
HAL Id: hal-02889288
https://inria.hal.science/hal-02889288

Submitted on 3 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Rank Pricing Problem with Ties
Concepción Domínguez, Martine Labbé, Alfredo Marín

To cite this version:
Concepción Domínguez, Martine Labbé, Alfredo Marín. The Rank Pricing Problem with Ties. Euro-
pean Journal of Operational Research, 2021. �hal-02889288�

https://inria.hal.science/hal-02889288
https://hal.archives-ouvertes.fr


The Rank Pricing Problem with Ties

Concepción Domı́nguez1,∗ Martine Labbé2 Alfredo Maŕın3
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Abstract

In the Rank Pricing Problem (RPP), a firm intends to maximize its profit through the

pricing of a set of products to sell. Customers are interested in purchasing at most one

product among a subset of products. To do so, they are endowed with a ranked list of

preferences and a budget. Their choice rule consists in purchasing the highest-ranked product

in their list and whose price is below their budget. In this paper, we consider an extension of

RPP, the Rank Pricing Problem with Ties (RPPT), in which we allow for indifference between

products in the list of preferences of the customers. Considering the bilevel structure of the

problem, this generalization differs from the RPP in that it can lead to multiple optimal

solutions for the second level problems associated to the customers. In such cases, we look

for pessimistic optimal solutions of the bilevel problem : the customer selects the cheapest

product.

We present a new three-indexed integer formulation for RPPT and introduce two resolu-

tion approaches. In the first one, we project out the customer decision variables, obtaining a

reduced formulation that we then strengthen with valid inequalities from the former formula-

tion. Alternatively, we follow a Benders decomposition approach leveraging the separability

of the problem into a master problem and several subproblems. The separation problems

to include the valid inequalities to the master problem dynamically are shown to reduce to

min-cost flow problems. We finally carry out extensive computational experiments to assess

the performance of the resolution approaches.

Keywords: Combinatorial Optimization, Pricing Problems, Integer Programming, Bilevel

Programming, Benders Decomposition
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1 Introduction

A key decision for a company is its pricing strategy, i.e. the choice of the best possible price for

their products considering customers’ behavior. More generally, considering a set of customers

with certain preferences over the products available, what should be the price of each product

so as to maximize the company’s profit?

Pricing problems are challenging due to their bilevel structure, since they take into account

customers’ purchasing decisions when setting the prices of the products. Customers’ choice

rule can be modeled in a variety of ways. In the Rank Pricing Problem (RPP), customers are

unit-demand (i.e. interested in purchasing at most one unit of one product) and they possess

their own ranking of the candidate products yielding to an incomplete list of preferences for

each customer. Once the prices are set by the company, customers purchase their highest-

ranked product among the ones they can afford (if any). Modeling customers’ behavior through

a ranked list of preferences is versatile and offers a general framework. It allows to model

customers’ choices based on both compensatory decision processes (like assigning a utility to

the products and purchasing the highest-ranked one) and noncompensatory decision processes

(such as ranking product attributes in terms of importance, and comparing them following a

lexicographic rule).

In this work, we consider a generalization of RPP in which customers are not forced to define

a strict preference between all the pairs of candidate products. Instead, we allow for indifference

and consider ties in the list of preferences. We name this problem the Rank Pricing Problem

with Ties (RPPT).

Considering ties in the preference lists of the customers leads to a different bilevel structure

of the problem. As detailed in Calvete et al. [8], in the RPP (without ties), the second level

problem associated to each customer has a unique optimal solution for a given vector of prices of

the products. However, in this extension, the indifference results in second level problems that

may have multiple optimal solutions. In RPPT, we consider the pessimistic optimal solution. In

case of indifference, the customers’ selection of products is the most natural for the customers

since it is based on the price - they purchase (one of) the cheapest products.

To the best of our knowledge, the study of RPPT has not yet been addressed in the literature.

In this paper, we tackle its resolution by means of exact optimization methods. Specifically, we

begin with a formal introduction of RPPT and propose an integer linear model with three-

indexed variables. Next, we derive two resolution methods for our three-indexed model.

The first method is based on a reduced model for RPPT that uses a much smaller set

of variables. Since the linear relaxation of this reduced model provides a weaker bound, we

project out the variables of the three-indexed model by means of Farkas’ Lemma to obtain a

set of valid inequalities strengthening the Reduced Model. Due to the particular structure of

the rank pricing problem, the separation problem relative to these valid inequalities can be

transformed into a min-cost flow problem. In this way, we avoid solving a linear problem with
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a commercial solver and instead apply a suitable resolution algorithm, making the separation

procedure computationally efficient.

The second resolution approach is based on Benders decomposition and takes advantage of

the structure of the problem. First we reformulate the three-indexed model, obtaining a master

problem with a set of constraints whose separation can be done by solving linear subproblems.

Then we are able to identify a small (polynomial) subset of constraints from the previous set to

obtain a reduced master formulation that constitutes a valid formulation for RPPT. The rest

of the constraints (now valid inequalities) are separated in our resolution method and included

dynamically, in a branch-and-cut framework. Although the valid inequalities are different from

the reduced model ones, the separation procedure is analogous to the first one. To speed up the

cut separation in the linear relaxation phase, we include an in-out method, a technique used to

stabilize and accelerate the convergence of the cut loop.

We also provide a preprocessing techniques section where we reduce the size of the instances

by making use of the properties of the problem. We conclude our paper with the results of

extensive numerical experiments, where we compare the two resolution methods proposed in

terms of number of nodes of the branching tree, integrality gap and computational time, and

we show the efficiency of the valid inequalities and the preprocessing techniques.

The article is organized as follows. In Section 2, we provide a literature review. Section 3

states the notation used throughout the paper and Section 4 is devoted to the presentation of the

three-indexed model. Section 5 includes all the results regarding the reduced model. In Section

6, we provide the results concerning the Benders decomposition resolution approach. Section

7 includes the preprocessing techniques, and Section 8 contains the computational study. We

provide some conclusions in Section 9.

2 Literature review

The Rank Pricing Problem as stated here (but under a different name) was introduced by

Rusmevichientong et al. [27]. Motivated by the availability of data from a website offering car

recommendations to customers, they proposed pricing problems with unlimited supply and unit-

demand customers, and three different objectives, namely a min-buying, a max-buying and a

rank-buying objective. They show that those problems are NP-complete in the strong sense and

introduce a heuristic approximation algorithm together with performance bounds. Aggarwal et

al. [1] and Briest and Krysta [7] take up the work in [27] and present complexity results and

approximation algorithm schemes for RPP and variants of it. To the best of our knowledge,

Calvete et al. [8] proposed the first formulations for the RPP, and thus [8] is a good starting

point when tackling RPPT.

Pricing optimization problems in combination with ranking-based customers’ preferences

are scarce in the literature, since many of them consider the maximization of the customers’

utility. However, the modelization of the customers’ selection rule by means of a ranked list
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of preferences appears in many related fields. A closely related problem to our own is the

Product Line Design (PLD) problem. This problem aims at selecting a subset of products to

be produced (generally from a bigger given set) in order to maximize the company’s revenue.

The modelization of the customers in PLD is typically made in two ways. In the probabilistic

choice behavior (studied by Green and Krieger [15, 16], McBride and Zufryden [23], Dobson and

Kalish [12] and Belloni et al. [3], among others), each segment of customers probabilistically

chooses from the available options. In the first-choice (also called ranking-based) behavior,

customers deterministically select the product from the offered line that maximizes their utility.

Some references are those by Chen and Hausman [10], Schön [28, 29] and Kraus and Yano

[20]. A very recent work by Bertsimas and Mǐsić [5] studies the PLD problem, introducing a

new mixed-integer formulation, theoretically analyzing it, and presenting a solution approach

based on Benders decomposition that significantly outperforms the previous results. As we will

address in the following sections, this paper has been the motivation for introducing Benders

decomposition as a plausible technique to tackle the resolution of RPPT.

A similar modelization of the customers’ selection rule can also be found in the field of

Discrete Location. More specifically, the Simple Plant Location Problem with Order (SPLPO)

consists in locating a set of facilities assuming that customers rank the potential facilities and

they attend their most preferred among the open ones. SPLPO was introduced in 1987 by

Hanjoul and Peeters [18], who developed a heuristic and was further studied by Hansen et al.

[19], Vasilyev and Klimentova [31] and Cánovas et al. [9]. Other works deal with a particular

ordering of the facilities through the concept of closest assignment. Espejo et al. [13] give a

thorough review and comparison of the different closest assignment constraints encountered in

the location literature, and study their generalization in the case of ties between distances.

Although the optimality criteria differ from our own, bipartite matching problems with pref-

erences also model the customers’ choice by means of a ranked list of preferences. In particular,

very well-known problems like the Stable Marriage (SM) problem include preference lists as the

agents’ choice. The first integer formulations were introduced by Vande Vate [30] and by Gusfield

and Irving [17]. An extension of Vande Vate’s model to include incomplete lists of preferences

was given by Rothblum [26]. More recently, extensions of these models have been introduced by

Kwanashie and Manlove [21] and Delorme et al. [11] to tackle a one-to-many generalization of

SM problem, namely the Hospital-Residents (HR) problem, as well as the Stable Marriage with

Ties (SMT) and the Hospital-Residents with Ties (HRT) generalizations. An in-depth review

on structural and algorithmic results on matching problems with preferences can be found in

Manlove [22].

3 Notation and relationship with problem PLD

The aim of RPPT is to establish the prices of the products of the company so as to maximize

its revenue, taking into account that we assume unit-demand customers who, once the prices

are settled, will purchase their highest-ranked product among the ones they can afford (if any).
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Besides, if a customer is indifferent between two products and he can afford both, he will purchase

the cheapest one (or one of the cheapest randomly if there are more than one).

As for the notation, let K = {1, . . . , |K|} be the set of customers and I = {1, . . . , |I|} the

set of products. Each customer k ∈ K has a subset of acceptable products Ik ⊆ I so that k

would rather not make any purchase than purchasing a product i /∈ Ik. Similarly, we say that

a customer k is acceptable for a product i if it belongs to Ki := {k ∈ K : i ∈ Ik}. Without loss

of generality, we assume Ik 6= ∅ ∀k ∈ K, Ki 6= ∅ ∀i ∈ I.

The acceptable products for k (i.e. the products in Ik) are ranked by k from the best to the

worst in a preference list. However, some customers may not be able to define a clear strict

preference over certain products, and they are allowed to express indifference in their preference

lists. We denote i ≺k j when we say that a customer k ∈ K prefers product i to j, and we use

i ∼k j if k is indifferent between two products i and j. Therefore, there exists a weak order on

the set Ik for each k ∈ K. Furthermore, ∼k is an equivalence relation (reflexive, symmetric,

transitive) which defines a partition S k = {Sk1 , . . . , Sknk} of the set Ik such that i, j ∈ Skn if

i ∼k j and i ∈ Skn, j ∈ Skn′ with n < n′ if i ≺k j. Notice that for a given customer k, ≺k defines

a total order on the set of the equivalence classes S k.

Each customer k is endowed with a budget. In order to keep notation consistent in the

formulation, and given that different customers may have the same budget, we define set M =

{1, . . . , |M |} as the set of indices that refer to the different budgets of the customers, and

{bm}m∈M as the set of different budgets, so that bm1 < bm2 if m1 < m2. Further, we define

a function σ : K → M such that σ(k) = m if the budget of customer k is the m-th smallest

budget bm.

As explained in Rusmevichientong et al. [27], there is always an optimal solution of RPP in

which the prices of the products are equal to a customer budget bm, m ∈ M . Since this result

is also valid for RPPT, we define Mi := {m ∈M : ∃k ∈ Ki with σ(k) = m} as the set of indices

of budget values that are candidates to be the optimal price of product i. Moreover, for k ∈ Ki,

Mk
i := {m ∈ Mi : m ≤ σ(k)} represents the set of indices m of candidate prices bm at which k

can purchase i in a feasible solution. Finally, we define MSkn
= ∪i∈SknM

k
i as the subset of indices

m ∈M of candidate prices bm at which k could purchase some product i ∈ Skn.
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Table 1: Preference matrix, vector of budgets and an optimal solution to an instance of RPPT

Prod. 1 Prod. 2 Prod. 3 Prod. 4 Prod. 5 Budgets

Customer 1 1* 3* 1* -* 2* 120
Customer 2 2* 1* 1* -* -* 95
Customer 3 1* 2* 4* 1* 3* 82
Customer 4 -* 3* 1* 3* 2* 82
Customer 5 -* 1* 3* 2* -* 79
Customer 6 2* -* 1* 2* 1* 65
Customer 7 3* 2* 5* 1* 4* 64
Customer 8 1* 4* 2* -* 3* 53

Optimal prices -* 95* 120* 79* 53* 585

Example 3.1. Table 1 shows an instance of RPPT with |K| = 8 and |I| = 5 and an optimal

solution. The entry (k, i) of the preference matrix denotes the index n of the equivalence class

Skn to which i belongs for k (the symbol - indicates that the corresponding product i /∈ Ik).

Clearly, the smaller the entry of the preference matrix, the greater the preference of the customer

over that product. Customer 1 is thus interested in all products except for product 4, that is,

I1 = {1, 2, 3, 5}, and from the preference matrix we deduce 1 ∼1 3 ≺1 5 ≺1 2, so we have

|S 1| = n1 = 3 and S1
1 = {1, 3}, S1

2 = {5}, S1
3 = {2}. Similarly, the acceptable set of customers

for product 1 is K1 = {1, 2, 3, 6, 7, 8}.

There are 7 different customer budgets: b1 = 53, b2 = 64, . . . , b5 = 82, b6 = 95, b7 = 120.

Following the notation, σ(1) = 7, i.e., customer 1 has the 7th smallest budget (i.e. the greatest

one), σ(2) = 6, σ(3) = σ(4) = 5, et cetera. Furthermore, the last row of the table shows a

vector of optimal prices along with the objective value (585). The purchasing decision of every

customer in this optimal solution is represented by an asterisk next to the entry of the matrix

associated to the product he purchases.

The set of indices of budget values that are candidates to be the optimal price of product 4 are

M1 = {2, 3, 4, 5}, and in the optimal solution, 4 has price b4 = 79. Likewise, the set of indices

of candidate prices at which customer 6 may purchase product 4 is M6
4 = {2, 3}. And the set

of indices of candidate prices at which customer 6 may purchase a product from S6
2 = {1, 4} is

MS6
2

= {1, 2, 3}.

Notice that, even if there are less products than customers and six customers interested in

product 1, this product remains unsold in the optimal solution. One could think that, since

customer 7 purchases a product with price 53 but he has a budget of 64 and prefers product 1,

setting the price 64 for product 1 would lead to a feasible solution with greater objective value.

However, the fact that ties are allowed in RPPT prevents this solution from being optimal.

Indeed, in this case customers 1 and 3 would also purchase product 1 (given that they are

indifferent between 1 and the product they are currently purchasing but 1 has a smaller price),

and therefore the revenue would be 525 instead of 585.
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In order to relate the RPPT with the Product Line Design problem (PLD), let us first

properly introduce the latter. In PLD, we are given a set of products S with fixed prices, and

the aim is to select a subset of them S′ ⊂ S of size p to build a product line. We are also

given a set of unit-demand customers K. Each customer k ∈ K is interested in a subset of

products Sk ⊂ S and ranks the products in Sk creating a list of preferences (the preferences are

strict). Thus, i ≺k j for i, j ∈ Sk if k prefers i over j. Once the product line is established, each

customer is assumed to purchase the highest-ranked product in S′ ∩ Sk, if any. The problem

consists in finding the product line that maximizes the profit of the company.

Now, let us assume we have ties in the list of preferences of the customers in PLD. We can

name this problem the Product Line Design problem with Ties (PLDT). In such case, since all

the products have a fixed price, there are no ties between two products with different prices

(because if a customer ranks two products equally and one is cheaper, he purchases the cheapest

one when possible). Therefore, there can only be ties between products with the same price.

Furthermore, for all product lines in which there are two products i, j ∈ S′∩Sk for some customer

k, and i ∼k j, k will purchase either i or j. In sum, PLD and PLDT have the same structure,

and PLDT does not require additional constraints to translate the pessimistic assumption.

Clearly, assuming p = |S| in PLD (or PLDT), RPPT is a generalization of PLD where the

prices of the products are not fixed. Furthermore, we now show that RPPT can be seen as a

particular case of PLDT with a larger number of products and in which the number of products

to select in the product line p = |S|.

The prices of the products are given in PLDT. On the contrary, in RPPT they are not fixed,

but the candidate prices belong to the sets {bm}m∈M of budgets of the customers. Therefore, to

transform an RPPT instance into a PLDT instance, we define the set of products S := {(i, bm) :

i ∈ I,m ∈ Mi}. Similarly, we define Sk := {(i, bm) : i ∈ Ik,m ∈ Mk
i } ⊆ S. Regarding the

customers’ lists of preferences, we assume that i ≺k j for i, j ∈ Ik implies (i, bm) ≺k (j, bm
′
)

∀ m ∈Mi, m
′ ∈Mj . As for i, j ∈ Ik with i ∼k j in RPPT, it holds (i, bm) ≺k (j, bm

′
) if m < m′

and (i, bm) ∼k (j, bm
′
) if m = m′.

Let (i, bm) and (i, bm
′
), with m < m′, be two products of the PLDT version of an RPPT

instance. If they both belong to S′, then ∀k ∈ K with (i, bm), (i, bm
′
) ∈ Sk it holds (i, bm) ≺k

(i, bm
′
), so product (i, bm

′
) is not sold. Hence, we do not need to add any additional constraint

imposing that each product can only be sold at one candidate price. This also implies that at

most |I| products will be sold in any optimal product line S′, even if we do not impose a limit

on its size p.

4 Three-Indexed Model for RPPT

In this section, we propose a mixed-integer formulation using two sets of variables. Firstly, we

define binary variable vmi , ∀i ∈ I, ∀m ∈Mi, that takes value 1 if the price of product i is equal

to the m-th smallest budget bm. For each k ∈ K, and considering the partition S k, we define
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ykmn , ∀k ∈ K, n ∈ Nk := {1, . . . , nk}, m ∈ MSkn
, that takes value 1 in a solution provided that

customer k purchases a product i ∈ Skn at price bm.

With these sets of variables, we present a first model called the Three-Indexed Model (3IM)

for RPPT:

(3IM) max
v,y

∑
k∈K

∑
n∈Nk

∑
m∈M

Skn

bmykmn (1a)

s.t.
∑
m∈Mi

vmi ≤ 1 ∀i ∈ I, (1b)

∑
n∈Nk

∑
m∈M

Skn

ykmn ≤ 1 ∀k ∈ K, (1c)

ykmn ≤
∑
i∈Skn

vmi ∀k ∈ K,n ∈ Nk,m ∈MSkn
, (1d)

∑
m′∈Mk

i
:

m′≤m

vm
′

i +
∑

m′∈M
Skn

:

m′>m

ykm
′

n +

nk∑
n′=n+1

∑
m′∈M

Sk
n′

ykm
′

n′ ≤ 1

∀k ∈ K,n ∈ Nk, i ∈ Skn,m ∈Mk
i , (1e)

vmi ∈ {0, 1} ∀i ∈ I,m ∈Mi, (1f)

ykmn ∈ {0, 1} ∀k ∈ K,n ∈ Nk,m ∈MSkn
. (1g)

Constraints (1b) ensure that each product price is unique. Constraints (1c) guarantee that

each customer purchases at most one product. Constraints (1d) state that if a customer k

purchases a product from class Skn at price bm, then there exists i ∈ Skn at price bm. And

constraints (1e) are the preference constraints, and they ensure that the preferences of the

customers are satisfied in any feasible solution. Thus, if the first sum
∑

m′∈Mk
i
:

m′≤m

vm
′

i is equal to

1, then k can purchase i at a price smaller than or equal to bm
′
. So the second and third sums

of the LHS of (1e) are equal to 0, ensuring that k does not purchase either a product from a

class Skn′ with n′ > n, or any product from Skn at a higher price bm
′
, m′ > m.

Remark 4.1. Formulation (3IM) is also valid for RPP.

Now we prove that the integrality of the set of y-variables can be relaxed:

Proposition 4.2. The integrality of variables ykmn , ∀k ∈ K, ∀n ∈ Nk, ∀m ∈ MSkn
, can be

relaxed in formulation (3IM). Indeed, family (1g) can be replaced with family

ykmn ≥ 0 ∀k ∈ K,n ∈ Nk,m ∈MSkn
. (2)

Furthermore, for a given fixed feasible vector (v̄mi ) ∈ {0, 1}I×Mi and a fixed customer k, the

optimal values of variables ykmn for (3IM) with (2) instead of (1g) are as follows.

1. If
∑
i∈Ik

∑
m∈Mk

i

v̄mi = 0, then ykmn = 0 ∀n ∈ Nk,m ∈MSkn
.
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2. Otherwise, let n∗ := min
{
n ∈ Nk :

∑
i∈Skn

∑
m∈Mk

i
v̄mi ≥ 1

}
,

m∗ := min
{
m ∈MSkn∗

:
∑

i∈Skn∗ v̄
m
i ≥ 1

}
. Then, ykm

∗
n∗ = 1, ykmn = 0 for (n,m) 6= (n∗,m∗).

Proof. In Appendix A.

Example 4.3. Let us describe the variables used to solve the instance given in Table 1 with

formulation (3IM). First, we define the v-variables associated with each product. For instance,

for product 5 we define variables vm5 for m ∈ M5 = {1, 2, 3, 5, 7}. Regarding the y-variables,

for customer 2 we have that n2 = 2, and S2
1 = {2, 3}, S2

2 = {1}. For the products in S2
1 ,

MS2
1

= {1, 2, 3, 4, 5, 6}, so we define variables y2m
1 for m ∈ MS2

1
. As for S2

2 , we define y2m
2 for

m ∈MS2
2

= {1, 2, 3, 5, 6} (there are no customers with budget b4 = 74 interested in product 1, so

1 will not have price 74 in an optimal solution). In the optimal solution, customer 2 purchases

2 ∈ S2
1 at price b4, so y24

1 = 1.

Formulation (3IM) yields very good linear relaxation bounds. The main drawback of this

formulation is that it has a large number of variables and constraints, and therefore it is not

suitable for instances with a large number of customers or dense matrices of preferences.

5 Projecting the customer decision variables on the Reduced

Model

In this section, we discuss how to project out formulation (3IM) on a formulation of a smaller

size, the Reduced Model (RM). The projection results in a set of valid inequalities for (RM) for

which we develop a separation algorithm.

First, we define the sets of two-indexed variables of (RM). We use variables vmi , ∀i ∈ I,

m ∈Mi, that represent, as in (3IM), the price of a product. Considering once again the partition

of Ik into equivalence classes Sk1 , . . . , S
k
nk

, we define binary variables xkn, ∀k ∈ K, n ∈ Nk, as

decision variables that take value 1 if customer k purchases some product i ∈ Skn, and zero

otherwise. And finally, to be able to model the profit of the company, we define continuous

variables zkn, ∀k ∈ K, ∀n ∈ Nk, that represent the profit associated to a customer k and an

equivalence class Skn. In a feasible solution, the value of zkn is equal to the price of the least

expensive product from Skn provided that customer k purchases a product from Skn, and zero

otherwise.

Using these variables, the Reduced Model (RM) for RPPT is:

(RM) max
v,x,z

∑
k∈K

∑
n∈Nk

zkn (3a)

s.t.
∑
m∈Mi

vmi ≤ 1 ∀i ∈ I, (3b)

∑
n∈Nk

xkn ≤ 1 ∀k ∈ K, (3c)
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xkn ≤
∑
i∈Skn

∑
m∈Mk

i

vmi ∀k ∈ K,n ∈ Nk, (3d)

∑
m∈Mk

i

vmi +
nk∑

n′=n+1

xkn′ ≤ 1 ∀k ∈ K,n < nk, i ∈ Skn, (3e)

zkn ≤ bσ(k)xkn ∀k ∈ K,n ∈ Nk, (3f)

zkn ≤ bσ(k) +
∑
m∈Mk

i

(
bm − bσ(k)

)
vmi ∀k ∈ K,n ∈ Nk, i ∈ Skn, (3g)

vmi ∈ {0, 1} ∀i ∈ I,m ∈Mi, (3h)

xkn ∈ {0, 1} ∀k ∈ K,n ∈ Nk, (3i)

zkn ≥ 0 ∀k ∈ K,n ∈ Nk. (3j)

Constraints (3b) ensure that each product price is unique. Constraints (3c) guarantee that

each customer purchases at most one product, i.e., that all customers are unit-demand. Con-

straints (3d) prevent a customer k from purchasing a product i ∈ Skn when he cannot afford

it. Constraints (3e) are the preference constraints, and they guarantee that if a customer k can

afford a product i, that is if
∑

m∈Mk
i
vmi = 1, then k does not purchase any other product j �k i,

i.e.
∑nk

n′=n+1 x
k
n = 0. The sets of constraints (3f) and (3g) model the profit. Constraints (3f)

ensure that if customer k does not purchase any product from Skn (xkn = 0), then zkn = 0 and

the corresponding profit is zero. When customer k can afford a product j ∈ Ik, then constraints

(3g) ensure that the profit associated to k and a class Skn is the minimum of the prices of the

products in Skn. Indeed, when vm0
i = 1 for some m0 ≤ σ(k), then

∑
m 6=m0

vmi = 0 and the RHS

is equal to bσ(k) − (bm0 − bσ(k)) = bm0 . Since zkn is bounded by the price of all the products

i ∈ Skn, it is actually bounded by the price of the cheapest product from the set. Finally, the

objective function (3a) represents the profit of the company, that is maximized.

5.1 Comparison of models (RM) and (3IM)

In this subsection, we compare the bounds given by the linear relaxations of models (3IM) and

(RM). The proof of Proposition 5.1 is detailed in Appendix A.

Proposition 5.1. The upper bound given by the linear relaxation of formulation (3IM) is always

less than or equal to that of formulation (RM).

Table 2: Preference matrix of a small instance of RPPT

Prod. 1 Prod. 2 Prod. 3 Budgets

Customer 1 1 3 2 2
Customer 2 - 2 1 4
Customer 3 2 1 1 8
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Example 5.2. Let us show through the small example illustrated by Table 2 how the linear

relaxation bound given by model (3IM) can be strictly less than that of (RM). An optimal solution

of this example is obtained when we assign price b1 = 2 to product 1 and price b2 = 4 to product

2 (and product 3 remains unsold). For this price vector, customer 1 purchases 1 and customers

2 and 3 purchase 2, so the optimal value is 10.

The upper bound given by the linear relaxation of model (RM) is 14. The fractional values

of v-variables are v1
1 = 1, v2

2 = v2
3 = 0.5 (and the rest equal to zero). Likewise, the values

of x-variables different from zero are x1
1 = 1, x2

1 = x2
2 = 0.5, x3

1 = 0.75, x3
2 = 0.25, and the

values of z-variables are z1
1 = 2, z2

1 = z2
2 = 2, z3

1 = 6, z3
2 = 2. However, if we use the same v-

values in (3IM) and calculate the y-values by means of constraints (1c)-(1e), we obtain y11
1 = 1,

y22
1 = y22

2 = 0.5, y32
1 = 1. This solution yields an objective value of 10 in (3IM). In fact, the

upper bound given by the linear relaxation of model (3IM) is 12.

As we will see in the computational experiments of Section 8, the upper bounds given by

the linear relaxation of model (3IM) are usually strictly less than those given by model (RM).

Regarding the previous instance from Table 1, the upper relaxation bounds given by the linear

relaxation of models (RM) and (3IM) are, respectively, 640 and 588 (recall that its optimal value

is equal to 585).

5.2 Strengthening the Reduced Model (RM)

The linear relaxation of model (3IM) generally yields a smaller upper bound than that of model

(RM). By projecting out variables ykmn in (3IM), we can derive a set of valid inequalities to

strengthen model (RM).

We first extend formulation (3IM) adding x-variables and the corresponding constraints from

(RM) relating them to the previous variables. By definition, we have xkn =
∑

m∈M
Skn

ykmn and

zkn =
∑

m∈M
Skn

bmykmn for all k ∈ K, n ∈ Nk. Using x- and z-variables in place of y-variables

when possible in formulation (3IM) leads to:

(3IM+) max
v,y,x,z

∑
k∈K

∑
n∈Nk

zkn (4a)

s.t.
∑
m∈Mi

vmi ≤ 1 ∀i ∈ I, (4b)

∑
n∈Nk

xkn ≤ 1 ∀k ∈ K, (4c)

ykmn ≤
∑
i∈Skn

vmi ∀k ∈ K,n ∈ Nk,m ∈MSkn
, (4d)

xkn ≤
∑
i∈Skn

∑
m∈Mk

i

vmi ∀k ∈ K,n ∈ Nk, (4e)

11



∑
m′∈Mk

i
:

m′≤m

vm
′

i +
∑

m′∈M
Skn

:

m′>m

ykm
′

n +

nk∑
n′=n+1

xkn′ ≤ 1

∀k ∈ K,n ∈ Nk,m ∈MSkn
, i ∈ Skn : m ∈Mk

i , (4f)

xkn ≥
∑

m∈M
Skn

ykmn ∀k ∈ K,n ∈ Nk, (4g)

zkn ≤
∑

m∈M
Skn

bmykmn ∀k ∈ K,n ∈ Nk, (4h)

vmi ∈ {0, 1} ∀i ∈ I,m ∈Mi, (4i)

ykmn ∈ {0, 1} ∀k ∈ K,n ∈ Nk,m ∈MSkn
, (4j)

xkn ∈ {0, 1} ∀k ∈ K,n ∈ Nk, (4k)

zkn ≥ 0 ∀k ∈ K,n ∈ Nk. (4l)

Constraints (1b), (1c), (1d) and (1e) from (3IM) correspond to (4b), (4c), (4d) and (4f)),

respectively. As for (RM), constraints (3b), (3c) and (3d) are, respectively, constraints (4b),

(4c) and (4e). Constraints (3e) are a subset of (3e), whereas constraints (3f) and (3g) are no

longer necessary due to the addition of (4h). Finally, even though (4g) and (4h) are added as

inequality constraints, in any optimal solution they will be satisfied as equalities. This is clear

for constraints (4h) because of the objective. As for constraints (4g), suppose with the aim of

contradiction that there exists an optimal solution (v̄, ȳ, x̄, z̄) of (3IM+) with x̄kn >
∑

m∈M
Skn

ȳkmn

for some k ∈ K, n ∈ Nk. On the one hand, (4g) imply
∑

n∈Nk x̄kn >
∑

n∈Nk

∑
m∈M

Skn

ȳkmn , and

because of the integrality constraints this leads to
∑

n∈Nk

∑
m∈M

Skn

ȳkmn = 0, so
∑

n∈Nk z̄kn = 0

due to (4h). On the other hand, x̄kn = 1 and (4e) imply
∑

m∈M
Skn

v̄mi = 1 for some i ∈ Skn. As a

result, customer k can afford product i but
∑

n∈Nk z̄kn = 0, so the solution is not optimal.

Proposition 5.3. Consider a fixed customer k ∈ K and a fixed set of products Skn ∈ S k. Then

the following family of constraints

zkn ≤ xknα+
∑

m∈M
Skn

∑
i∈Skn:

m∈Mk
i

1−
∑
m′≤m

vm
′

i −
nk∑

n′=n+1

xkn′

βmi +
∑

m∈M
Skn

∑
i∈Skn:

m∈Mk
i

vmi γ
m (5)

is valid for (RM) if for all α ≥ 0, βmi ≥ 0 for i ∈ Skn, m ∈Mk
i , γm ≥ 0 for m ∈MSkn

, it holds

α+
∑

m′∈M
Skn

:

m′<m

∑
i∈Skn:

m′∈Mk
i

βm
′

i + γm ≥ bm ∀m ∈MSkn
. (6)

Furthermore, the linear relaxation of (RM) plus the set of valid inequalities (5) is exactly the

projection of the linear relaxation of (3IM) on the space of variables (v,x, z).

Proof. For fixed k ∈ K, n ∈ Nk, we are going to project out the y-variables of formulation
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(3IM+) to obtain (5) and prove the statement. We make use of (4g) and (4h) from (3IM+),

and we associate dual variables α, βmi , γm, δ to the corresponding constraints (4g), (4f), (4d),

(4h), respectively. By Farkas’ Lemma, we have the following result: given a feasible solution

(v,x, z) of the linear relaxation of (RM), there exists a vector y satisfying (4d)-(4f) if and only

if it holds

zknδ ≤ xknα+
∑

m∈M
Skn

∑
i∈Skn:

m∈Mk
i

1−
∑
m′≤m

vm
′

i −
nk∑

n′=n+1

xkn′

βmi +
∑

m∈M
Skn

∑
i∈Skn:

m∈Mk
i

vmi γ
m (7)

∀k ∈ K, n ∈ Nk, and ∀(α,β,γ, δ) ≥ 0 such that

α+
∑

m′∈M
Skn

:

m′<m

∑
i∈Skn:

m′∈Mk
i

βm
′

i + γm ≥ bmδ ∀m ∈MSkn
. (8)

If δ > 0, We obtain (5) if we normalize by setting δ = 1.

If δ = 0, the obtained inequality is dominated by (3e) and the nonnegativity constraints on

varibles vmi and xkn. It is indeed easy to see that for any feasible solution of (RM), the RHS of

(5.2) is nonnegative.

Proposition 5.3 provides a family of valid inequalities for (RM) of infinite size. Therefore,

their inclusion in the model requires the election of a subset of them following a separation

procedure. Below, we formally determine the separation problem and show that it is equivalent

to a minimum cost flow problem (MCFP).

Let us assume we are given a fractional optimal solution (v̄mi , x̄
k
n, z̄

k
n) of the linear relaxation

of (RM) or a current solution at a given node of the search tree. We solve a separation problem

for each customer k and equivalence class Skn ∈ S k.

First of all, the special structure of conditions (6) implies that to minimize of RHS in (5), we

can set, for each m, at most one βmi to a positive value. More precisely, for each m, we define

im ∈ arg mini∈Skn:m∈Mk
i

{
1−

∑
m′≤m v

m′
i −

∑nk

n′=n+1 x
k
n′

}
and then set βmi = 0 ∀i ∈ Skn, i 6= im.

Hence, the separation problem (SPkn) can be stated as:

(SPkn) min
α,β,γ

x̄knα+
∑

m∈M
Skn

1−
∑

m′∈Mk
im

:

m′≤m

v̄m
′

im −
nk∑

n′=n+1

x̄kn′

βmim +
∑

m∈M
Skn

∑
i∈Skn:

m∈Mk
i

v̄mi γ
m (9a)

s.t. α+
∑
m′<m

βm
′

im′
+ γm ≥ bm ∀m ∈MSkn

, (9b)

α, βmim , γ
m ≥ 0 ∀m ∈MSkn

. (9c)

Problem (SPkn) is linear and the matrix associated to constraints (9b) is binary and possesses
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the Consecutive Ones Property: the elements equal to 1 in each column appear consecutively.

This property permits to solve the problem as a MCFP, see e.g. page 304 in Ahuja et al. [2].

We now describe how to derive this MCFP.

To begin with, we sort the budgets bm,m ∈ MSkn
by increasing order of their values. Then,

we transform the constraints in (9b) into equalities by introducing slack variables δm for each

row m in (9b). We also add the row 0 ·α+ 0 ·
∑

m∈Mk
n
βmim + 0 ·

∑
m∈Mk

n
γm + 0 ·

∑
m∈Mk

n
δm = 0.

These modifications lead to an equivalent formulation with the same objective function (9a) and

the following constraints:

1 0 · · · 0 1 0 · · · 0 −1 0 · · · 0

1 1 · · · 0 0 1 · · · 0 0 −1 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

1 1 · · · 1 0 0 · · · 1 0 0 · · · −1

0 0 · · · 0 0 0 · · · 0 0 0 · · · 0





α

βmim

γm

δm


=



b1

b2

...

bσ(k)

0


,

α, βmim , γ
m ≥ 0 ∀m ∈MSkn

.

To finish the transformation, we carry out a row operation for each m = σ(k), σ(k)−1, . . . , 1

in this order: we subtract the m-th constraint to the (m + 1)-th one. The equivalent linear

formulation (SP-MCFPkn) obtained is:

min
α,β,γ

αx̄kn +
∑

m∈M
Skn

βmim

1−
∑

m′∈Mk
im

:

m′≤m

v̄m
′

im −
nk∑

n′=n+1

x̄kn′

+
∑

m∈M
Skn

γm
∑
i∈Skn:

m∈Mk
i

v̄mi (10a)

s.t.



1 0 · · · 0 1 0 · · · 0 −1 0 · · · 0

0 1 · · · 0 −1 1 · · · 0 1 −1 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...

0 0 · · · 1 0 0 · · · 1 0 0 · · · −1

−1 −1 · · · −1 0 0 · · · −1 0 0 · · · 1





α

βmim

γm

δm


=



b1

b2 − b1
...

bσ(k) − bσ(k)−1

−bσ(k)


, (10b)

α, βmim , γ
m ≥ 0 ∀m ∈MSkn

. (10c)

The constraint matrix in (10b) is the incidence matrix of a graph G = (N,A). Each row

corresponds to a node in N = MSkn
whose supply/demand is given by the corresponding RHS

of (10b) and each column corresponds to an arc. Hence, the variables represent uncapacitated

flows on the arcs and the objective function consists in minimizing the total cost of the flow.

The node corresponding to the last row is the unique sink with demand bσ(k) and all other nodes

are sources with offer equal to the difference of two consecutive budget values in MSkn
. The

MCFP corresponding to problem (SP-MCFPkn) is illustrated in Figure 1. Given that there is

no capacity on the arcs and there is only one sink, the problem can be solved in MSkn
steps, by
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Figure 1: MCFP corresponding to (SP-MCFPkn). Next to each node we have its supply/demand,
and variables (α,β,γ, δ) are associated to the flow of the corresponding arc

computing one shortest path from each source to the sink.

To solve RPPT with formulation (RM) we thus use a branch and cut algorithm that adds

violated inequalities from (5) at the root node as well as at every node of the branch and bound

tree of depth less than 4. Algorithm 1 details the different steps of the separation procedure.

Algorithm 1 Resolution of the separation problems (SPkn)

Let (v̄mi , x̄
k
n, z̄

k
n) be an optimal fractional solution of the linear relaxation of (RM) or a solution

found in a node of the search tree of depth less than 4.
For every customer k ∈ K and integer n ∈ Nk, do

Step 1. Obtain īm ∈ arg mini∈Skn

{
1−

∑
m′≤m v̄

m′
i −

∑nk

n′=n+1 x̄
k
n′

}
∀m ∈MSkn

.

Step 2. Transform the instance of (SPkn) into an instance of the MCFP.

Step 3. Compute an optimal flow on the corresponding graph of the instance of MCFP,
obtaining ᾱ, β̄mim , γ̄m ∀m ∈MSkn

.

Step 4. Incorporate constraint

zkn ≤ ᾱxkn +
∑

m∈M
Sk
n

β̄mim

1−
∑

m′∈Mk
im

:

m′≤m

vm
′

im
−

nk∑
n′=n+1

xkn′

 +
∑

m∈M
Sk
n

γ̄m
∑

i∈Sk
n:

m∈Mk
i

vmi

to (RM) provided that it is violated.

6 Solution of (3IM) via Benders Decomposition: the Benders

Model

Formulation (3IM) yields very good linear relaxation bounds but it has a large number of

variables and constraints. However, as shown in this section, its structure allows for its resolution

by means of a Benders decomposition.

First, we introduce the Benders Model (BM). To reformulate (3IM), we need to be able
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to relax the integrality on the set of y-variables. However, this result is shown in Proposition

(4.2). We address the Benders reformulation of (3IM) and relate it to the Benders Model in the

following subsections.

We define continuous variables zk, ∀k ∈ K, that represent the profit from customer k. With

this set of variables and the set of v-variables used for (3IM) and (RM), we present the Benders

Model (BM) for RPPT:

(BM) max
v,z

∑
k∈K

zk (11a)

s.t.
∑
m∈Mi

vmi ≤ 1 ∀i ∈ I, (11b)

zk ≤
∑
i∈Ik

∑
m∈Mk

i

bmvmi ∀k ∈ K, (11c)

zk ≤ bσ(k) +
∑
m∈Mk

i

(
bm − bσ(k)

)
vmi +

∑
j∈Ik:
j≺ki

∑
m∈Mk

j

bmvmj

∀k ∈ K, i ∈ Ik, (11d)

vmi ∈ {0, 1} ∀i ∈ I,m ∈Mi, (11e)

zk ≥ 0 ∀k ∈ K. (11f)

Proposition 6.1. Model (BM) is valid for RPPT.

The proof of Proposition 6.1 is fully detailed in Appendix A.

6.1 Benders Reformulation

We can proceed with a Benders reformulation of (3IM):

(BRMAS) max
v,z

∑
k∈K

zk (12a)

s.t.
∑
m∈Mi

vmi ≤ 1 ∀i ∈ I, (12b)

zk ≤ P k(v), ∀k ∈ K (12c)

vmi ∈ {0, 1} ∀i ∈ I,m ∈Mi, (12d)

zk ≥ 0 ∀k ∈ K, (12e)

where ∀k ∈ K, P k(v) is defined as the optimal value of

(BRSUBk) max
y

∑
n∈Nk

∑
m∈M

Skn

bmymn (13a)

s.t.
∑
n∈Nk

∑
m∈M

Skn

ymn ≤ 1, (13b)
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ymn ≤
∑
i∈Skn

vmi ∀n ∈ Nk,m ∈MSkn
, (13c)

∑
m′∈M

Skn
:

m′≥m

ym
′

n +
nk∑

n′=n+1

∑
m′∈M

Sk
n′

ym
′

n′ ≤ 1−
∑

m′∈Mk
i
:

m′<m

vm
′

i

∀n ∈ Nk, i ∈ Skn,m ∈Mk
i , (13d)

ymn ≥ 0 ∀n ∈ Nk,m ∈MSkn
. (13e)

In (BRSUBk), we drop the upper index k of the y-variables for the sake of notation. Con-

straints (12b) ensure that every product price is unique. This guarantees the feasibility in

problem (BRSUBk) for a given integer solution (vmi ) of (3IM), since the RHS of constraints (13b)-

(13d) is always nonnegative. Furthermore, constraint (13b) ensures that (BRSUBk) is bounded.

Therefore, by linear optimization strong duality, the optimal value of problem (BRSUBk) is equal

to the optimal value of its dual problem, (BRSUBDk). Associating variables α, βmi , γ
m
n to the cor-

responding constraint from sets (13b), (13d), (13c), respectively, (BRSUBDk) can be stated as

(BRSUBDk) min
α,β,γ

α+
∑
n∈Nk

∑
i∈Skn

∑
m∈Mk

i

1−
∑

m′∈Mk
i :m′<m

vm
′

i

βmi

+
∑
n∈Nk

∑
i∈Skn

∑
m∈Mk

i

vmi γ
m
n (14a)

s.t. α+
n−1∑
n′=1

∑
i∈Sk

n′

∑
m′∈Mk

i

βm
′

i +
∑
i∈Skn

∑
m′∈Mk

i
:

m′≤m

βm
′

i + γmn ≥ bm

∀n ∈ Nk,m ∈MSkn
, (14b)

α, βmi , γ
m
n ≥ 0 ∀n ∈ Nk,m ∈MSkn

, i ∈ Skn. (14c)

Now, we can rewrite problem (BRMAS) making use of subproblems (BRSUBDk). Thus, defining

Dk for each k ∈ K as the set of feasible solutions (αk, βkmi , γkmn ) for the dual subproblem

(BRSUBDk), we have:

(BRMAS) max
v,z

∑
k∈K

zk (15a)

s.t.
∑
m∈Mi

vmi ≤ 1 ∀i ∈ I, (15b)

zk ≤ αk +
∑
n∈Nk

∑
i∈Skn

∑
m∈Mk

i

1−
∑

m′∈Mk
i :m′<m

vm
′

i

βkmi

+
∑
n∈Nk

∑
i∈Skn

∑
m∈Mk

i

vmi γ
km
n , ∀k ∈ K, (α,β,γ) ∈ Dk, (15c)
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vmi ∈ {0, 1} ∀i ∈ I,m ∈Mi, (15d)

zk ≥ 0 ∀k ∈ K. (15e)

Finally, we state (the proof is in Appendix A) that model (BRMAS) obtained by means of a

Benders reformulation is in fact a reinforcement of the previous Benders Model (BM):

Proposition 6.2. The sets of constraints (11c) and (11d) are included in (15c).

6.2 Resolution Approach

The classical Benders resolution approach begins by solving to optimality the master problem

(BRMAS) without constraints (15c). Then, a subset of constraints from (15c) is obtained by

solving problems (BRSUBDk) for all k ∈ K, and the violated constraints are added to the master

problem, which is again solved to optimality. This process is done iteratively until none of the

constraints from (15c) is violated, and thus the solution is optimal for (BRMAS). The drawback

of this method is that (BRMAS), that is an IP, is solved many times, which can take a considerable

amount of time.

In the lazy approach, however, the resolution starts by solving the linear relaxation of

(BRMAS) without the set (15c), obtaining a fractional solution and an upper bound on the

optimal value. In order to decrease this bound, the subproblems (BRSUBDk) are solved for each

customer using the fractional solution of the master problem, and a set of constraints is added

to the problem. Constraints are added at this phase until the bound is no longer improved. The

second step of the resolution is to solve the integer problem with the usual branch-and-bound

algorithm. In this phase, constraints are added in the so-called lazy fashion, i.e. only checking for

them when the resolution of a node in the search tree leads to an integer solution. In such case,

if a constraint is violated, the cut is pulled into the active node and the solution is discarded.

Otherwise, the solution is feasible for (BRMAS). At this step, constraints from (15c) may also

be added at a current fractional node of the branching tree. The interested reader may find the

advantages of this method thoroughly explained in Naoum-Sawaya and Elhedhli [24].

In this work, we solve the Benders Model (BM) instead of (BRMAS). The advantage is that,

since (BM) gives feasible solutions for RPPT, we no longer need to solve (BRSUBDk) in order

to check the validity of an integer solution of the master. Nevertheless, we can still add valid

inequalities from (15c) to cut off fractional solutions of (BM), thus strengthening the model.

Resolution of the dual subproblem (BRSUBDk))

Solving problem (BRSUBDk) for fractional solutions of (BM) is interesting because it allows for

the incorporation of valid inequalities in the linear relaxation phase, thus helping to decrease

the upper bound before solving the integer phase. An analogous procedure to that of the
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resolution of the separation problem (SPkn) in Subsection 5.2 can be applied to (BRSUBDk). In

this case, it suffices to consider the lexicographical order in the rows of matrix (14b) (that is,

(n,m) < (n′,m′) if n < n′ or n = n′ and m < m′) in order to state that it also satisfies the

Consecutive Ones Property. Thus, (BRSUBDk) can be transformed into a MCFP and solved by

means of an efficient implementation of an existing algorithm.

For our implementation, we have selected the Successive Shortest Path (SSP) Algorithm

to obtain the solution of the MCFP. In each iteration, this algorithm selects a shortest path

between a supply and a demand node and increases the flow along the path (it also modifies

the reduced costs of the arcs used to compute the shortest path and the residual network in

each iteration). Since our graph has
∑

n∈Nk |MSkn
| + 1 nodes, solving the problem for a given

customer k can take at most
∑

n∈Nk |MSkn
| iterations. When the preference matrix is dense, this

amounts to |Nk|σ(k).

Figure 2: Structure of the MCFP graph corresponding to (BRSUBDk). Source nodes appear in
white and sink nodes appear in gray

Leveraging the special structure of our MCFP, we have reduced the number of iterations

in which a shortest path is computed. The structure of the graph associated to our MCFP is

depicted in Figure 2. As in the graph from Figure 1, the white nodes represent sources, the gray

ones represent sinks and sending flow through δ-arcs (the arcs from a node to the previous one)

has cost equal to zero. Hence, we need not compute the shortest path between a node with excess

supply (n,m) and a node with unfulfilled demand (n′,m′) whenever (n,m) > (n′,m′). In the

first phase of the algorithm, we select a source (n,m) and a sink (n′,m′) with (n,m) > (n′,m′),

and then apply the SSP algorithm without computing the shortest path. Then, when for all

supply node (n,m) and demand node (n′,m′) it holds (n,m) < (n′,m′), we continue with the

second phase, where we apply the SSP algorithm in the standard way. This preprocessing of

the MCFP reduces the number of iterations in which an algorithm to obtain a shortest path is

executed to at most σ(k) iterations. Thus, the amount of computational time saved during the

first phase is significant.

Finally, note that the transformation of the subproblems into a MCFP can also be used to

solve the subproblems of the Benders decomposition proposed by Bertsimas and Mǐsić [5] for

the resolution of PLD. Indeed, the Consecutive Ones Property holds in this case as well.
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In-out stabilization method and overall resolution approach

In this subsection, we present our resolution strategy to solve model (BM) as well as an in-out

stabilization method implemented to speed up the linear relaxation phase of the resolution.

The procedure is divided in two phases:

1. Linear relaxation phase. The linear relaxation of (BM) is solved, obtaining a fractional

solution and an upper bound on the optimal value. In order to decrease this bound, the

corresponding MCFP of subproblems (BRSUBDk) are solved for each customer and for the

fixed fractional solution of the master, and a set of valid inequalities from (15c) is derived

and added to the formulation. Valid inequalities are added at this phase until the upper

bound is no longer improved.

2. Integer phase. The integer problem with the subset of constraints derived in the previous

phase is solved to optimality by means of a branch-and-cut. Due to the fact that it is very

time consuming, no more valid inequalities from (15c) are added in this phase.

As we have proved, the SSP algorithm used to solve the transformation of subproblems

(BRSUBDk) into a MCFP constitutes an exact algorithm of separation. In this sense, it finds at

least one violated constraint for any solution of (BM) which is infeasible for (BRMAS). On the

other hand, when the problem size is large, computing these inequalities is time consuming, and

frequently the upper bound decreases very slowly and many cuts are generated in the process.

In order to speed up this cutting phase, we implemented an in-out stabilization method with

the aim of generating less cuts of better quality. The steps of the cutting plane in-out algorithm

are detailed in Ben-Ameur and Neto [4] and Bonami et al. [6].

Let D represent the domain given by all the constraints of problem (BRMAS), and P ⊇ D

the domain given by the constraints from (BM). Then the in-out stabilization method is based

on the election of good separation points. Specifically, at each loop iteration of the linear

relaxation phase three points are considered: a point (vout, zout) ∈ P \D given by the optimal

solution of the linear relaxation of the current reduced master problem (BM), a feasible interior

point (vin, zin) ∈ D, and a separation point (vsep, zsep), which is a convex combination of the

previous two: (vsep, zsep) := λ(vout, zout)+(1−λ)(vin, zin) with λ ∈ (0, 1]. At each iteration, two

possibilities can occur. If (vsep, zsep) /∈ D, then we use it instead of (vout, zout) as a separation

point to solve the dual subproblem (BRSUBDk), since the inequalities provided by this point

are expected to be more efficient. We finish the iteration by solving the new optimization

problem and obtaining a new point (vout, zout). Otherwise, (vsep, zsep) ∈ D, and in this case

solving the dual subproblem does not provide new violated cuts. Therefore, in this iteration

no constraints are added but (vin, zin) is replaced with (vsep, zsep), which is a feasible point

with greater objective value. As we can see, at each iteration either (vin, zin) or (vout, zout) are

updated, until convergence is obtained because the relative difference between the two points

is lower than a fixed tolerance ε. Although λ is a scalar that can change in every iteration,

preliminary testing led us to set λ = 0.99 for all iterations. As for the interior point (vin, zin),
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it is frequently obtained using the barrier algorithm with crossover.

In our case, an interior point (vin, zin) ∈ D can be very easily derived by exploiting the

particular structure of the problem. To do so, it suffices to build a non-degenerate convex

combination of |I ×M I |+ |K|+ 1 points of the polytope and then compute the centroid. Point

(i,m) of the first feasible set of |I × M I | points was created taking vmi = 1, vm
′

i′ = 0 for

(i′,m′) 6= (i,m), z = 0. Point k of the next |K| points is zk = bσ(k), zk
′

= 0 for k′ 6= k, vmi = 1

for i = min{i ∈ Sk1}, m = σ(k), vm
′

i′ = 0 for (i′,m′) 6= (i,m). Finally, we used (v, z) = 0.

7 Preprocessing

In this section, we present a preprocessing procedure with the aim of reducing the size of the

problem by fixing variables to zero. Note that, even though the results are stated for models

(RM) and (3IM), they also apply to subproblems (BRSUBDk) during the resolution of model

(BM). This preprocessing is based on the one described in Calvete et al. [8] for RPP problem.

We define a recursive function u′ : K → SK that assigns the index n of an equivalence class

Skn ∈ S k to each customer k ∈ K. Function u′ is defined as follows, for the set of customers

ordered according to their budgets in decreasing order:

1. If σ(k) = |M |, then u′(k) := 1.

2. If σ(k) < |M | and it holds Ik *
(
∪ k′∈K:
σ(k′)>σ(k)

Sk
′

u′(k′)

)
, then

u′(k) := min

{
n ∈ Nk : Skn *

(
∪ k′∈K:
σ(k′)>σ(k)

Sk
′

u′(k′)

)}
.

3. If σ(k) < |M | and it holds Ik ⊆
(
∪ k′∈K:
σ(k′)>σ(k)

Sk
′

u′(k′)

)
, then u′(k) := nk.

Proposition 7.1. For (RM) (resp. (3IM)), there exists an optimal solution (v̄mi , x̄
k
n, z̄

k
n) (resp.

(v̄mi , ȳ
km
n )) such that x̄kn = 0 (resp. ȳkmn = 0) for all k ∈ K, n > u′(k), m ∈MSkn

.

Let Cr, r = {1, 2, 3}, be such that k ∈ Cr if and only if u′(k) has been defined for k making

use of item r of the definition of u′. Finally, we give a condition under which an optimal solution

can be found by inspection.

Corollary 7.2. If C3 = ∅, an optimal solution of (RM) (resp. (3IM)) can be found by inspection.

The proofs of Proposition 7.1 and Corollary 7.2 can be found in Appendix A.

8 Computational results

Extensive computational experiments were carried out to compare the performance of (RM)

and (BM) in terms of the number of nodes of the branching tree, computational time and
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integrality gap, as well as the performance of the valid inequalities derived for both models and

the preprocessing techniques. We implemented both models by means of Mosel version 4.0.3

of Xpress-MP, Optimizer version 29.01.10, running on a Dell PowerEdge T110 II Server (Intel

Xeon E3-1270, 3.40 GHz) with 16 GB of RAM.

Regarding the instances, we modified those proposed in Calvete et al. [8]. This set was

designed following a model based on the Characteristics Model proposed by Fernandes et al.

[14]. Calvete et al. generated instances for |K| = 50, |K| = 100 and |K| = 150 customers and

0.1|K|, 0.5|K| and |K| products. For each size, they generated four instances modifying |Ik|.
Out of the four, we consider the instances with three sizes, namely |Ik| = d0.2|I|e, |Ik| = d0.5|I|e
and |Ik| = |I|. The budgets of the customers and their ranked lists of preferences were randomly

generated between 1 and 2|K|.

These instances were proposed in [8] for RPP, so we modified them by adding ties in the

ranked lists of preferences of the customers. Thus, for each size we generated three instances

varying the number of ties in the list of preferences (denoted Ties in Tables 4-6 and in the

following), with 1, 2, 3, 5 or 10 ties depending on the instance. This parameter establishes the

relationship between |Ik| and nk = |S k| in the following way: |Ik| − Ties = nk. We generated

5 instances of each size, 365 in total. The time limit was set to 3600 seconds, and the default

setting of Xpress was used.

For completeness, we report the results of the computational experiments in three tables

grouped in Appendix B. Tables 4, 5 and 6 contain all the data concerning the instances of sizes

|K| = 50, |K| = 100 and |K| = 150, respectively. In the remaining of the section, the most

significant information from those tables is summarized by means of several figures. Models

(RM) and (BM), as well as models (RM) and (BM) with the corresponding branch-and-cut

procedures and preprocessing techniques, are shown in the legends of the figures as RM, BM,

RM+VI+prepro and BM+VI+prepro, respectively.

Figure 3 is a performance profile that shows the percentage of instances having an integrality

gap less than or equal to the value on the x-axis. For models (RM) and (BM), the integrality gap

is RLGap = 100UB−BV
OV , where UB represents the upper bound given by the linear relaxation,

BV is the best value found by any of the models for such instance and OV is the best objective

value found by any of the models (the optimal value in most cases). As for models (RM) and

(BM) with the branch-and-cut procedure and the preprocessing techniques, the integrality gap

represented corresponds to: RGap = 100UBC−OV
OV , where UBC is the upper bound obtained

after adding the cuts in the root node. Figure 3 shows that the linear relaxation bound given by

model (BM) is in general much smaller than that of (RM), which in some cases goes up to a gap

of 50%. Moreover, the cuts added in the root node are very efficient in both cases in reducing

the gap. Adding these cuts leads to gaps 2-3% in 80% of the instances, and gaps smaller than

14% in all the instances. As we explained throughout the paper, the upper bound in this case is

in fact the bound provided by formulation (3IM), and this is why the integrality gap is roughly

the same for both models (since the value BV used is the same in all cases). Hence, Figure 3

illustrates the decisive role of the valid inequalities derived in Sections 5 and 6 when reducing
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Figure 3: In the y-axis, the percentage of instances with an integrality gap less than or equal
to that of the x-value is represented for models (RM), (BM) and (RM) and (BM) with the
branch-and-cut procedures and the preprocessing techniques

the upper bounds to close the integrality gap and reach optimality.

Figure 4: Percentage of solved instances with |K| = 150, depending on their size. The size of
the set of products is included at the bottom of the corresponding group of bars, the number of
products in the list of preference of any customer (|Ik|) appears after the letter p in the notation
of the instances, and the number of Ties of every customer is shown after the letter t

Models (RM) and (BM) solved to optimality the majority of the instances with 50 customers,

and the same models including the branch-and-cut and the preprocessing solved all of them. As

for the biggest instances, Figure 4 shows the number of instances with 150 customers solved

by each of the four models, depending on their size. As we can see, the relationship between

the number of customers |K| and products |I| determines the difficulty of the instance: the

instances with |I| = 0.5|K| (the ones in the middle of the table) are generally the most difficult

ones. Only (RM) and (BM) with the branch-and-cut and preprocessing are able to solve some

of the instances with |K| = 150 and |I| = 75. The fact that they are more difficult than those
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with |I| = 0.1|K| is explained because the preference matrices of the latter ones are less dense

and they have a much smaller number of variables and constraints, so the branch-and-cut and

the branching procedures are faster. As for the instances with |K| = |I| (the ones at the right of

the table), they are easier due to the preprocessing techniques, which eliminate a great number

of customer decision variables when the number of products is big compared to the number of

customers. Within the instances with the same amount of customers and products, the increase

in the numbers of products in the list of preferences of each customer (|Ik|) also increases the

difficulty of the instance, as well as the growth in the number of Ties.

Figure 5: Percentage of solved instances depending on the number of nodes explored in the
branching tree by models (RM), (BM), and (RM) and (BM) with the corresponding branch-
and-cut procedures and the preprocessing techniques

We also compared the performance of the four models in terms of the number of nodes

explored during the branching process. Figure 5 shows the percentage of solved instances de-

pending on the number of nodes explored in the branching tree by models (RM), (BM), and

(RM) and (BM) with the corresponding branch-and-cut procedures and the preprocessing tech-

niques. It is clear that (BM) outperforms (RM), solving a greater percentage of instances by

exploring the same amount of nodes, and that the models with the branch-and-cut and prepro-

cessing explore far less nodes than without these improvements. It is not so straightforward to

compare the performance in terms of number of nodes between models (RM) and (BM) with

the valid inequalities. However, we can see that for greater number of nodes explored, (RM)

slightly outperforms (BM), since the former solves around 3% more instances than the latter.

Finally, the percentage of solved instances with respect to the time (up to a time limit of

one hour) by the four models is illustrated in Figure 6. This figure shows results coherent

with the previous ones, in the sense that it shows that model (BM) outperforms (RM), but the

opposite occurs if we consider the models with the valid inequalities and the preprocessing. It

is remarkable how model (RM) solves 44% of the instances in less than 3600 seconds, whereas

the same model with the improvements solves twice as many.
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Figure 6: Percentage of instances solved (with a time limit of 3600 seconds) by models (RM)
and (BM), with and without the corresponding branch-and-cut procedures and the preprocessing
techniques

Overall, it is clear that the branch-and-cut and the preprocessing techniques applied con-

stitute a major improvement in the performance of both (RM) and (BM). Comparing the two

formulations with the upgrades, it can be seen that the linear relaxation gap is always smaller

for model (BM) than for (RM). However, the cuts added in the root node are very efficient in

both cases in reducing the gap, and after adding them the gap is the same for both models.

From the number of nodes explored in the branching tree, the average time and the number of

instances solved, it is clear that model (RM) slightly outperforms model (BM). The reason is

that computing the valid inequalities for model (BM) is harder and time consuming. Indeed, we

compute one inequality for each customer for (BM), but we obtain one inequality per customer

and product in the case of model (RM). The fact that valid inequalities added to (RM) can be

separated by products makes the processes of computing the inequalities and branching a lot

more efficient.

Motivated by the results obtained by Bertsimas and Mǐsić [5] with a Benders decomposition

procedure to tackle PLD, we decided to test the performance of our models using some large-

scale instances. In [5], they use a real data set with 3584 candidate products and 330 customer

rankings, and vary the number of products available in the product line creating instances with

a line of up to 2, 3, 4, 5, 10, 20 and 50 products. We generated two instances of RPPT of similar

size, that is, with 350 customers, all with different budgets, and 10 products. As explained in

Section 3, this is equivalent to having 3500 different products (if we consider a product with its

candidate price for PLD). And setting |I| = 10 also implies that the product line will have up to

10 products. We tested both instances with models (RM) and (RM) including the corresponding

branch-and-cut procedures and the preprocessing techniques, and the results are shown in Table

3.
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(RM)+VIs+prepro

Ins
LR phase Cuts phase MIO phase

Nodes
Total

time (s)Best Bound Time (s) Best Bound Time (s) Obj Best Bound Time (s)

1 217071 0.5 155889 3534.5 148414 148414 8575.4 21113 12109.9

2 216549 0.6 154642 5482.7 143469 143483 72255.2 276914 77737.9

(BM)+ VIs+prepro

Ins
LR phase Cuts phase MIO phase

Nodes
Total

time (s)Best Bound Time (s) Best Bound Time (s) Obj Best Bound Time (s)

1 172006 1.1 155889 21540.3 148414 148414 2103.7 23279 23644

2 170810 0.9 154642 21805.8 143469 143481 3487.1 120415 25292.9

Table 3: Results of two large-scale instances (|K| = 350, |I| = 10) given by models (RM) and
(BM) including the branch-and-cut method and the preprocessing techniques. The LR phase
of the table shows the bound and time of the linear relaxation phase. The Cuts phase includes
the bound after the cuts in the root node and the time to generate them. And the MIO phase
shows the best solution (Obj), the best bound and the time. We set a final integrality gap of
0.01% or lower for this integer phase. Finally, the table shows the number of nodes explored in
the branching tree and the total time in seconds

The results show that the time needed to solve the Cuts phase is much smaller for formulation

(RM), with times of around an hour for the first instance and an hour and a half for the second.

Model (BM), on the contrary, takes nearly six hours to add the cuts in the Cuts phase. These

results are consistent with the ones obtained in the previous experiment.

Nonetheless, we can see a different performance in the MIO phase. Model (BM) takes less

than an hour to close the gap and reach optimality for both instances. Regarding instance 1,

the MIO phase for model (RM) takes two hours and a half. But for instance 2, this phase takes

72255 seconds, i.e. more than 20 hours. Comparing the number of nodes explored during the

MIO phase with the time taken to solve instance 1, we see that both models explore a similar

amount of nodes, but model (RM) takes four times longer. We observe a similar pattern for

instance 2. Therefore, it is clear that exploring a node is much faster for model (BM) than for

(RM), and this is decisive in the reduction of the MIO phase time.

9 Conclusions

In this work, we presented a three-indexed integer formulation for RPPT, a problem which

consists in setting the prices of a set of products to maximize the profit of a company, taking

into account the customers’ choice. We then developed two resolution approaches. The first one

started with a smaller formulation (RM) of the problem which in general yields worse upper

bounds. To strengthen it, we projected out the customer decision variables of smaller size,

obtaining a set of valid inequalities. An ulterior transformation of the linear separation problem

into a MCFP was developed to take advantage of its features. The second resolution approach

is based on a Benders decomposition. We first reformulated the problem into a master problem

and a series of subproblems. Then we derived a set of constraints from the subproblems to make
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the master problem feasible and a separation procedure to include them dynamically. We also

proved that a very small set of them can be included to make the master feasible while the

rest of them are still separated, thus linking the Benders reformulation with model (BM). We

completed the paper with preprocessing techniques designed to reduce the size of the instances

and extensive computational experiments to test the overall performance of both methods.

Computational experiments show that the valid inequalities and the preprocessing techniques

highly improve the performance of models (RM) and (BM). In particular, the valid inequalities

significantly reduce the upper linear relaxation bound and the preprocessing techniques reduce

the size of the instance, making the linear relaxation and the branching phases faster. Together

they allow for the resolution of up to 40% more of the instances proposed within the same

time limit. When comparing both models, (BM) generally yiels better linear relaxation bounds,

but (RM) slightly outperforms (BM) when we consider both with the valid inequalities and the

preprocessing techniques due to the amount of time the generation of the valid inequalities takes

for model (BM). Regarding the two instances with 350 customers proposed, the performance of

the models is consistent with that obtained for the smaller instances. In this case, we can clearly

see how model (BM) takes more time when computing the valid inequalities than model (RM)

but less time when exploring each node of the branch-and-bound tree, thus reducing the linear

relaxation bound faster than (RM). All in all, the theoretical study of a novel three-indexed

model with very tight upper bounds results in the development of two different exact resolution

approaches including models of a much smaller size that maintain the linear relaxation bounds

of the former model through the addition of valid inequalities.
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A Complementary proofs

Proof of Proposition 4.2

1. This is a direct consequence of (1d).

2. If
∑
i∈Ik

∑
m∈Mk

i

v̄mi > 0, let n∗, m∗ be as stated, and i∗ ∈ {i ∈ Skn∗ : v̄m
∗

i = 1}. Then for all

n ∈ Nk, m ∈MSkn
, (n,m) 6= (n∗,m∗), it holds

• If (n,m) < (n∗,m∗) (with the lexicographic order), then by the corresponding con-

straint from (1d) we obtain ykmn ≤
∑

i∈Skn v̄
m
i = 0.

• If (n,m) > (n∗,m∗), then we turn to the constraint from (1e) given by (n, i,m) =

(n∗, i∗,m∗):

∑
m′∈Mk

i∗ :
m′≤m∗

v̄m
′

i∗ +
∑

m′∈M
Sk
n∗

:

m′>m∗

ykm
′

n∗ +
nk∑

n′=n∗+1

∑
m′∈M

Sk
n′

ykm
′

n′

= 1 +
∑

m′∈M
Sk
n∗

:

m′>m∗

ykm
′

n∗ +
nk∑

n′=n∗+1

∑
m′∈M

Sk
n′

ykm
′

n′ ≤ 1.

We distinguish two cases:

– If n = n∗, then m > m∗ and ykmn belongs to the sum
∑

m′∈M
Sk
n∗

:m′>m∗ y
km′
n∗ .

– If n > n∗, then ykmn belongs to
∑nk

n′=n∗+1

∑
m′∈M

Sk
n′
ykm

′
n′ .

Hence, in both cases the constraint implies ykmn = 0.

We just proved that ykmn = 0 ∀(n,m) 6= (n∗,m∗). Finally, for ykn
∗

m∗ , we have that constraints

(1b) and (1c) reduce to ykn
∗

m∗ ≤ d with d ≥ 1. As for constraints (1e), ykn
∗

m∗ may belong to

the second or third sum of the LHS for a given k. If ykn
∗

m∗ belongs to the second sum, then

m∗ > m and hence the sum of v-variables
∑

m′∈Mk
i :m′≤m v

m′
i is equal to 0. Otherwise,

ykn
∗

m∗ belongs to the third sum, so n < n∗ and the way n∗ is defined once again implies∑
m′∈Mk

i :m′≤m v
m′
i = 0 for such i ∈ Skn. Therefore, ykn

∗
m∗ is free, and it will take value 1 in

the optimal solution because its coefficient in the objective function is positive.

Proof of Proposition 5.1

Consider a feasible fractional solution (v̄, ȳ) of the linear relaxation of (3IM) that yields an

objective value v(v̄, ȳ). We build a fractional solution (v̂, x̂, ẑ) of (RM) with an objective value

v(v̂, x̂, ẑ) ≥ v(v̄, ȳ). In this way, if v(v̄, ȳ) is an optimal solution of the linear relaxation of (3IM),

we obtain v(RM) ≥ v(v̂, x̂, ẑ) ≥ v(v̄, ȳ) = v(3IM) ,where v(RM) (resp. v(3IM)) is the optimal

value of the linear relaxation of (RM) (resp. (3IM)).
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We define v̂mi := v̄mi , x̂kn :=
∑

m∈M
Skn

ȳkmn , ẑkn :=
∑

m∈M
Skn

bmȳkmn ∀k ∈ K, m ∈Mk
i , n ∈ Nk,

i ∈ Skn.

First, we prove that this solution is feasible for the linear relaxation of (RM). Constraints

(3b) hold because (1b) hold. Fixing v̄ and v̂, the problems are decomposable by customers, so

we assume a fixed customer k in the following, and we prove that the associated constraints

from sets (3c)-(3g) hold. As for the corresponding constraint from (3c), using the above we

have
∑

n∈Nk x̂kn =
∑

n∈Nk

∑
m∈M

Skn

ȳkmn , and the last sum is less than or equal to 1 because

of (1c). As for the constraint from (3d), it translates to
∑

m∈M
Skn

ȳkmn ≤
∑

i∈Skn
∑

m∈Mk
i
v̄mi ,

which holds because of constraints (1d) (summing up on m). Regarding the constraint from

(3e)
∑

m∈Mk
i
v̂ki +

∑nk

n′=n+1 x̂
k
n′ ≤ 1, it translates to

∑
m∈Mk

i
v̄ki +

∑nk

n′=n+1

∑
m∈M

Sk
n′
ȳkmn′ ≤

1, which is exactly the inequality from set (1e) for such k and m = σ(k), so it also holds.

Constraint ẑkn ≤ bσ(k)x̂kn from set (3f) holds trivially using the definition of x̂ and ẑ, since

ẑkn =
∑

m∈M
Skn

bmȳkmn ≤ bσ(k)
∑

m∈M
Skn

ȳkmn = bσ(k)x̂kn. And finally let us prove the feasibility

of the corresponding constraint from (3g). To begin with, we know that for a given customer

k and product i ∈ Ik, (1c) and (1e) imply
∑

m′∈Mk
i :m′<m v̄

m′
i +

∑
m′∈M

Skn
:m′≥m ȳ

km′
n ≤ 1 ∀ m

such that m− 1 ∈Mk
i . Let us suppose Mk

i := {1, 2, . . . , σ(k)}. Then, multiplying the previous

constraint m such that m − 1 ∈ Mk
i by bm − bm−1 (where b0 = 0) and adding together all the

constraints, we obtain:

σ(k)∑
m=1

m−1∑
m′=1

(
bm − bm−1

)
v̄m
′

i +

σ(k)∑
m=1

σ(k)∑
m′=m

(
bm − bm−1

)
ȳkm

′
n ≤

σ(k)∑
m=1

(
bm − bm−1

)
= bσ(k). (16)

The LHS of (16) is equal to

σ(k)∑
m=1

m−1∑
m′=1

(
bm − bm−1

)
v̄m
′

i +

σ(k)∑
m=1

σ(k)∑
m′=m

(
bm − bm−1

)
ȳkm

′
n

=

σ(k)−1∑
m′=1

σ(k)∑
m=m′

(
bm − bm−1

)
v̄m
′

i +

σ(k)∑
m′=1

m′−1∑
m=1

(
bm − bm−1

)
ȳkm

′
n

=

σ(k)−1∑
m′=1

(
bσ(k) − bm′

)
v̄m
′

i +

σ(k)∑
m′=1

bm
′
ȳkm

′
n =

∑
m′∈Mk

i

(
bσ(k) − bm′

)
v̄m
′

i + ẑkn.

All in all, we obtain that constraint ẑkn+
∑

m′∈Mk
i

(
bσ(k) − bm′

)
v̄m
′

i ≤ bσ(k) is satisfied, so the

corresponding constraint from (3g) holds. On the other hand, if Mk
i ( {1, 2, . . . , σ(k)} it suffices

to multiply each constraint associated to m ∈ Mk
i by bm − bm′ , where m′ = {max{m′′ ∈ {0}

∪ Mk
i : m′′ < m}

}
instead, and the same result is obtained applying the previous procedure.

Finally, we need to prove that v(v̂, x̂, ẑ) ≥ v(v̄, ȳ). But this is straightforward by definition

of ẑ, since v(v̂, x̂, ẑ) =
∑

k∈K
∑

n∈Nk ẑkn =
∑

k∈K
∑

n∈Nk

∑
m∈M

Skn

bmȳkmn = v(v̄, ȳ).

Proof of Proposition 6.1
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Constraints (11c) guarantee that if customer k cannot afford any product, then zk = 0.

When k can afford several products, the RHS of (11c) is an upper bound on the value of zk.

Constraints (11d) model the preferences and ensure that k purchases his most preferred

product (at the cheapest price in case of ties). Indeed, given an integer feasible solution (v̄, z̄),

let n∗ := min{n ∈ Nk :
∑

i∈Skn
∑

m∈Mk
i
v̄ki ≥ 1}, and i∗ ∈ arg mini∈Sk

n∗
{
∑

m∈Mk
i
bmv̄mi }. Clearly,

Skn∗ is the first class (according to the ranking) from which k is able to afford a product, whereas

i∗ is one of the cheapest products from Skn∗ . So assuming v̄m
∗

i∗ = 1, we need to prove that it

holds zk =
∑

m∈Mk
i∗
bmv̄mi∗ = bm

∗
. Since we are maximizing the objective, it suffices to prove

that all the RHSs of (11c) and (11d) for such k are all greater than or equal to bm
∗
, and that

at least one is equal to bm
∗
. We have one constraint per product i ∈ Ik, so to begin with we

distinguish two cases:

• i � i∗. In this case, the last sum of the corresponding constraint from (11d)∑
j∈Ik:j≺ki

∑
m∈Mk

j
bmvmj = 0. We have three subcases to consider:

– i ≺k i∗. Then k cannot afford i or any j ≺k i, so the RHS of (11d) is equal to bσ(k),

an upper bound on the profit from k.

– i = i∗. In this case, the RHS of (11d) is equal to bm
∗
:

bσ(k) +
∑

m∈Mk
i∗

(
bm − bσ(k)

)
v̄mi∗ = bσ(k) +

(
bm
∗ − bσ(k)

)
= bm

∗
.

– i ∼k i∗, i 6= i∗. In this case, by definition of i∗ we know that v̄m̂i = 1 for some

m̂ ≥ m∗. If m̂ > σ(k), then the RHS of (11d) is equal to bσ(k). Otherwise, we have∑
m∈Mk

i
bmv̄mi = bm̂ ≥ bm∗ and it holds

bσ(k) +
∑
m∈Mk

i

(
bm − bσ(k)

)
v̄mi = bσ(k) +

(
bm̂ − bσ(k)

)
= bm̂.

• i �k i∗. Then it holds

bσ(k) +
∑
m∈Mk

i

(
bm − bσ(k)

)
v̄mi +

∑
j∈Ik:
j≺ki

∑
m∈Mk

j

bmv̄mj ≥
∑
j∈Ik:
j≺ki

∑
m∈Mk

j

bmv̄mj ≥ bm
∗
,

where the last inequality holds because vm
∗

i∗ = 1 belongs to the previous sum.

Proof of Proposition 6.2

We drop the k index from the variables for the sake of notation. Constraints (11c) are

obtained, for a fixed customer k, when fixing α := 0, βmi := 0 ∀i ∈ Ik, m ∈ Mk
i , γmn := bm

∀n ∈ Nk, m ∈MSkn
. The described (α,β,γ) belongs toDk because constraints (14b) are trivially

satisfied, since for each m ∈MSkn
it holds α +

∑n−1
n′=1

∑
i∈Sk

n′

∑
m′∈Mk

i
βm
′

i +
∑

i∈Skn
∑

m′∈Mk
i
:

m′<m

βm
′

i +

γmn ≥ γmn = bm.
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As for constraints (11d), consider for fixed k ∈ K, n∗ ∈ Nk and i∗ ∈ Skn∗ ⊂ Ik, and

assume Mk
i∗ = {1, . . . , σ(k)}. Let us set the values α := b1, βmi∗ := bm+1 − bm for m ∈ Mk

i∗ :

m < σ(k), β
σ(k)
i∗ := 0, βmi := 0 ∀i 6= i∗, m ∈ Mk

i , γmn := bm ∀n < n∗, m ∈ MSkn
, γmn := 0

for n ≥ n∗, m ∈ MSkn
. Then it follows

∑
m∈Mk

i∗
βmi∗ =

∑σ(k)−1
m=1

(
bm+1 − bm

)
= bσ(k) − b1

and
∑

m∈Mk
i∗ :m≥m′ β

m
i∗ = bσ(k) − bm′ for m′ ∈ Mk

i∗ . Therefore, we have that the RHS of the

corresponding constraint from (15c) is

α +
∑
n∈Nk

∑
i∈Skn

∑
m∈Mk

i

1−
∑

m′∈Mk
i
:

m′≤m

vm
′

i

βmi +
∑
n∈Nk

∑
i∈Skn

∑
m∈Mk

i

vmi γ
m
n

= b1 +
∑

m∈Mk
i∗

1−
∑

m′∈Mk
i∗ :

m′≤m

vm
′

i∗

βmi∗ +
∑
n<n∗

∑
i∈Skn

∑
m∈Mk

i

vmi b
m

= b1 +
∑

m∈Mk
i∗

βmi∗ −
∑

m′∈Mk
i∗

 ∑
m∈Mk

i∗ :
m≥m′

βmi∗

 vm
′

i∗ +
∑
i∈Ik:
i≺i∗

∑
m∈Mk

i

vmi b
m

= b1 +
(
bσ(k) − b1

)
−

∑
m′∈Mk

i∗

(
bσ(k) − bm′

)
vm
′

i∗ +
∑
i∈Ik:
i≺i∗

∑
m∈Mk

i

vmi b
m,

which is equal to the RHS of (11d) for customer k and product i∗ ∈ Skn∗ .

To check whether (α,β,γ) belongs to Dk, and knowing that the vectors are nonnegative by

definition, it is left to prove that (14b) hold ∀n ∈ Nk, m ∈ MSkn
, i ∈ Skn. To do so, we study

three cases depending on n ∈ Nk:

• n < n∗. Then for given m ∈MSkn
, we have the LHS of (14b) equal to

α+
n−1∑
n′=1

∑
i∈Sk

n′

∑
m′∈Mk

i

βm
′

i +
∑
i∈Skn

∑
m′∈Mk

i
:

m′<m

βm
′

i + γmn ≥ γmn = bm.

• n = n∗. Then it holds for m ∈MSkn
:

α+
n∗−1∑
n′=1

∑
i∈Sk

n′

∑
m′∈Mk

i

βm
′

i +
∑
i∈Sk

n∗

∑
m′∈Mk

i
:

m′<m

βm
′

i + γmn∗ = α+
∑

m′∈Mk
i∗ :

m′<m

βm
′

i∗ = b1 +
(
bm − b1

)
= bm.
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• n > n∗. Then for given m ∈MSkn
, we have the LHS of (14b) equal to

α+
n∗−1∑
n′=1

∑
i∈Sk

n′

∑
m′∈Mk

i

βm
′

i +
∑
i∈Sk

n∗

∑
m′∈Mk

i
:

m′<m

βm
′

i + γmn∗ = α+
∑

m′∈Mk
i∗

βm
′

i∗ = bσ(k).

In the three cases, the LHS of (14b) is greater than or equal to bm, so the given (α,β,γ) satisfies

(14b) and thus it belongs to Dk.

If Mk
i∗ ( {1, 2, . . . , σ(k)}, the proof follows analogously applying the previous procedure to

the same α and γ, but defining βmi∗ := bm
′ − bm, where m′ = min{m′′ ∈Mk

i∗ : m′′ > m}, for

m ∈Mk
i : m < σ(k), β

σ(k)
i∗ := 0, βmi := 0 ∀i 6= i∗, m ∈Mk

i .

Proof of Proposition 7.1

We shall prove the statement for model (RM), since the proof for model (3IM) is analogous.

Thus, suppose we have an optimal solution (v̂mi , x̂
k
n, ẑ

k
n) not satisfying the statement conditions.

Our aim is to build another one which does satisfy them. We will proceed by induction on k.

To begin with, it is clear that the statement holds for all customers k with budget b|M |.

Indeed, since these customers can afford any product, they always get one of their favorite ones,

so one in the set Sk1 , and x̂kn = 0 for n > 1 = u′(k). Now, let k0 ∈ K be such that the statement

holds ∀k ∈ K with σ(k) > σ(k0) but x̂k0n = 1 for some n > u′(k0). Then it is clear that k0 /∈ C3.

Besides, from the definition of u′ we know there is a product i0 ∈ Sk0u′(k0) \ ∪ k∈K:
σ(k)>σ(k0)

Sku′(k), and

we also know that i0 remains unsold in this solution.

Hence, consider the vector of prices v̄mi obtained by modifying the price of i0: v̄mi = v̂mi
∀i 6= i0,m ∈ Mk

i , v̄
σ(k0)
i0

= 1, v̄mi0 = 0 ∀m 6= σ(k0). Given this vector of prices, customers k

with σ(k) < σ(k0) can afford the same products than in solution (v̂mi , x̂
k
n, ẑ

k
n), so they make

the same purchase. Customers k with σ(k) > σ(k0) were already purchasing in the previous

solution a product that they liked better than i0. And customers k with σ(k) = σ(k0) might

purchase product i0 in the new solution, but in this case, since they pay their whole budget, the

objective value does not decrease with respect to the previous solution. Therefore, (v̂mi , x̂
k
n, ẑ

k
n)

is an optimal solution that meets the statement requirements for customer k0. Applying the

procedure iteratively, we can obtain an optimal solution satisfying the statement.

Proof of Corollary 7.2

We will prove the statement for formulation (RM), and the proof for (3IM) is analogous.

Let us define a solution (v̄mi , x̄
k
n, z̄

k
n) of (RM) and prove its optimality.

We begin by defining the vector v̄ of prices in the following way: ∀i ∈ I : i ∈ Sku′(k) for some

k ∈ K, then v̄m0
i = 1 for m0 := max{m ∈ Mi : ∃k ∈ K with σ(k) = m0, i ∈ Sku′(k)}, v̄

m
i = 0

∀m 6= m0; and ∀i ∈ I such that {k ∈ K : i ∈ Sku′(k)} = ∅, then v̄m0
i = 1 for m0 := max{m ∈Mi},

v̄mi = 0 ∀m 6= m0.

Now let us see the customers’ purchasing decision based on vector v̄. Thus, given k ∈ K
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we have that ∀i ∈ Skn with n < u′(k), it holds by definition of u′ that i ∈ Sku′(k′) for some

k′ : σ(k′) > σ(k), and therefore v̄mi = 1 for some m > σ(k) and thus k cannot afford i. Hence,

we have x̄kn = 0 ∀n < u′(k). Moreover, since k /∈ C3, there exists i0 ∈ Sku′(k) such that v̄
σ(k)
i0

= 1.

This combined with the fact that ∀i ∈ Sku′(k) it holds v̄mi = 1 for some m ≥ σ(k) by definition of

v̄, implies that customer k purchases i0, so x̄ku′(k) = 1 and z̄ku′(k) = bσ(k).

Given that the objective value of this above derived feasible solution is
∑

k∈K b
σ(k), which is

an upper bound on the profit the company can obtain, solution (v̄mi , x̄
k
n, z̄

k
n) is optimal.
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