 00 8¢ g ¢ 2z G0 1 0T o0¢
o
._qLa g 88 T0SL TI V6T 199 €8SLIL 9 S eV Sy TT  L6El 0  009¢ £T6SCL 86 01 9% Gz
i g oL ¥e L0 €91 ¥ 1891 6669%% ¥ g 2t 82 L0 9zel € 99¢g 89¢¥9E 69 ¢ S¢ 9%
- G ggl 98¢ L0 9V v PI6I £€8G1C ¥ S  ¥Z 09 L0 8Tl T 666G VLELLY 0L ¢ SC 9z
Q g gl 8¢ L0 091 g 8eT T0¥E8 ¢ g  OT ¢F L0 €99 S LL6 FT60LE 80T ¢ €I 9C
€ g 1 €I €0 8l g 68 geIee ¥ S S 6 €0 16¢ G 9I¢ €£5LTT 68 ¢ €1 <z
w S 6 C €0 €6 G GF L9681 ¢ ¢ g €I €0  ¢0¢g ¢ 6IT 8929% T2 1 €¢I ¢g
® g z €L LT Tal g g GoeT ¢ T A7) LT geg ¢ 0T 8SL¢ T'€T € G gz
c g z z 70 T8 g ¢ 691 e S 1 9 70  oee g g 6.8 891 T S gz
- S T I z0 IS Sz i) e S T I z0 891 S T oG el I 6 G
L
)
M G GI 00gT TOT &SI S 9  9%20T 0C g 0I TETT 10T S86F S v 0LIE  T6F € ¢ g
S ¥z €9 T9  ¥el ) 8GG0T 9T g Il 2Tz T9 €8¢ ¢ 9 0gvF T'E T S g
% S V¢ ¥6 vz 611 S v GIIET 1T g 0T 6T €T 6% ¢ ¢ 060¢  €£9¢ 1 ¢ ¢
o S ¢ gg 6'¢  T6 g 1 079 1T ¢ ¢ 62 6'¢  9FE ¢ € Tzl o8y I ¢ ¢
[ S T 99 8 L g T IS iat ¢ ¢ €L T8 9TC ¢ T QS evI 1 ¢ ¢
= 0S8 (8)1 s9poN depy sy 10§ (S)1 spoN deHyT [0S (S)1 sOPoN deny smp oS (8)1 s9poN  deHyTT
oM oadaiad+siIA +(NGD) ng) oadaad+sIA+(NS) nd) SoLL [y 0

36



‘Buissaooadaid pue sanijenbaul piea syr yum ((ING)
‘dsat) (NY) [9pow Joyg awes ayy st 1 ‘((NgG) “dsaa) (INY) 19pow ul steadde Ajuo (deoy) deb Ajeabaqul ayl ybnoyye ‘1eyy ad110N "SpU0ILs
009€ JO Wl awil ay) ueyl sss| ul Aljewindo 01 paajos ssaurisul Jo Jaquinu ayy pue ‘((s)1) saoueisul ayl anjos Ajjewndo 01 papaau awil abedsne
ay1 pue ‘(sapoN) 9841 Buiyouelq ayl Jo sepou Jo Jaquinu ayl ‘(desy) spou 1004 ayl ul SINI ayl Jayje uolexejal Jeaul| ayl Jjo deb Auesbajul ayy
‘(s1nD) 101 Ul pappe saniijenbaul pijea Jo Jaquinu abelane syl ‘(deoy) uoinexejal Jeaul| syl Jo deb Ayjeabajul syy sspnjoul osfe 11 ‘|spow ayl
uo Buipuada@ (se1L) san Jo saquunu ayl pue (I, |1) paisaisqul si Jswoasno A1ans yoiym ui syonpoud jo saquinu ayy ‘(Mf) syonpoud jo Jsquinu syl
SMOUS 3]qel Y3 pue ‘s1awoIsnd 00T = M aney saouelsul |1 "(aull 4ad pabeiane seouelsul G) saourIsul 3y} e 03[z uoindas ur pagrasap sanbiuyosl
Buissasoudaid syl pue poylsw Ino-pue-yosuelq ayl Buipnpur (NG) pue (AY) siepow yum (IANG) pue (INY) S|epow jo uostredwod :§ sjqel

g 197 T 00 cL g 88TT 8I¢€ 10 g 6 T 00 90¥ T 8L1¢ T09¢€ T°0 0T 00T 00T
g g T 00 8¢ g TEOT T 00 g 4 T 00 474! T £€90¢ ge€e6y 00 g 00T 00T
g g ! 00 Ve g 1577 00 g 4 T 00 VIt € ¥9LT1 ¢I1L6T 00 € 00T 00T
g 1T ! 00 ¥6 g 9€T  L¥€ €0 g 8 g 00 LVY 0 009€ L8cSveE 7'0 0T 09 00T
g L ! 00 9¢ g g9 € 10 g € (4 00 [4%4 4 €9¢¢ ¢cbLic 10 g 0S¢ 00T
g 4 T 00 o€ g @8 1 00 g 4 T 00 T€T € €LGT 9.9¢ST 00 € 0S¢ 00T
g 9 T 00 88 g 8T  08¥ 70 g 4 T 00 €6¢C % CILT G80€0C 80 g 0c 001
g € T 00 87 g € T 10 g 4 T 00 991 g 86T 90GLT €0 € 0c 001
g 1 T 00 €¢ g ¥ T 10 g T T 00 <6 g 1€ 90¢ o T 0c 001
(4 0STE ¥PE8 60 80¢ 0 009¢ 8CERS  6°¢ € 8GT¢C ¥9G¢ 60 1819 0 009¢ 020SS ¢'¢ 0T 09 0¢
€ C9Le €289 L0 .V 0 009¢ G199¢ 9°¢ ¥ 2v9T 820C¢ L0 619 0 009¢ €¥969 67 g 0¢ 0¢
g 9LC¢ 8€69 90 QLY 0 009¢ 9vi6lT €€ g 8¢8 00§ 90 LEEI 0 009¢ €ceE9 97 € 0s 0¢
4 S6ZT 06S¢0T ¥'1 0LG 0 009¢ 906¥1€ VG ¥ OI€T 8209 7¥'T v€0€ 0 009€ TGSE6T 7'6 0T ¢g¢ 0¢
g a8%  ¥.L00T 60 09¥ 0 009¢ 8L269T 07 g 00€ 8.8 6°0 1162 0 009€ G69861 69 g g 09
g 69¢ ¢eLe 90 90¥ 0 009¢ 999¢0T 9°¢ g 6.T L&V 90 L99¢ 0 009¢ LSPS61 1°9 € gc 09
g 6E L08T T'T [4% T €4TE 698V67 V'G g 1874 V.S T'T L6C1 0 009€ LT€€9S9 S'VI g 0T 09
g (114 68€ 70 V8¢ 4 0€9C 7668LS% L€ g LT 14% 70 €001 0 009¢ L0969L T1°0T € 0T 0¢
g VT T 10 9€¢C ¥ €C8T CCV8TY 6'C g vl 1C 10 006 4 0€TE 8V699¢ 6°L T 0T 0%
€ G0LC ¥6C0SS 0L L0V T GIVE P9LC80T G'LT g V10T TTVPSS 0L G91¢C 0 009¢ 88¢ECE 9'9¢ g 0T O1
g G8€C 099861 07 1444 0 009€ ¢99CSecl 6°€l g ¢lE VST 0¥ [4ké 0 009¢ 96.Lc9¢ €'1¢ € 01T o1
¥ 6L1C 99¥10C T°€ 1253 0 009¢ TO908TT 9°CT g 60€ 965 '€ c00¢ 0 009¢ 608819 ¥'8C T 0T O1
g 60T T1.9v¢ €L 4% g €61 €9€90C 691 g 8¢l ¢8G98 <C'L 69¢T g GLy  TIOTILT ¥'8V € g 0T
g 8¢C 908 ¥V ote g cee  9TLILT  9CT g TL €2CT TV VeIt g 606 9LE€TT 9TV 4 g 0T
g GTT ¥e0c 87T 0LC G LVT LEOIVI 66 g 16 1.7 8'C L9TT g 699 8006ST 6°LE T g 0T
g i SPT €€ TET g 4 9¢T 8L g 9 €qT €€ ¥9€ q € 669¢ 8L T 4 0T

108 (8)1 sepoN depy smp (0§ (s)) sepoN  depyT 0§ (s)1  sepoN depy sin) 10§ (s)1 sepoN  denyT

oadasd+sIA +(NSD) na) oadaid+sIA+(NY) (nap) ML Lt It

37



‘Buissaooadaid pue sanijenbaul piea syr yum ((ING)
‘dsat) (NY) [9pow Joyg awes ayy st 1 ‘((NgG) “dsaa) (INY) 19pow ul steadde Ajuo (deoy) deb Ajeabaqul ayl ybnoyye ‘1eyy ad110N "SpU0ILs
009€ JO Wl awil ay) ueyl sss| ul Aljewindo 01 paajos ssaurisul Jo Jaquinu ayy pue ‘((s)1) saoueisul ayl anjos Ajjewndo 01 papaau awil abedsne
ay1 pue ‘(sapoN) 9841 Buiyouelq ayl Jo sepou Jo Jaquinu ayl ‘(desy) spou 1004 ayl ul SINI ayl Jayje uolexejal Jeaul| ayl Jjo deb Auesbajul ayy
‘(s1nD) 101 Ul pappe saniijenbaul pijea Jo Jaquinu abelane syl ‘(deoy) uoinexejal Jeaul| syl Jo deb Ayjeabajul syy sspnjoul osfe 11 ‘|spow ayl
uo Buipuada@ (se1L) san Jo saquunu ayl pue (I, |1) paisaisqul si Jswoasno A1ans yoiym ui syonpoud jo saquinu ayy ‘(Mf) syonpoud jo Jsquinu syl
SMOUS 3]qel U3 pue ‘s1awoIsnd 0GT = M aney saouelsul [ (aull 4ad pabeJane seouelsul G) saoueIsul 3y} |[e 03[z uoindas ur pagrasap sanbiuyosl
Buissasoudaid syl pue poylsw 1no-pue-yosuelq ayl Buipnpur (NG) pue (AY) siepow yum (IANG) pue (INY) S|epow jo uostredwod :9 sjqel

¢ 62 0 00 1L 0 009¢ 0 00 ¢ 8T 1 00 10 0 009¢ €8.L 00 0T 0¢T 0ST
¢ 8 0 00 8% 0 009¢ 0 00 g 8 T 00 9T 0 009 688 00 ¢ 09T 09T
¢ 9 I 00 7% 0 009¢ 0 00 g g T 00  €TT € 166 8€¥c 00 €  0ST 0ST
¢ LT I 00 98 ¢ 698 €9T 10 g 1T T 00 OTF 0 009 69T00T T°0 0T gL 0gST
¢ L I 00 ¥ ¢ 98¢ ¢ 00 g 9 T 00 06T T 9€T€ 09268 00 ¢ ¢, oI
¢ L 1 00 L8 g g6V 0 00 g g T 00 91 ¢ 08VZ 0VEE9 00 € gL oSl
S 0z ¢ 00 291 S €¥E 60201 V0 g Tl ¥ 00 8¢9 0 009§ 06209Z L0 0T 0g 0ST
s L 1 00 09 ¢ e 9 10 g g T 00  67¢ v 8Vl S9806 ¢0 ¢ 08 o0¢T
I 00 &F ¢ g I 10 g 7 I 00 99T g Tl VIF6 10 € 08 09T
0 009¢ ¥ Ve ¥6e 0 68GV 2SeT 07 0 009 ¥0S ST 9FEPT 0  009E S06ST 0'G 0T gL ¢l
0  009¢ ¥ 8T 108 0 Tlov 18T T 0 0098 908 OT LSLET 0 009E €68€T T'F ¢ gL g
0 009¢ ¢ Ve 9. 0 608V €ITT 8¢ 0 009 ¥LF 9T T8EYT 0  009€ 6T2LT L¥ € gL qL
T 61SE ¥88T 60  9LL 0 009§ 06£SS 6°€ ¢ 1I8Z 8¥6Z 60 9299 0 009¢ 9918L 09 0T 8¢ ¢l
¢ 8L0% 60L9% 60 169 0 009§ 0TS &€ ¢ T8z 9TSE 60  TTe9 0 009¢ 9¥TOL € ¢ 88 al
€  0F6T 986y L0 8€9 0 009§ T€e8y T°€ ¢ EvZZ 60VZ L0  T66S 0 009§ LILOL L7¥ € 88 ¢L
g G8T 9969 L0 8.9 0 009¢ ST1609T ¥’V g 8T 66S L0 0LVC 0 009¢ L2¢029¢ 16 g ar  G.
4 CIT  ELVT 70 VLY 0 009¢ 0908ST ¥°¢ q .8 0S¢ 70 9€CT 0 009¢ TS6¥9T V'L ¢ ST 6L
¢ 90z 8601 ¥0 <68 0  009¢ 009681 0°€ ¢ /9 P.T  ¥O0 V00T 0  009¢ 6TIV61 &9 I ¢l QL
0  009¢ €LT06 ¥'G 0SS 0 009¢ 8L9E6T €'ST 0 009¢ 9858 T§ €999 0  009¢ €11y 9LT g QT 4T
0 009¢ 9%08¢ €S  ¥8F 0 0098 68S0LT ST I €0vE ¥6S. 8%  8STL 0 009§ 8VLIS 0°9C ) S
0 009¢ 9¥C1ie 67 viv 0 009¢ 890¢€C ¢'¢l T 009¢ ¢S6E 6°€¢ CC8L 0 009¢ L969ST 17¢C T T g1
4 6V6C 6CSL6T 0°G GclL 0 009¢ G86ST9 ¥Vl 4 0.S¢ 2¢0S¢e 0°¢ 860¢ 0 009¢ V9€8¢C €VE € 8 ar
€ 12€c SLET0T 8¢ €F9 0 0098 8S08€L 9°TT ¢ €86T TO9ST 8¢  GL3E 0  009¢ 800£0T §'1¢ ¢ 8 g1
v LP9T €9090¢ T'€ €89 0  009¢ LZg006 C'TT ¢ 0L L09% T'¢  CI¥E 0 009¢ ¥TI6VF 96T I 8 gl
¢ ¥ 0208 €T ¢ge ¢ gL Cle9r ¢8 ¢ /& TLL €T 6201 € 6091 1¥T8SS T'9F I ¢ gl
108 (s)1 sepoN deny smp  pog (s)) sepoN depyT [0S (S)1 sepoN depy sy 08 (8)1 sepoN  denHyT

oadaad+siA +(NG) ne) oadaad+siA+(AY) (e SR bt

38



	Introduction
	Literature review
	Notation and relationship with problem PLD 
	Three-Indexed Model for RPPT
	Projecting the customer decision variables on the Reduced Model

