
HAL Id: hal-02895913
https://inria.hal.science/hal-02895913

Submitted on 10 Jul 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fighting N-Day Vulnerabilities with Automated CVSS
Vector Prediction at Disclosure

Clément Elbaz, Louis Rilling, Christine Morin

To cite this version:
Clément Elbaz, Louis Rilling, Christine Morin. Fighting N-Day Vulnerabilities with Automated CVSS
Vector Prediction at Disclosure. ARES 2020 - International Conference on Availability, Reliability and
Security, Aug 2020, Virtual Event, Ireland. pp.1-10. �hal-02895913�

https://inria.hal.science/hal-02895913
https://hal.archives-ouvertes.fr


Fighting N-Day Vulnerabilities with Automated CVSS Vector
Prediction at Disclosure

Clément Elbaz
Univ Rennes, Inria, CNRS, IRISA

Rennes, France
clement.elbaz@inria.fr

Louis Rilling
DGA

Rennes, France
louis.rilling@irisa.fr

Christine Morin
Inria

Rennes, France
christine.morin@inria.fr

ABSTRACT
The Common Vulnerability Scoring System (CVSS) is the industry
standard for describing the characteristics of a software vulnerabil-
ity and measuring its severity. However, during the first days after
a vulnerability disclosure, the initial human readable description
of the vulnerability is not available as a machine readable CVSS
vector yet. This situation creates a period of time when only ex-
pensive manual analysis can be used to react to new vulnerabilities
because no data is available for cheaper automated analysis yet. We
present a new technique based on linear regression to automatically
predict the CVSS vector of newly disclosed vulnerabilities using
only their human readable descriptions, with a strong emphasis on
decision explicability. Our experimental results suggest real world
applicability.

KEYWORDS
Security, CVSS, CVE, Machine Learning, Linear Regression

1 INTRODUCTION
Disclosure is the most critical part of a vulnerability life cycle.
Indeed, zero-day vulnerabilities are confidential, high value assets
used sparingly against high value targets while well known public
vulnerabilities can bemitigated using standard security practices: by
applying software updates in a diligent manner or using a signature-
based intrusion detection system (IDS).

Bilge et al. [17] showed a five orders of magnitude increase in
the usage of vulnerabilities before and after their disclosure. In the
midst of this increasing threat, most standard defense mechanisms
do not work at disclosure: software patches have not been deployed
and sometimes are not even available yet. Security experts do not
understand the vulnerability well enough to author a proper signa-
ture rule for an IDS at this early stage. These factors contribute in
making the disclosure a dangerous time, leaving a lot of systems
vulnerable in practice.

N-day vulnerabilities are newly disclosed vulnerabilities that are
still in the critical part of their life cycle n days after their disclosure.
While the value of n can vary with vulnerabilities and organiza-
tions, successfully defending systems against n-day vulnerabilities
involves keeping the value of n as close to 0 as possible.

The process of disclosing new vulnerabilities is coordinated by
the Common Vulnerabilities and Exposures (CVE) system overseen
by Mitre’s Corporation [6]. Newly disclosed vulnerabilities are
first published on the CVE List data feed (managed by Mitre) then
forwarded to other security databases such as NIST’s NVD data-
base [13] or SCAP data feeds [15]. Only then they will be annotated
by multiple security experts. These annotations include a threat

analysis comprising the redaction of a Common Vulnerability Scor-
ing System (CVSS) vector and score [7].

Security experts such as NIST’s take days or even weeks to an-
alyze and annotate a vulnerability (see Section 3.1). It is common
to find vulnerabilities that have been disclosed for several days
that are still not analyzed by NVD. For instance CVE-2020-0583,
disclosed on the CVE List on 03/12/2020, has no NVD analysis as
of 03/22/2020. This means that it is not possible to rely on enriched
metadata provided by databases such as NVD to analyze n-day vul-
nerabilities. Instead one should focus on the only elements available
at disclosure: a unique CVE identifier, a free-form human readable
description, and at least one public reference [10].

The current state of this ecosystemmakes it expensive for organi-
zations to analyze vulnerabilities at disclosure. Achieving real-time
threat evaluation of new vulnerabilities through manual analysis is
possible but requires extensive manpower as hundreds of vulnera-
bilities are disclosed daily. Automated real-time threat evaluation
is not currently practical as there is not enough machine-readable
metadata available at disclosure for automated analysis. Real-time
threat analysis is therefore prohibitively expensive for most organi-
zations even though it would benefit them as severe vulnerabilities
such as Shellshock [3] have been massively exploited within hours
of their disclosure.

Real-time threat evaluation for newly disclosed vulnerabilities
would be more affordable to organizations if it could be automated.
It would allow real-time reaction to vulnerability disclosures from
cloud service providers (CSP) and information systems. These au-
tomated reactions can include reconfiguration of security policies
such as logging level elevation for critical systems, switching these
systems into degraded mode, or even shutting them down while
waiting for a remediation to be applied. Such a reaction service
could give the CSP the opportunity to protect both its internal sys-
tems and its tenants (the latter constituting a potential source of
revenues for the CSP).

We propose an automated system that uses the free-form text
descriptions of newly-disclosed vulnerabilities to predict the CVSS
base vector of these vulnerabilities, and can do so in near real-
time (at most seconds after disclosure) while maintaining a strong
explicability chain between the input data and the prediction. To
the best of our knowledge this is the first attempt at doing so.

In Section 2we discuss relatedwork and the real world challenges
of working with vulnerability data. In Section 3 we present our
approach. In Section 4 we evaluate the accuracy of our proposed
technique. We discuss our results in Section 5 and conclude in
Section 6.



Base Vector Temporal Vector
CVSS V2 CVSS V3 CVSS V2 CVSS V3

Access Vector (AV) Attack Vector (AV) Exploitability (E) Exploit Code Maturity (E)
Access Complexity (AC) Attack Complexity (AC) Remediation Level (RL) Remediation Level (RL)
Authentication (Au) Privileges Required (PR) Report Confidence (RC) Report Confidence (RC)

User Interaction (UI) Environmental Vector
Confidentiality Impact (C) Confidentiality (C) CVSS V2 CVSS V3

Integrity Impact (I) Integrity (I) Collateral Damage Potential (CDP) Modified Base Metrics (M*)
Availability Impact (A) Availability (A) Target Distribution (TD)

Scope (S) Confidentiality Requirement (CR) Confidentiality Requirement (CR)
Integrity Requirement (IR) Integrity Requirement (IR)

Availability Requirement (AR) Availability Requirement (AR)
Table 1: Fields for Base, Temporal, and Environmental CVSS vectors in V2 and V3.

Description
The HTTP/2 implementation in Apache Tomcat 9.0.0.M1 to
9.0.14 and 8.5.0 to 8.5.37 accepted streams with excessive num-
bers of SETTINGS frames and also permitted clients to keep
streams open without reading/writing request/response data.
By keeping streams open for requests that utilised the Servlet
API’s blocking I/O, clients were able to cause server-side threads
to block eventually leading to thread exhaustion and a DoS.
CVSS V3 Base Vector
CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H
CVSS V2 Base Vector
AV:N/AC:L/Au:N/C:N/I:N/A:P
CVSS V3 Base Score 7.5 CVSS V2 Base Score 5.0

Table 2: Description, CVSS V2 andV3 base vectors and scores
for vulnerability CVE-2019-0199.

2 BACKGROUND AND RELATEDWORK
CVSS is the de facto standard when formally describing software
vulnerabilities properties and severities. Multiple versions of the
standard have been released, with CVSS V2 [1], CVSS V3 [8], CVSS
V3.1 [9] all being widely used in the computer security commu-
nity. All versions share the same general architecture: a series of
multiple-choice questions to be answered about the vulnerability,
separated into three groups: the base group, describing the inherent
properties of the vulnerability, the temporal group describing some
of the vulnerability properties that can evolve with time, and the
environmental group, describing the severity of a vulnerability in the
context of a specific organization. Table 1 shows the different fields
required by CVSS V2 and V3. When all answers about a vulnerabil-
ity have been filled, they are combined into a CVSS Vector using a
standard syntax. Each version of the CVSS specification provides
a severity formula, taking all fields as input and returns a severity
score between 0.0 and 10.0. This computation is not linear and small
changes in the vector can lead to big differences in the severity
score. CVSS V3 and V3.1 share the same fields and only differ by
a minor change in the severity formula that only impacts a small
number of vulnerabilities. In the rest of our work we use the term

“CVSS V3” to describe both the CVSS V3 and V3.1 specifications:
when severity calculation is involved, we use the 3.1 variant unless
specified. As an example, Table 2 provides CVSS V2 and V3 base
vectors and scores for CVE-2019-0199, a vulnerability disclosed in
April 2019 affecting Apache Tomcat.

Khazaei et al already explored CVSS severity score prediction [25]:
they compared the use of SVM, Random Forests, and fuzzy systems
to predict CVSS base scores, in both offline and online environments.
However their work differs from ours in a number of ways:

• Their approach is focused on the severity score of the vulner-
ability, and they do not predict it completely: they approach
severity prediction as a classification problem, treating the
integer part of the score as a class to be predicted. To the
best of our knowledge, our approach is the first to recon-
struct a full CVSS vector, thus providing more details about
the vulnerability and allowing an actual CVSS score to be
recomputed.

• They do not take results explicability into account. Both
their approach and ours start by treating a vulnerability
description as a bag-of-words (in their case, they apply a
TF-IDF [24] weighting scheme to the word count). They use
dimension reduction methods (Linear Discriminant Analysis
and Principal Component Analysis) that create latent vari-
ables that cannot be easily interpreted. Moreover, some of
the classifier algorithms they use, such as random forest or
fuzzy systems, do not exhibit strong explicability properties
either. We consider the explicability of automated analysis as
a paramount quality of security systems and our prediction
pipeline is designed to preserve explicability at all stages, as
described in Section 3.

• Furthermore, their experimental protocol evaluates the pre-
diction as a binary event: either the correct class has been
predicted, or not. In our opinion there is a strong difference
between incorrectly classifying a vulnerability with an ac-
tual severity score of 8.x as 7.y and 2.z. In our evaluation
protocol we evaluate the prediction of each vector compo-
nent individually and study the severity score prediction as
a numerical error.

• Both their evaluation protocol and ours include an “online”
evaluation, evaluating how a vulnerability can be analyzed

2



Dimension reduction

Text description of analyzed vulnerability

High dimension input vector

Low dimension input vector

Predicted numerical value for CVSS field

Bag of words

Linear model inference

Optional domain 
specific whitelists

Process

Data

Input / Output
Predicted value for CVSS field

CVSS numerical value reverse lookup

Low dimension input vectors and one numerical output

Linear model fitting

Selection of dimensions for CVSS field

All past vulnerabilities descriptions and CVSS vectors

Bag of words + CVSS numerical value lookup

High dimension input vectors and multiple numerical outputs

Selected 
dimensions 

for CVSS field

Linear model 
for CVSS field

For each CVSS field

Training Inference

Predicted value for CVSS vector

Figure 1: Our CVSS vector prediction pipeline.

using the data present at its disclosure. However they do not
take into account that CVSS information is not immediately
available after disclosure, something we take into account.
Moreover, their online evaluation uses monthly steps. This
is not granular enough for evaluating a technique robust-
ness for n-day vulnerabilities. Our evaluation protocol uses
weekly steps for all variants of our technique and daily steps
for the most promising variants.

• As our work is more recent, we evaluate our technique on
both CVSS V2 and CVSS V3 using vulnerability data up to
2019 included. Their work only considers CVSS V2 and data
up until 2013 included.

Jacobs et al. [23] proposed the Exploit Prediction Scoring System
(EPSS). Like our work, EPSS is meant to be used at vulnerability
disclosure: they try to determine a vulnerability’s probability of
exploitation in the twelve months after its disclosure. They use a
logistic regression model trained using both public and non-public
data sources that can infer probabilities for new vulnerabilities
using only public data sources. The two main differences between
their work and ours are that they try to predict a different informa-
tion than we do, and that we do not require any private data source
in our pipeline.

Multiple works brought meaningful insights using statistical
analyses of historical vulnerabilities in the CVE corpus. Frei et
al. [19] found a statistical correlation between the availability of
exploits and patches and the number of days since disclosure. Clark
et al. [18] brought to light a “honeymoon effect” where more recent
software is less subject to new vulnerabilities than older software,
everything else being equal. Ganz et al. [20] attempted to automati-
cally enrich the quality of the metadata in NVD, by blending the
existing metadata with textual analysis of the description. However

their technique still requires the availability of existing metadata
for the vulnerability, while ours does not.

Most cloud providers provide Intrusion Prevention System (IPS)
or Web Application Firewall (WAF) capabilities among their com-
mercial offering [2][12][5]. However, to the best of our knowledge,
the process of monitoring new vulnerabilities and adding related
rules is always done manually [4].

3 PROPOSED APPROACH
In this section we describe our CVSS vector prediction pipeline.
Its input is the free-form description of a new vulnerability. It is
analyzed using all vulnerability descriptions and metadata available
at the time of disclosure. It outputs a predicted CVSS base vector
(in V2 or V3 format). A high-level overview of the proposed vul-
nerability analysis pipeline is shown in Figure 1. We now describe
each stage of the pipeline in more details, starting with our choice
of data sources.

3.1 Data Availability at Prediction Time
We use data from the NVD CVE database, as it includes descriptions
(which we use as training input) and vulnerability CVSS vectors
(which we use as training output) for all CVE vulnerabilities. How-
ever as we saw in Section 1, metadata (including CVSS vectors) is
not published at disclosure time, but authored by security experts
several days after. Figure 2 shows the number of days between
vulnerability disclosure and analysis publication in NVD from 2007
to 2019. Historically the median analysis duration has been zero day
while the 9th decile has been two days. While this remained true
until 2016 (for the median) and 2012 (for the 9th decile), there have
been sharp drops in NVD analyses timeliness since then. In 2018
the median and 9th decile analysis duration reached 35 days and 63

3



Figure 2: Number of days between vulnerability disclosure
and analysis in NVD from 2007 to 2019.

Data available when analyzing vulnerability V3 
at disclosure

Time

Description of 
vulnerability V1

Metadata of 
vulnerability V1

Description of 
vulnerability V2

Metadata of 
vulnerability V2

Description of 
vulnerability V3

Metadata of 
vulnerability V3

Disclosure of vulnerability

Security analysis of vulnerability

Metadata publication delay

Figure 3: In this example, when analyzing the text descrip-
tion of vulnerability V3 at disclosure time we have access to
the text descriptions for V1 and V2 and to the metadata for
V1, but not the metadata for V2 or V3.

days respectively. While NVD should be credited for considerably
improving the 2019 delays compared to 2017 and 2018, this shows
availability of metadata can not be taken for granted at disclosure.
Figure 3 shows a simplified example of how time impacts the data
available when analyzing vulnerabilities at disclosure, and we detail
in Section 4 how we take metadata publication delay into account
in our evaluation protocol. Whitelist-based dimension reduction
uses additional data sources which we describe in Section 3.3.1.

3.2 Training Pipeline and Explicability
Beyond accuracy we had one major goal when designing our ma-
chine learning pipeline: keeping an explicable and reliable rela-
tionship between the input and the decision. This is important for
security systems as most organizations require security incidents to
be audited and their root cause understood. When such an incident
occurs because of an incorrect decision from an inference system,
the decision process of the inference system becomes the root cause
to be analyzed. If the failure mode of the inference system cannot

be understood, the correct course of action to prevent future oc-
currences of the incident is not to rely on the inference system
anymore, often leading to its decommissioning.

For the sake of explicability we also have to limit the number of
hyperparameters in the pipeline. A hyperparameter is a parameter
that has to be chosen before training occurs, has a direct correlation
with model performance, but has a non-obvious impact on model
accuracy. The space of all possible combinations of hyperparam-
eters settings for a given training pipeline is called an hyperstate
and grows exponentially with the number of hyperparameters. The
optimal choice of hyperparameter settings is very much dependent
on the training and test data, which in online problems such as
ours evolve with time. As hyperparameters must be set before the
beginning of training (which can be lengthy), a highly dimensional
hyperstate cannot be fully explored repeatedly, creating risks of ac-
curacy drifts over time or subtle differences in failure modes when
inferring. We would like all variations of our training pipeline to
have either zero or one hyperparameter, allowing for a full under-
standing of the model hyperstate.

To handle these constraints, we propose the pipeline described
in Figure 1. We first adopt a bag of words approach on each vulner-
ability description, creating an index of every word ever used in
a vulnerability description, then treating every vulnerability as a
highly dimensional vector with each dimension being the count
of occurrences for a given word (zero indicating its absence from
the description text). As the number of words in the index grows
loosely linearly with the number of vulnerabilities, we apply a filter-
ing scheme (described in Section 3.3) removing irrelevant words in
order to manage the number of dimensions of the vulnerability vec-
tors. We then train one regression model (described in Section 3.4)
for every component of the CVSS vector using the vulnerability
vectors as input. The impact of explicability on accuracy can be
quantified through a robust evaluation protocol, as described in
Section 4.

3.3 Dimension Reduction Through Filtering
As we wish to preserve the auditability of the bag-of-word embed-
ding (each dimension counts the number of occurrences of a word)
we choose not to use any dimension reduction technique creating
latent variables. This excludes techniques such as Linear Discrimi-
nant Analysis, Principal Component Analysis, Locality Sensitive
Hashing [22], and many others.

Instead, we retain existing dimensions but filter out the ones
we deem irrelevant. We propose two approaches for that: domain-
specific whitelists, and dimension sorting using conditional entropy.

3.3.1 Domain-specific whitelists. We use two pieces of data as
sources of terms for generating a keyword whitelist: Common Plat-
form Enumeration (CPE) URIs [14] and Mitre’s Common Weakness
Enumeration (CWE) database [11].

A CPE URI is a unique reference to a specific entry in the CPE
database, which references a specific version of a piece of software,
as described in Figure 4. We use the CPE URIs themselves as a
data source and not the CPE database they point to because they
are richer and more up-to-date: as shown in Figure 5 there is an
ever-increasing number of “dead” CPE URIs entries referenced
in vulnerabilities metadata that do not actually exist in the CPE

4



*

*

Published at disclosure by Mitre

Published after security analysis by NVD

Field ‘vendor’ of CPE URI
readdle

Field ‘product’ of CPE URI
spark

Field ‘target’ of CPE URI
android

*

*

*

1

1

1

CVE-2019-12370
Published on 03/18/2020

The Spark application through 2.0.2 for Android 
allows XSS via an event attribute and arbitrary file 
loading via a src attribute, if the application has the 
READ_EXTERNAL_STORAGE permission.

CPE URI
cpe:2.3:a:readdle:spark:2.0.2:*:*:*:*:android:*:*

Figure 4: Our CPE URI-based whitelist is constructed from
fields extracted from the URI included in the vulnerability
metadata.

Figure 5: Historical rate of software names used in vulnera-
bilities CPE URIs that are missing from the CPE dictionary.

CWEWeaknesses
Improper Neutralization of Script-Related HTML Tags in a
Web Page (Basic XSS)
Stack-based Buffer Overflow
Use After Free
UNIX Symbolic Link (Symlink) Following
Extracted keywords
a after based basic buffer following free html improper in
link neutralization of overflow page related script stack
symbolic symlink tags unix use web xss

Table 3: Examples of CWE weaknesses and keywords ex-
tracted from them.

database. Fields extracted from the CPE URI are the software vendor,
software product, and target software.

Our second whitelist is based on the CWE database. CWE is a
list of common software and hardware security weaknesses, aiming
to serve as a common vocabulary to describe similar vulnerabilities.
We extracted all terms used in CWE titles in order to use them as a
whitelist. Table 3 shows several examples of CWE weaknesses and
the keywords we extracted from them.

Both CPE URI and CWE datasets are journaled, allowing us to
include all entries published up until the time of disclosure of the
evaluated vulnerability. We evaluate the impact of both whitelists
(separately and together) in Section 4.

Word count Attack Vector value

“local”
Physical Local Adjacent Network

0 5 62 11 556
1 0 53 1 6

“document”
Physical Local Adjacent Network

0 5 98 12 545
1 0 17 0 17

“compiler”
Physical Local Adjacent Network

0 5 115 12 505
1 0 0 0 56

TOTAL
5 115 12 562

Table 4: Conditional distributions for various keywords and
the value of CVSS field Attack Vector for vulnerabilities dis-
closed between January 1st, 2016 and April 1st, 2016.

3.3.2 Conditional entropy sorting. Our second approach to dimen-
sion reduction is not based on domain-specific knowledge but on
information theory. We use conditional entropy to sort words by
how much prediction power they provide. In this approach we
consider a CVSS field as a random variable to be predicted, and the
count of a word in the vulnerability description as a random vari-
able whose value is already known. Table 4 depicts the distribution
of results for the CVSS field Attack Vector for 694 vulnerabilities
disclosed between January 1st, 2016 and April 1st, 2016, and the
related conditional distributions for occurrences of words “local”,
“document”, and “compiler” in the associated vulnerabilities descrip-
tions. We can see that the word “compiler” has a low predictive
power on Attack Vector, as the conditional distribution remains
close to the original whether the word is present or absent. Con-
versely, the word “local” has more predictive power as its presence
completely changes the distribution, with the most probable value
switching from Network to Local. Conditional entropy, described in
Equation 1, provides a synthesis of this difference by computing the
entropy of one random variable when another one is known. All
entropy computations in this work are done in base 2 with results
expressed in bits.

𝐻 (𝑌 |𝑋 ) = −
∑

𝑥 ∈X,𝑦∈Y
𝑝 (𝑥,𝑦) log 𝑝 (𝑥,𝑦)

𝑝 (𝑥) (1)

Once we have computed the conditional entropy of a CVSS field
for every word in our index, we can sort the associated dimensions:
the words with the lowest conditional entropy are the more predic-
tive dimensions. We can choose a number of dimensions we wish
to retain and discard the rest.

There are two theoretical drawbacks to this approach. First the
mutual information between dimensions is not taken into account.
The first and second most predictive dimensions might be very
predictive on their own but the second might not provide a lot

5



Attack Vector (AV)
Metric Value Numerical Value
Network (AV:N) 0.85
Adjacent (AV:A) 0.62
Local (AV:L) 0.55
Physical (AV:P) 0.2

Table 5: Enumerated members for CVSS V3 field Attack Vec-
tor and their associated numerical values as described by the
CVSS 3.0 and 3.1 specifications.

more information on top of the first one. The algorithm is linear in
the number of dimensions and properly handling mutual informa-
tion would make it quadratic as the conditional entropy for each
non-selected dimension would need to be recomputed after each
dimension selection. However not handling mutual information is
not a problem in practice as the dimensions are used as an input
to a regression model. Dimension sorting is only used to retain a
tractable number of dimensions, and as long as enough predictive
dimensions have been retained, the regression model will be able
to provide reasonable results.

Second, the number of dimensions we choose to retain is an
hyperparameter. In practice, as this hyperparameter is the only one
in the whole analysis pipeline, our hyperstate is small enough to
be explored thoroughly, as we see in Section 4.

3.4 Regression Modeling on CVSS Vectors
Once we have a tractable number of dimensions to work with, we
can train a model with it. We consider each CVSS vector compo-
nent, or field, as an independent problem and we train a different
model for each of them. Each CVSS vector component is valued
using a multiple choice enumeration, as described by Table 5. An
intuitive approach would be to use multinomial logistic regres-
sion or multinomial ordinal regression to predict these enumerated
fields. However, multinomial regression models are not straightfor-
ward to train, with iterative analytical methods such as Iteratively
Reweighted Least Squares (IRLS) [21] or iterative gradient-based
solvers such as L-BFGS-B [26]. All iterative methods inherently
require one or two new hyperparameters to be added to the hyper-
state (either the acceptable error threshold before stopping or the
maximum number of steps, or both), and a lot of solvers require
additional hyperparameters specific to their approach.

The CVSS specification gives us an interesting way of simplify-
ing our modeling. All CVSS V2 fields values and all but one CVSS
V3 fields have a numerical value associated with each enumer-
ated value. This numerical value is used in the calculation of the
CVSS severity score. Table 5 shows the numerical value for each
enumerated values of the CVSS field Attack Vector.

Instead of using multinomial regression to predict the value of
a CVSS field enumeration, we can use linear regression to predict
the numerical value for the CVSS field. From the predicted numeri-
cal value, we then select the enumerated value whose associated
numerical value is the closest to the prediction. A linear model can
be trained analytically using Ordinary Least Squares (OLS) without
requiring any new hyperparameter.

One CVSS V3 field, Scope, is a binary field (with possible values
Changed orUnchanged) with no associated numerical value. For this
field we associate Unchanged and Changed to −1 and 1 respectively
then treat it in the same way as every other field. This reduces to a
binary logistic regression problem followed by selecting the most
probable outcome of the two, without considering the odds.

4 EVALUATION
4.1 Experimental Setup
We analyzed all 33807 CVE vulnerabilities disclosed between Janu-
ary 1st, 2018 and January 1st, 2020, using all 70172 CVE vulnerabili-
ties disclosed between January 1st, 2007 and December 31st, 2017 as
past historical data. This experimental setup simulates the behavior
of a production system put online on January 1st, 2018, initially
fed with historical information from eleven years before, which
then monitors all newly disclosed vulnerabilities continuously for
the next two years. Each vulnerability is analyzed using the data
available at its disclosure day only, as described in Figure 3. Using
the data shown in Figure 2, we decided to use a fixed metadata
publication delay for all vulnerabilities which we set at 60 days.
The choice of 60 days ensures analysis conditions that are overall
realistic (albeit simplified) but strictly worse than any recorded
median case, and close to the worst recorded 9th decile. Therefore
if our analysis technique performs well during evaluation, we can
be highly confident that it will perform as well or better in the real
world.

Seven configurations of our analysis pipeline were evaluated:
three are whitelist-based (CPE, CWE, and both combined together),
four are based on conditional entropy (number of retained dimen-
sions was set to 100, 500, 1000, and 5000). All these configurations
are evaluated for CVSS V2 and V3 prediction. In order to optimize
our computing resources usage, our experiments are simulated as-
suming a weekly retraining of the regression model (simulating a
daily retraining would require 7 times more resources). Neverthe-
less in Section 4.6 we evaluate the impact of going from weekly to
daily retraining for the most promising configuration. All the code
and data used for our experiments are available at [16].

4.2 Prediction for Individual Fields
Figures 6 and 7 show the raw success rate for each field and predic-
tor: that is, the number of correct predictions over the number of
total predictions. From this data we can make a few conclusions.

• Dimension reduction using a whitelist based on CPE URIs
exhibits overall worse accuracy than all other approaches,
even when combining it with the CWE whitelist.

• Dimension reduction using conditional entropy with a num-
ber of retained dimensions between 500 and 1000 exhibits
better accuracy than all other approaches.

• Some fields are more difficult to predict than others. In par-
ticular, the Confidentiality, Integrity and Availability fields
have lower accuracy than other fields, especially in CVSS
V3.

Success rates show how the predictors are working “out of the
box”, but not the best possible predictor that can be constructed
through the prediction technique, as it does not take into account

6



Figure 6: Success rate for individual CVSS V2 field predictions.

Figure 7: Success rate for individual CVSS V3 field predictions.

Figure 8: Conditional entropy for individual CVSS V2 field predictions (lower is better).

Figure 9: Conditional entropy for individual CVSS V3 field predictions (lower is better).

“permuted” predictions. For example, it is possible to use a predictor
guessing wrong 100 % of the time to construct another predictor
that guesses right 100 % of the time.

To thus further evaluate our predictors we can use conditional
entropy again (this time as an evaluation tool) in order to measure
the predictive power of each configuration on individual CVSS
fields. By computing the original entropy of a given CVSS field, and
then computing the conditional entropy of this field when knowing
a predicted value of it, we can measure how much information
is gained through the prediction. Figures 8 and 9 show the con-
ditional entropy for each CVSS field and each prediction pipeline
configuration, for CVSS V2 and CVSS V3 respectively. Each column
group describes one CVSS field, with each column measuring the
entropy of this field conditioned to the predicted value for this
field according to the given configuration (the lower entropy the
better). The last column of each group shows the entropy of the
actual CVSS field, to serve as a baseline for comparison. We can see
that on some fields the conditional entropy is even higher than the
initial entropy: this can be interpreted as performing worse than a
random guess (weighted using the past frequencies of the different

Configuration 50 % 80 % 99 %
Entropy sorting (n=100) 0 2.4 -1.5 3 -5 5.4
Entropy sorting (n=500) 0 1.8 -1.5 2.6 -5.4 5.4
Entropy sorting (n=1000) 0 1.5 -1.5 2.5 -5.8 5.4
Entropy sorting (n=5000) 0 1.5 -1.7 2.5 -6.4 5.4
CWE -0.3 1.7 -1.9 2.8 -5.4 5.4
CPE -0.6 1.7 -2.5 2.6 -7.8 5.4
CPE + CWE -0.7 1.5 -2.6 2.5 -8.5 5.4

Table 6: Error intervals for CVSSV2 score prediction for 50 %,
80 % and 99 % of the vulnerabilities in the evaluation dataset.

members of the CVSS field). However our best configurations all
have significantly lower conditional entropy than the real entropy
of the CVSS field, which indicates that meaningful information was
gained through the predictor.

4.3 Prediction for the CVSS Severity Score
After making a prediction for each CVSS field for a given vulner-
ability, we can assemble a complete, predicted CVSS vector and

7



Figure 10: Error distribution for CVSS V2 score prediction.

Figure 11: Error distribution for CVSS V3 score prediction.

Configuration 50 % 80 % 99 %
Entropy sorting (n=100) -0.4 1.1 -1.4 2.1 -3.5 4.5
Entropy sorting (n=500) -0.2 1.1 -1.2 2.1 -3.5 4.5
Entropy sorting (n=1000) -0.2 1.1 -1.2 2.1 -3.7 4.5
Entropy sorting (n=5000) -0.4 1.1 -1.4 2.1 -5.4 4.6
CWE -0.7 1.1 -1.5 2.1 -5.4 4.7
CPE -1.2 1 -2.6 2.1 -9.8 4.5
CPE + CWE -1.1 1 -2.6 2.1 -9.8 4.5

Table 7: Error intervals for CVSSV3 score prediction for 50 %,
80 % and 99 % of the vulnerabilities in the evaluation dataset.

compute its severity score using the standard CVSS computation
rules (V2 or V3). We can then compare this predicted severity to the
actual severity of the vulnerability, computed from the actual CVSS
vector for the vulnerability. We define the severity prediction error
as 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 −𝐴𝑐𝑡𝑢𝑎𝑙𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦, giving us a value between
−10.0 and +10.0. A severity prediction error of 0 is a perfect pre-
diction. Any value above 0 is a false positive, with the vulnerability
being less severe than predicted. Any value below 0 is a false nega-
tive, with the vulnerability being more severe than predicted. There

is an inherent trade-off between false positives and false negatives,
and different organizations can have different preferences about
this trade-off: alert systems exhibiting false negatives can leave an
organization vulnerable to undetected threats, while too many false
positives can lead an alert system to become unusable in practice.

Figures 10 and 11 show the distribution of the severity error
prediction in our evaluation dataset, while Tables 6 and 7 show the
error intervals for 50 %, 80 %, and 99 % of our evaluation dataset
respectively. From these results we can make the following conclu-
sions:

• Dimension reduction based on conditional entropy sorting
provides systematically better accuracy than dimension re-
duction based on whitelists. In particular all whitelists based
on CPE URIs provides strictly less accuracy than all other
approaches. Our whitelist based on the CWE framework
provides better results, closer in accuracy to entropy sorting
but still outperformed by the best entropy sorting configu-
rations. Interestingly, combining CWE and CPE whitelists
into one decreases accuracy compared to either whitelists,
making it the worse-performing configuration.

• Regarding conditional entropy sorting, the number of dimen-
sions kept after sorting (our sole hyperparameter) does have
an impact on accuracy. In both CVSS V2 and V3, keeping the
number of dimensions between 500 and 1000 is important in
order to get the best prediction results. When predicting the
CVSS V3 severity score, accuracy differences between 100,
500 and 1000 retained dimensions are nearly indistinguish-
able. When predicting CVSS V2 severity scores, retaining 100
dimensions provides more false positives than 500 or 1000.
However it is possible this is an artifact of our evaluation
dataset (this could be checked in the future by reproducing
our experiments using vulnerabilities disclosed from 2020
and later years), especially given that there are no such dif-
ferences when predicting CVSS V3.

• In nearly all cases the prediction error for CVSS V3 is lower
than for CVSS V2. This was surprising to us as CVSS V3
includes eight fields while CVSS V2 only includes six: this
alone should make it more likely to make more errors when
predicting a full CVSS V3 vector. Our hypothesis is that CVSS
V3 computation rules are more likely to give closer severity
scores to similar but not identical vectors.

4.4 Results Explicability
To maintain explicability, our prediction pipeline is able to show
which weighted keywords were used to make a prediction. Ta-
ble 8 shows an example of how explicability can be maintained
throughout the prediction pipeline. CVE-2018-17625 is a vulnerabil-
ity affecting Foxit Reader disclosed on 01/23/2019. For two CVSS V3
fields (Attack Vector and User Interaction) we show the top four key-
words used to predict their value. We can see that the presence of
the word “remote” was the biggest factor when making the decision
to predict the value Network for Attack Vector (meaning vulnera-
bility exploitation can be accomplished remotely). Conversely, the
word “file” was an important factor to predict the value Required
for User Interaction (meaning vulnerability exploitation requires a
user to do a specific action).

8



Description
This vulnerability allows remote attackers to execute arbitrary
code on vulnerable installations of Foxit Reader 9.1.0.5096. User
interaction is required to exploit this vulnerability in that the
target must visit a malicious page or open a malicious file. The
specific flaw exists within the handling of the setInterval() method.
The issue results from the lack of validating the existence of an
object prior to performing operations on the object. An attacker
can leverage this vulnerability to execute code in the context of
the current process. Was ZDI-CAN-6438.

Attack Vector Actual: Network, Predicted: Network
Keyword remote required file interaction
Weight 0.059 0.037 -0.029 0.025

User Interaction Actual: Required, Predicted: Required
Keyword file page malicious interaction
Weight -0.287 -0.021 -0.020 -0.019

Table 8: Top four keywords used to predict CVSSV3fieldsAt-
tack Vector and User Interaction for vulnerability CVE-2018-
17625 disclosed on 01/23/2019, using a CWE whitelist for di-
mension reduction.

Figure 12: Duration in seconds of the complete analysis
pipeline at date 2019-01-01. Time scale is logarithmic.

4.5 Performance Impact of Dimension
Reduction

The performance of the pipeline is not a goal in itself for us, how-
ever we want to ensure that our architecture is suited for daily
retraining. That means a complete retraining of all our models fol-
lowed by an inference for all new vulnerabilities disclosed on a
new day should not take more than a fraction of a day. Figure 12
shows the duration of the pipeline (in seconds, using a logarith-
mic scale) for each configuration, at date 2019-01-01, assuming a
complete retraining followed by an analysis of all vulnerabilities dis-
closed on that day. All computations were done on Dell PowerEdge
C6420 servers with Intel Xeon Gold 6130 CPUs (Skylake, 2.10 GHz,
2 CPUs/node, 16 cores/CPU) and 192 GiB of RAM. All performance
experiments were run three times: duration was very stable with
half of variations below 1 % and all of them below 3 %. The quickest
configuration was based on the CWE whitelist, with an average
training duration of 1 min 33 s for CVSS V3 and 2 min 16 s for CVSS
V2, while the longest configuration was based on the CPE whitelist,
with a duration close to five hours. Meanwhile, entropy sorting
configurations ran during 5 to 25 minutes depending on the number
of retained dimensions. All configurations are therefore suited for
daily retraining if deemed necessary. A production implementation
of the pipeline could likely be faster than our current prototype.

Figure 13: Impact of daily andweekly retraining on the error
distribution for CVSS V3 score prediction.

Figure 14: Error rate (as defined by Khazaei et al) for CVSS
V2 score prediction.

4.6 Daily Retraining vs Weekly Retraining
As described in Section 4.1, all experiments were run assuming a
weekly retraining of the predictionmodel. This was an experimental
constraint as we did not have the computing resources to simulate
all experiments assuming a daily retraining (which consumes seven
times more resources). However performance measurements from
Section 4.5 suggest that daily retraining of a production system is
feasible. Therefore we ran the most promising configuration twice
(dimension reduction through entropy sorting with 500 retained
dimensions) assuming both weekly and daily retraining of the
model for CVSS V3 prediction. This impacted the score of 1371
vulnerabilities, around 4 % of our evaluation dataset. As shown in
Figure 13 this has negligible impact on the predicted severity error
distribution using our experimental setup. A similar experiment
done with CVSS V2 on a subset of the same dataset gave similar
results. One should note that our choice to simulate a metadata
publication delay of 60 days for all vulnerabilities could hide some
of the impact of the training frequency compared to a production
system relearning a newmodel as soon as new information becomes
available. However in all cases accuracy of such production systems
should at least be identical or even better than our results, for the
reasons described in Section 3.1.

5 DISCUSSION AND LIMITATIONS
Our prediction pipeline is designed with predictability and expli-
cability in mind and this has an impact on accuracy. Figure 14
compares our approach with the more elaborated machine learning

9



techniques used by Khazaei et al. The comparison has limits as
they used the now unavailable OSVDB dataset on years 2012 and
2013 (using training data starting from 2004) while we used the
NVD dataset on years 2018 and 2019 (using training data starting
from 2007). Moreover the error rate metric they proposed does not
allow differentiation between small and large errors, a problem
we detailed in Section 2. Nevertheless, their techniques are indis-
putably more effective at predicting CVSS scores than ours. This
raises a number of questions for an organization willing to deploy
a CVSS prediction pipeline: do CVSS vectors have inherent value or
are they just a mean to compute a severity score? How to balance
worst-case accuracy and average accuracy? Is decision explicability
important? Different organizations will not have the same answers
to these questions, leading them to different architectures. Maintain-
ing two prediction pipelines, one explicable and one more accurate,
would allow raising alerts when their decisions differ. In the future
we hope to improve the accuracy of our prediction pipeline to get
closer to Khazaei et al, while still preserving the predictability and
explicability properties making our current architecture novel.

6 CONCLUSION
We introduced a method to automatically predict CVSS vectors
for newly disclosed vulnerabilities, relying only on their human-
readable description. Our results are promising, as a simple tech-
nique brings results that are accurate enough to be useful while
providing decision explicability, a missing property in the state of
the art. As discussed in Section 1, our CVSS prediction technique is
a first step toward automated reaction to new vulnerability disclo-
sures. In future work we intend to use this prediction pipeline to
build a complete, automated threat analysis system at disclosure.
CVSS is a measure of severity and not risk: a threat analysis system
also needs to assess how much risk does a vulnerability pose to
a specific information system. The automated risk analysis and
reaction mechanisms made possible by our technique could allow
faster and cheaper reaction to n-day vulnerabilities, and thus be-
come invaluable tools for security engineers defending information
systems against day-to-day threats.

ACKNOWLEDGMENTS
Clément Elbaz’s PhD Grant is co-funded by the Brittany Council.
Experiments presented in this paper were carried out using the
Grid’5000 testbed, supported by a scientific interest group hosted
by Inria and including CNRS, RENATER and several Universities
as well as other organizations (see https://www.grid5000.fr).

REFERENCES
[1] 2020-08-04. A Complete Guide to the Common Vulnerability Scoring System:

Version 2.0. https://www.first.org/cvss/v2/guide.
[2] 2020-08-04. AWSWAF -WebApplication Firewall. https://aws.amazon.com/waf/.
[3] 2020-08-04. Cloudflare - Inside Shellshock: How hackers are using it to exploit

systems. https://blog.cloudflare.com/inside-shellshock/.
[4] 2020-08-04. Cloudflare - Stopping SharePoint’s CVE-2019-0604. https://blog.

cloudflare.com/stopping-cve-2019-0604/.
[5] 2020-08-04. Cloudflare Web Application Firewall. https://www.cloudflare.com/

waf/.
[6] 2020-08-04. CommonVulnerabilities and Exposures (CVE). https://cve.mitre.org/.
[7] 2020-08-04. Common Vulnerability Scoring System. https://www.first.org/cvss/.
[8] 2020-08-04. Common Vulnerability Scoring System v3.0: Specification Document.

https://www.first.org/cvss/v3.0/specification-document.

[9] 2020-08-04. Common Vulnerability Scoring System v3.1: Specification Document.
https://www.first.org/cvss/v3.1/specification-document.

[10] 2020-08-04. CVE and NVD Relationship. https://cve.mitre.org/about/cve_and_
nvd_relationship.html.

[11] 2020-08-04. CWE - Common Weakness Enumeration. https://cwe.mitre.org/.
[12] 2020-08-04. Google Cloud Armor. https://cloud.google.com/armor/.
[13] 2020-08-04. National Vulnerability Database. https://nvd.nist.gov/.
[14] 2020-08-04. NVD - CPE. https://nvd.nist.gov/products/cpe.
[15] 2020-08-04. Security Content Automation Protocol. https://csrc.nist.gov/projects/

security-content-automation-protocol.
[16] 2020-23-06. Firres. https://gitlab.inria.fr/celbaz/firres_ares.
[17] Leyla Bilge and Tudor Dumitraş. 2012. Before We Knew It: An Empirical Study

of Zero-day Attacks in the Real World. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security (CCS’ 12).

[18] Sandy Clark, Stefan Frei, Matt Blaze, and Jonathan Smith. 2010. Familiarity Breeds
Contempt: The Honeymoon Effect and the Role of Legacy Code in Zero-day
Vulnerabilities. In Proceedings of the 26th Annual Computer Security Applications
Conference (ACSAC ’10).

[19] Stefan Frei, Martin May, Ulrich Fiedler, and Bernhard Plattner. 2006. Large-
scale Vulnerability Analysis. In Proceedings of the 2006 SIGCOMM Workshop on
Large-scale Attack Defense (LSAD ’06).

[20] Leonid Glanz, Sebastian Schmidt, Sebastian Wollny, and Ben Hermann. 2015. A
Vulnerability’s Lifetime: Enhancing Version Information in CVE Databases. In
Proceedings of the 15th International Conference on Knowledge Technologies and
Data-driven Business (i-KNOW ’15).

[21] Paul W. Holland and Roy E. Welsch. 1977. Robust regression using iteratively
reweighted least-squares. Communications in Statistics - Theory and Methods 6, 9
(1977).

[22] Piotr Indyk and Rajeev Motwani. 1998. Approximate Nearest Neighbors: Towards
Removing the Curse of Dimensionality. In Proceedings of the Thirtieth Annual
ACM Symposium on Theory of Computing.

[23] Jay Jacobs, Sasha Romanosky, Benjamin Edwards, Michael Royt-
man, and Idris Adjerid. 2019. Exploit Prediction Scoring System
(EPSS). In Black Hat 2019. http://i.blackhat.com/USA-19/Thursday/
us-19-Roytman-Predictive-Vulnerability-Scoring-System-wp.pdf

[24] Karen Spärck Jones. 1972. A statistical interpretation of term specificity and its
application in retrieval. Journal of Documentation 28 (1972).

[25] Atefeh Khazaei, MohammadGhasemzadeh, and Vali Derhami. 2016. An automatic
method for CVSS score prediction using vulnerabilities description. Journal of
Intelligent & Fuzzy Systems 30, 1 (2016).

[26] Ciyou Zhu, RichardH. Byrd, Peihuang Lu, and JorgeNocedal. 1997. Algorithm 778:
L-BFGS-B: Fortran Subroutines for Large-Scale Bound-Constrained Optimization.
ACM Trans. Math. Softw. 23, 4 (1997).

10

https://www.first.org/cvss/v2/guide
https://aws.amazon.com/waf/
https://blog.cloudflare.com/inside-shellshock/
https://blog.cloudflare.com/stopping-cve-2019-0604/
https://blog.cloudflare.com/stopping-cve-2019-0604/
https://www.cloudflare.com/waf/
https://www.cloudflare.com/waf/
https://cve.mitre.org/
https://www.first.org/cvss/
https://www.first.org/cvss/v3.0/specification-document
https://www.first.org/cvss/v3.1/specification-document
https://cve.mitre.org/about/cve_and_nvd_relationship.html
https://cve.mitre.org/about/cve_and_nvd_relationship.html
https://cwe.mitre.org/
https://cloud.google.com/armor/
https://nvd.nist.gov/
https://nvd.nist.gov/products/cpe
https://csrc.nist.gov/projects/security-content-automation-protocol
https://csrc.nist.gov/projects/security-content-automation-protocol
https://gitlab.inria.fr/celbaz/firres_ares
http://i.blackhat.com/USA-19/Thursday/us-19-Roytman-Predictive-Vulnerability-Scoring-System-wp.pdf
http://i.blackhat.com/USA-19/Thursday/us-19-Roytman-Predictive-Vulnerability-Scoring-System-wp.pdf

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Proposed Approach
	3.1 Data Availability at Prediction Time
	3.2 Training Pipeline and Explicability
	3.3 Dimension Reduction Through Filtering
	3.4 Regression Modeling on CVSS Vectors

	4 Evaluation
	4.1 Experimental Setup
	4.2 Prediction for Individual Fields
	4.3 Prediction for the CVSS Severity Score
	4.4 Results Explicability
	4.5 Performance Impact of Dimension Reduction
	4.6 Daily Retraining vs Weekly Retraining

	5 Discussion and limitations
	6 Conclusion
	Acknowledgments
	References

