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Abstract 
Purpose of review. Machine learning (ML) is an artificial intelligence technique that allows computers 
to perform a task without being explicitly programmed. ML can be used to assist diagnosis and prognosis 
of brain disorders. While the earliest papers date from more than ten years ago, research increases at a 
very fast pace.  
Recent findings. Recent works using ML for diagnosis have moved from classification of a given disease 
versus controls to differential diagnosis. Intense research has been devoted to the prediction of the future 
patient state. While a lot of earlier works focused on neuroimaging as data source, the current trend is on 
the integration of multimodal. In terms of targeted diseases, dementia remains dominant, but approaches 
have been developed for a wide variety of neurological and psychiatric diseases.  
Summary. ML is extremely promising for assisting diagnosis and prognosis in brain disorders. 
Nevertheless, we argue that key challenges remain to be addressed by the community for bringing these 
tools in clinical routine: good practices regarding validation and reproducible research need to be more 
widely adopted; extensive generalization studies are required; interpretable models are needed to 
overcome the limitations of black-box approaches.  
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Key points 
● Machine learning allows a computer to perform a task, such as finding the diagnosis of a patient, 

without an explicit implementation of the underlying procedure. 
● Computer-aided diagnosis has moved from the discrimination between a single disease and 

controls to differential diagnosis. 
● Machine learning can also predict the future state of a patient (future diagnosis or 

cognitive/clinical score). 
● Recent works are focusing on the integration of multimodal data, including neuroimaging, 

clinical/cognitive data, genomic and other measures. 
● There is still an important gap between research results and what can be implemented in the clinic, 

because estimation of performance is not always adequately performed and because the results 
can be difficult to reproduce, generalize and interpret. 
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Introduction 
Artificial intelligence (AI) has witnessed tremendous progress in the past decade. As in other fields of 
medicine, there is a major interest in using AI for assisting management of brain disorders. AI 
applications include assisting diagnosis, providing prognosis information, and predicting response to 
treatment. These techniques have potential value both in expert centers and in community-based practice. 
In expert centers, they may enrich the set of information which is available to the clinician, for instance 
providing accurate prognostic information which is currently out of reach in most diseases. In 
community-based practice, one can expect that AI will assist the early detection of diseases and their 
referral to expert centers. 
 Among AI approaches, the one which has led to the most impressive advances of the past years 
is machine learning (ML). ML allows a computer to perform a task (for instance, finding the diagnosis 
of a patient) without an explicit implementation of the underlying procedure. Instead, the computer will 
learn by examining a set of data called the training set. It is given a generic model, which parameters are 
adjustable. The optimal values of the parameters are then automatically estimated from the training data. 
 The first landmark publications on the use of ML in brain disorders date from more than ten years 
[1–3]. However, the field has made important progress since then. Computer-aided diagnosis has moved 
from the discrimination between a single disease and controls to differential diagnosis [4*–8]. In addition 
to diagnosis, models for predicting the subsequent evolution of patients have been developed [9–13]. 
Most of the initial work focused on neuroimaging as the data source, because it is inherently digital and 
databases are easy to access. Recent works are focusing on the integration of multimodal data, including 
clinical/cognitive data, genomic and other measures [9*,10*,14–17]. 
 Nevertheless, there is still an important gap between research results and what can be 
implemented in the clinic. Estimation of performance is not always adequately performed in publications 
[9*,18–20**]. The results are sometimes difficult, if not impossible, to reproduce by others. The ability 
of the technique to generalize from highly-controlled research data to routine data can be questioned. 
Finally, interpretability, i.e. the ability to understand why the ML model takes a given decision, is a key 
issue [21*–23]. 
 In this paper, we review recent progresses in the use of ML for management of brain diseases. 
We first briefly introduce the main concepts in a way that is accessible to neurologists. We then describe 
the main applications that have been developed. Moreover, we highlight recent advances on the 
integration of multimodal data, including neuroimaging, genetic and clinical/cognitive data. Finally, we 
discuss the challenges that remain to be addressed for translation to the clinic. Note that this is not an 
exhaustive review but a presentation and discussion of recent data and articles. 
 

Machine learning concepts 
While a detailed introduction to ML is beyond the scope of the present paper, it seems useful to clarify 
the main concepts and terms. These concepts are summarized in Figure 1 and the main terms are defined 
in Table 1. ML is an AI technique in which the computer learns from data or experience. ML techniques 
look for statistical patterns in the data. Other AI techniques (e.g. symbolic approaches) exist but most of 
the recent successes have been based on ML. 
 In this review, we will consider ML techniques that aim to predict an output y from an input x. 
The input is typically a set of data characterizing a patient (e.g. an MRI scan, a set of cognitive test 
results, a set of genetic variants, …). The output can be a diagnostic category (e.g. Alzheimer’s disease 
vs Lewy-body dementia vs vascular dementia) and one then deals with a classification problem. The 
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output can also be a clinical/cognitive score or even an MRI image and one deals with a regression 
problem. 
 Learning aims at finding the best model f that maps x to y. This is done by analysing a set of 
data, called the training set, in order to find a model that minimizes the error between the predicted output 
and the true output. Solely minimizing the error is often non optimal as it would produce a perfect 
prediction on the training set but a poor one on new data, a phenomenon called overfitting. Other ML 
pitfalls and their solutions are presented in Table 2. 
 Many choices are possible for the type of model f. One can cite different ML techniques, 
including for instance, logistic and linear regression (possibly with penalties), support vector machines 
(SVM), random forests (RF) and deep learning. Deep learning deserves a specific mention as it led to 
some of the most impressive recent advances. In deep learning the model f is made of a very large set of 
artificial neurons, organized into layers learning a hierarchy of representations. But keep in mind that 
there is more to AI than ML and there is more to ML than deep learning. 
 

Machine learning for classification and prediction 
This section describes the main recent applications of ML to automatic classification and prediction of 
neurological diseases. The reviewed studies are summarized in Table 3. 
 

Assisting diagnosis 
The most common use of ML is probably computer-assisted diagnosis. Early works have tackled 
automatic classification of Alzheimer’s disease [2,3] and schizophrenia [1] from anatomical MRI data. 
Since then, hundreds of papers have proposed automatic classification approaches for different brain 
disorders and based on different types of data. Some recent works include classification of epilepsy with 
hippocampal sclerosis [24*], multiple sclerosis [25,26], fronto-temporal dementia (FTD) [27,28], 
schizophrenia [29] and attention deficit hyperactivity disorder (ADHD) [30]. In most of these works, the 
classification distinguishes patients with a given disease from healthy controls. This can have value for 
assisting in the detection of diseases which are difficult to detect and diagnose, in particular outside of 
expert clinical centers and if the tool is sensitive at an early disease stage.  
 However, comparison to healthy controls often does not correspond to a clinically realistic 
situation, where difficult diagnoses are between different diseases that may present similarly. This is the 
case for instance for distinguishing between Parkinson’s disease (PD) and Parkisonian syndromes, or 
between different types of dementia. Péran et al. [8] were able to discriminate between PD and multiple 
system atrophy (MSA) with very high accuracy (AUC>95%) using different MRI techniques 
(anatomical, diffusion, T2* relaxometry). Some studies have looked at differentiation between two types 
of dementia including AD from FTD [5] and AD from vascular dementia [7]. Tong et al. [6**] studied 
differential diagnoses between the four most common dementias (AD, FTD, vascular dementia, dementia 
with Lewy bodies) and patients with subjective memory complaints (SMC), and achieved high five-class 
accuracy around 70% based on T1 and FLAIR MRI as well as cerebrospinal fluid (CSF) biomarkers. 
Morin et al. [4*] included eight different cognitive conditions (AD, FTD, dementia with Lewy bodies, 
logopenic and semantic primary progressive aphasias, cortical-basal syndrome, depression, SMC). Both 
studies found high accuracies for diseases which have clear MRI alteration patterns (AD, FTD, semantic 
dementia) but not for others (e.g. dementia with Lewy bodies).  These tools have potential clinical utility 
for difficult differential diagnoses (for instance early-onset AD vs FTD). Importantly, they were assessed 
using clinical routine MRI data making their application realistic.  
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Predicting evolution 
Whereas the previous approaches propose to classify patients based on their current data, other works 
aim at predicting the future state of a patient based on its baseline data (or based on longitudinal data 
from visits before that of the predicted outcome). Here, the output can be a future diagnosis (e.g. future 
diagnosis of dementia within patients with mild impairment at baseline) or future relevant measures (e.g. 
the future value of a cognitive/clinical score).  

One way to frame the problem of predicting a future state is as a classification task. One sets a 
temporal horizon (e.g. 24 months) and aims at discriminating between patients who reached this state 
(e.g. became demented) before or at this temporal horizon and those who did not. This task has been 
widely addressed in the case of predicting progression to AD among patients with mild cognitive 
impairment (MCI) at baseline. A recent review identified 172 articles on that specific topic [9*]. The 
best AUCs obtained by well-powered studies are typically around 0.80-0.85. Predictive studies in other 
neurological disorders are less frequent. Zhang et al [13] predicted progression from clinically isolated 
syndrome to multiple sclerosis using characteristics of MRI white matter lesions with a balanced 
accuracy of 72%. Instead of predicting the future, one can also use ML to go back in time and estimate 
the date at which the disease started. For instance, Ho et al [12] distinguished patients with time-since-
stroke lower or higher than 4.5 hours from diffusion, perfusion and FLAIR MRI. 

Instead of fixing a temporal horizon, one may aim to determine the time at which the event of 
interest will occur. Such works are not overly common thus far but are receiving increased interest. In 
the case of AD, this is one of the aims of the TADPOLE challenge [11*] in which participating 
researchers must predict future diagnoses, cognitive test values (ADAS-Cog) and MRI measures 
(ventricular volume) at each month over five years. Predicting time-of-event can be done using 
classification techniques. For instance, this has been applied to predict survival in amyotrophic lateral 
sclerosis from MRI [31]. But this requires to set arbitrary times and prevents from using censored data. 
A more adapted framework is that of survival analysis, a classical statistical technique which was used 
to predict the time of progression to AD [32] and was extended to high-dimensional MRI and genetic 
data in [16]. Finally, generative models allow predicting a full sequence of future measures (e.g. the 
sequence of future cognitive scores or brain images) [33,34]. 

 
Using multimodal data: imaging, genetic, clinical 
Without doubt, neuroimaging is the modality which has been the most widely used in ML works. 
However, it seems more than natural that a more comprehensive characterization of the patient would 
lead to better predictions. 
 

Combining imaging and clinical/cognitive data 
The most natural candidates for use as input of ML methods are clinical and cognitive scores. They are 
the core of diagnosis in many situations and are inexpensive to acquire. Of course, using them if the 
predicted outcome is clinical diagnosis at the same time point would lead to a circular analysis. However, 
there are of interest in all other situations (e.g. when a future clinical diagnosis is predicted or when the 
outcome is based on post-mortem examinations). An important result of a recent systematic review on 
AD prediction [9*] was that using clinical/cognitive data significantly improved predictions compared 
to not including them, while this was not the case of anatomical MRI, even though the latter had been 
the subject of intense research. Some studies have combined different imaging modalities with 
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clinical/cognitive scores [14,15,31,35]. A recent large-scale study showed that clinical/cognitive scores 
were better than T1 MRI or FDG PET at predicting progression to AD in patients with MCI and that the 
combination of all modalities further improved the results, with up to 89% AUC [10*].  

 
Combining imaging and genetic data 
Genetic factors modulate the disease risk and the evolution. Association studies between imaging and 
genetic data have exploded in the past decade [36] but their combination for disease prediction has been 
more limited. Several studies combined brain imaging with a single gene (e.g. APOE in AD) for disease 
prediction [37,38]. Current works aim at integrating imaging with multiple genes or genome-wide 
information [16,17,39] as well as with gene expression data [40]. Nevertheless, the identification of 
relevant genetic variables requires very high sample sizes (typically 10,000-100,000). Major progresses 
in the identification of genetic variants and polygenic risk scores have stemmed from the analysis of large 
population cohorts (e.g. UKBiobank) or meta-analysis (e.g. ENIGMA). Combining these results with 
smaller samples on specific brain diseases may lead to improved predictions. 
 

Reliable ML: the path to the clinic 
Even though a large number of methods are being developed to assist diagnosis, only a few are translated 
to the clinic. This can be explained by different factors, summarized in Table 4. Note that the present 
review does not cover regulatory aspects (e.g. FDA clearance) and those related to the data itself (data 
ownership, security and privacy). 
 

Reproducibility 
Reproducibility is defined as the ability to reproduce results based on the same data and methodology. 
This differs from replication, which is the ability to confirm results on independent data. Key elements 
of reproducible research include data sharing, fully automatic data manipulation and sharing of code. 
Without these elements, results cannot be reproduced, a step essential to guarantee the robustness of a 
technique. Initiatives have emerged to improve the reproducibility of ML and DL approaches applied to 
neuroimaging. Samper-González et al. [41**] and Wen et al. [19*] proposed a reproducible framework 
for the evaluation of AD classification methods that comprise data management tools that rely on a 
community standard [42]; image preprocessing and feature extraction pipelines; standard classification 
algorithms and CNN models; and rigorous validation procedures. These tools are available in the open-
source software platform Clinica (www.clinica.run). 
 

Data leakage 
Unbiased evaluation of ML and DL algorithms is critical to assess their potential clinical value. A major 
source of bias is data leakage, which refers to the use of test data in any part of the training process 
[18,43]. Several causes of data leakage exist and have been found in published works, as revealed in 
[19*,20**]. Not splitting the dataset at the subject-level when defining the training, validation and test 
sets can result in data from the same subject to appear in several sets. This problem can occur when 
patches or slices are extracted from a 3D image, or when images of the same subject have been acquired 
at multiple time points. Performing procedures such as feature selection or data augmentation before the 
training/validation/test split means, in the case of feature selection, that the test set is used to select the 
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most relevant features. The absence of an independent test set implies that the same data have been used 
to select the optimal hyper parameters of the method and evaluate the performance. 
 

Generalizability 
Assessing the ability of an approach to generalize from highly-controlled research data of a certain cohort 
to another cohort, and more generally to routine data, is an essential step to ensure translation to the 
clinic. However, this step is rarely reached. Cai et al. [44*] assessed the generalizability of an approach 
for the classification of schizophrenia based on resting-state functional MRI data. They showed that the 
predictive model did not successfully generalize to a novel dataset when directly applied and that an 
additional step enabling the model to adapt to the new dataset was necessary. A reduction in accuracy 
when the model is applied to a new dataset was also observed in [29]. Bouts et al. [45**] pushed the 
analysis further by assessing whether an MRI-based classification method trained to detect MCI on a 
clinical cohort could be used on a general population. Even though the model could detect MCI better 
than chance, the classification performance was moderate and probably insufficient to efficiently assist 
diagnosis. 
 

Interpretation 
The ability to understand why the ML and DL models take a given decision is a key issue to facilitate 
their acceptance, know how far they can be trusted and achieve better performance. The main idea for 
image-based classification methods is to highlight the parts of the image that contribute the most to the 
decision. This can be applied to ML models such as SVM [26,28,46], but also to DL models [22,47], see 
Figure 2 for examples. The level of interpretability greatly varies between the methods employed and 
new approaches, tailored to the task at hand, are being developed [21*,23]. 
 

Workflow integration 
Another key question is how ML tools should be integrated in the clinical workflow. And more generally 
in the patient journey into the healthcare system. There are a myriad of steps and tasks at which ML can 
potentially be used. This ranges from early screening for referral to experts centers, to diagnosis of 
difficult cases and treatment choice. Research is needed on which of these uses would be most beneficial 
for the patients and the healthcare system. This will need to be conducted for the different neurological 
diseases. 
 

Conclusion 

Intense research has been conducted on the use of ML to assist diagnosis and prognosis of brain diseases. 
This has led to impressive results in research settings where data is highly controlled. Even though 
dementia (in particular AD) is overly represented, promising results have also been obtained in many 
other diseases, including movement disorders, multiple sclerosis, epilepsy or psychiatric conditions. In 
spite of this, their translation to the clinic remains difficult. Specific challenges need to be addressed by 
the community for ML to be clinically applied. Of course, good practices of rigorous validation and 
reproducible research need to be adopted widely. Generalization studies where models are applied to a 
wide variety of clinical routine data (from different hospitals, different populations, different 
countries,…) are critically needed. Interpretation of ML remains an important methodological challenge. 
Finally, we need to determine how ML models can be integrated in the clinical workflow. This requires 



Machine learning for brain diseases Burgos and Colliot 

Current Opinion in Neurology, 2020 – doi:10.1097/WCO.0000000000000838 

a tight collaboration between ML researchers and clinicians, and a cross-dissemination of expertise from 
both fields. 
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Table 1. Main terms used in machine learning 

● Machine learning. Techniques that can make a computer perform a task without being 
explicitly programmed for. Instead, the computer learns a model by examining a set of 
examples called the training set. 

● Model. The mathematical function that transforms the inputs (e.g. cognitive scores, imaging 
data) into outputs (e.g. a diagnosis). 

● Supervised learning. Type of learning in which the training data must contain both inputs 
and outputs. The model is trained by examining examples for which the desired output is 
provided.  

● Unsupervised learning. Type of learning in which the training data only contain inputs. This 
is for example used for finding disease subtypes which are currently unknown. 

● Classification. Supervised learning technique in which the outputs are classes (e.g. diagnostic 
classes). 

● Regression. Supervised learning techniques in which the outputs are continuous values (e.g. 
cognitive scores). 

● Support vector machine (SVM). A supervised machine learning technique which is often a 
good choice for high-dimension/small sample size problems. It can be linear or non-linear. Is 
mainly used for classification although extensions to regression exist. 

● Random forests. A supervised machine learning technique which assembles a large number 
of decision trees. Can be used both for classification and regression. 

● Deep learning. Type of machine learning in which the model is a set of artificial neurons 
which are arranged into a large number of layers. The number of layers is the depth of the 
model. This is a large family of models which include both supervised and unsupervised 
techniques. 

● Convolutional neural network. A deep learning technique in which a given neuron is 
connected to its neighbours, performing a mathematical operation called convolution. This 
technique is mainly used for imaging data. 

● Hyperparameters. Parameters that modify the behavior of the model or of the training 
procedures. They are called hyper-parameters by contrast with the model parameters. They 
are not learned but are set or tuned. 

● Training set / validation set / test set. The training set is the set of subjects/patients which is 
used to train the model. The test set is the set of subjects which is used to evaluate the 
performance. Often, one also adds a validation set which allows to determine when to stop the 
training procedure or to tune hyperparameters. This is not needed if the training procedure can 
be stopped automatically or if there are no hyperparameters. It is crucial that the three sets are 
disjoint in order to have an unbiased evaluation of the performance. 

● Cross-validation. A procedure in which the training and validation/testing set are iteratively 
exchanged. For instance, one can split the dataset into five folds and, at each of the five 
iterations, four of the folds are used as the training set and one fold is used as the testing set. 

● Data leakage. A bad practice in which information from the training set is also in the 
testing/validation set. This leads to an over-optimistic evaluation of performance. 

● Generalization. The ability of a model training on a given dataset to perform well on another 
dataset. 
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● Features. Characteristics used by the model to perform the task. The characteristics can be 
directly the input data or can be extracted from the input data. For example, when using 
anatomical MRI data, one can extract the volumes of different anatomical regions of the brain. 

● Feature extraction. The procedure that computes the features from the input data. 
● Feature selection. A procedure to select which of the features will be actually used as inputs 

of the model. One aims to select the features that will be the most predictive. This can for 
instance be done using univariate statistical tests or more complex multivariate procedures. 

● Feature transformation. A procedure to reduce the number of features by embedding them 
into a lower dimensional space.  

● Performance metrics. Measures used to assess the performance of the model. Classical 
examples for classification include accuracy, balanced accuracy, area under the curve, 
sensitivity, specificity, positive and negative values. Classical examples for regression include 
mean squared error and mean absolute error. 

● Data augmentation. Family of techniques that allow to increase the size of the training set 
through the generation of new training samples from existing ones. This can be done for 
instance by applying simple transformations (symmetry, translation…) to the original data or 
using complex generative models. 
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Table 2. Pitfalls and solutions 

● Small size of training set. Having too few training samples often leads to a model with low 
performance. Data augmentation (see Box 1) may be used to mitigate this issue. 

● Small size of the testing set. Having too few testing samples will lead to unreliable estimates 
of the performance. The only solution to this is to have more samples in the testing set. 

● Overfitting. Overfitting corresponds to a situation where the model is fitting the training set 
too well and will poorly generalize to the test set: the model has learnt the training samples 
“by heart”. Overfitting may typically occur when the model is too complex or when there are 
too many output features. Possible solutions include: adding some regularization to the model, 
reducing the number of features by performing feature selection or feature transformation, 
applying specific techniques for deep learning models (early stopping, dropout). 

● Data leakage. Data leakage is a bad practice in which information from the training set is also 
in the testing set. This leads to an over-optimistic evaluation of performance. Possible sources 
of data leakage include: wrong split of the training and testing sets (for instance, having some 
visits of a given patient in the training set and some in the testing set), testing different models 
and hyperparameters using the testing set. The testing set should be separated from the very 
beginning of the study and left untouched until the final evaluation of the model. 

● Inadequate performance metrics. It is important to choose metrics that are adapted to the 
task at-hand. For instance, accuracy is inadequate when dealing with unbalanced datasets 
(different number of patients in each group) and balanced accuracy should be preferred.  
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Table 3. Summary of the reviewed studies 

 First author Source title 
Public
ation 
year 

Disease Database Number of subjects per 
class Modalities used as features Classification / 

regression algorithm 

[17] Peng et al. MICCAI 2016 AD ADNI1 93 MCI, 49 AD, 47 HC T1w MRI, FDG PET, genetic MKL 

[21*] Böhle et al. Front Aging 
Neurosci 2019 AD ADNI1 193 AD, 151 HC T1w MRI CNN 

[22] Ding et al. Radiology 2019 AD ADNI1, local 413 MCI, 243 AD, 386 
HC FDG PET CNN 

[23] Thibeau-Sutre 
et al. SPIE MI 2020 AD ADNI1, AIBL2 412 AD, 759 HC, T1w MRI CNN 

[32] Li et al. Alzheimers 
Dement 2018 AD ADNI1 511 sMCI, 292 pMCI 

T1w MRI, FDG PET, CSF, 
genetic, neuropsychological 
tests, demographics 

Cox proportional 
hazards model 

[47] Li et al. Alzheimers 
Dement 2019 AD ADNI1, AIBL2 862 MCI, 417 AD, 867 

HC 

T1w MRI, genetic, 
neuropsychological tests, 
demographics 

LASSO regularized 
Cox proportional 
hazards model 

[3] Gerardin et al. NeuroImage 2009 AD, MCI Local 23 aMCI, 23 AD T1w MRI Linear SVM 

[9*] Ansart et al.† Preprint 2019 AD, MCI - - - - 

[10*] 
Samper-
Gonzalez et 
al. 

SPIE MI 2019 AD, MCI ADNI1 507 MCI, 126 AD, 115 
HC 

T1w MRI, FDG PET, 
genetic, neuropsychological 
tests 

RF, linear SVM 

[11*] Marinescu et 
al. Preprint 2018 AD, MCI ADNI1 1095 MCI, 257 AD, 646 

HC 

T1w MRI, DWI, FDG PET, 
amyloid PET, tau PET, CSF, 
neuropsychological tests, 
genetic, demographics 

- 

[15] Sørensen et 
al. 

J Neurosci 
Methods 2018 AD, MCI ADNI1 100 MCI, 100 pMCI, 100 

AD, 100 HC 

T1w MRI, 
neuropsychological tests, 
demographics 

Ensemble linear and 
RBF SVM 

[16] Lu and Colliot SPIE MI 2020 AD, MCI ADNI1 154 sMCI, 172 pMCI T1w MRI, genetic Cox proportional 
hazards model 
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[19*] Wen et al. Medical Image 
Analysis 2020 AD, MCI ADNI1, AIBL2, 

OASIS3 
880 MCI, 490 AD, 835 
HC T1w MRI CNN 

[33] Koval et al. Front Neurol 2018 AD, MCI ADNI1 154 pMCI T1w MRI Mixed-effects model 

[34] Schiratti et al. J Mach Learn Res 2017 AD, MCI ADNI1 248 pMCI Neuropsychological tests Mixed-effects model 

[35] Moradi et al. NeuroImage 2015 AD, MCI ADNI1 100 sMCI, 164 pMCI, 130 
uMCI, 200 AD, 231 HC 

T1w MRI, 
neuropsychological tests 

Low density 
separation 

[37] Da et al. NeuroImage Clin 2014 AD, MCI ADNI1 381 MCI, 200 AD, 232 
HC 

T1w MRI, CSF, genetic, 
neuropsychological tests 

Cox proportional 
hazards model 

[38] Gupta et al. Front Comput 
Neurosci 2019 AD, MCI ADNI1 36 sMCI, 46 pMCI, 38 

AD, 38 HC 
T1w MRI, FDG PET, CSF, 
genetic Non-linear SVM 

[39] Khanna et al. Sci Rep 2018 AD, MCI ADNI1 609 MCI, 315 HC 

T1w MRI, FDG PET, 
genetic, neuropsychological 
tests, diagnosis, 
demographics 

Gradient boosting 
machine 

[40] Varatharajah 
et al. Sci Rep 2019 AD, MCI ADNI1 96 sMCI, 39 pMCI 

T1w MRI, FDG PET, 
amyloid PET, CSF, genetic, 
neuropsychological tests, 
demographics 

SVM, MKL, GLM 
with elastic-net 
regularization 

[41**] 
Samper-
González et 
al. 

NeuroImage 2018 AD, MCI ADNI1, AIBL2, 
OASIS3 

962 MCI, 514 AD, 953 
HC T1w MRI, FDG PET Linear SVM, LR with 

L2 regularization, RF 

[43] Rathore et al.† NeuroImage 2017 AD, MCI - - - - 

[5] Bouts et al. J Alzheimers Dis 2018 AD, bvFTD Local 30 AD, 23 bvFTD, 35 HC T1w MRI, DWI, rs-fMRI Elastic net regression 

[7] Zheng et al. Front Neurol 2019 AD, VaD Local 58 AD, 35 VaD T1w MRI, FLAIR kNN, LR, RF, linear 
SVM, RBF SVM 

[4*] Morin et al. J Alzheimers Dis 2020 

AD, CBD, 
depression, 
bvFTD, LBD, 
lvPPA, svPPA 

Local 

31 CBD, 24 depression, 34 
early AD, 39 FTD, 22 
LBD, 49 late AD, 23 
lvPPA, 17 svPPA, 12 SCD 

T1w MRI 
Linear SVM, 
univariate 
classification 

[2] Klöppel et al. Brain  2008 AD, depression, 
FTD, LBD 

ADNI1, AIBL2, 
local 

388 AD, 61 depression, 39 
FTD, 23 LBD, 586 HC T1w MRI Linear SVM 
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[6**] Tong et al. NeuroImage Clin 2017 AD, FTLD, 
LBD, VaD 

Amsterdam 
Dementia 
Cohort4 

219 AD, 92 FTLD, 47 
DLB, 24 VaD, 118 SMC T1w MRI, FLAIR, CSF RUSBoost 

[28] Meyer et al. NeuroImage Clin 2017 bvFTD 
German 
consortium for 
FTLD5, local 

52 bvFTD, 52 HC T1w MRI SVM 

[27] Feis et al. NeuroImage Clin 2018 FTD Local 
55 presymptomatic FTD 
mutation carriers, 48 
familial HC 

T1w MRI, DWI, rs-fMRI Elastic net regression 

[46] Bisenius et al. NeuroImage Clin 2017 lvPPA, nfvPPA, 
svPPA 

German 
consortium for 
FTLD5 

16 nfvPPA, 17 svPPA, 11 
lvPPA, 20 HC T1w MRI Linear SVM 

[14] Qiu et al. 
Alzheimers 
Dement Diagn 
Assess Dis Monit 

2018 MCI 

National 
Alzheimer’s 
Coordinating 
Center6 

83 MCI, 303 HC T1w MRI, FLAIR, 
neuropsychological tests CNN, ANN 

[45**] Bouts et al. Hum Brain Mapp 2019 MCI Rotterdam 
study7, local 48 MCI, 77 AD, 790 HC T1w MRI, DWI Elastic net regression 

[31] van der Burgh 
et al. NeuroImage Clin 2017 Amyotrophic 

lateral sclerosis Local 
135 sporadic ALS (52 
short, 52 medium and 31 
long survivors) 

T1w MRI, DWI, clinical data ANN 

[8] Péran et al. Mov Disord 2018 
Parkinson’s 
disease, multiple 
system atrophy 

Local 26 PD, 29 MSA, 26 HC T1w MRI, T2 relaxometry, 
DWI LR 

[13] Zhang et al. NeuroImage Clin 2019 MS Local 65 CIS to MS converters, 
18 CIS non converters T1w MRI, FLAIR RF 

[25] Saccà et al. Brain Imaging 
Behav 2019 MS Local 18 MS, 19 HC rs-fMRI RF, RBF SVM, Naïve 

Bayes, kNN, ANN 

[26] Zurita et al. NeuroImage Clin 2018 MS Local 104 RRMS, 46 HC DWI, rs-fMRI Linear SVM 

[24*] Chen et al. Brain Imaging 
Behav 2019 Epilepsy Local 16 left MTLE-HS, 6 right 

MTLE-HS, 15 HC T1w MRI RBF SVM 

[12] Ho et al. IEEE Trans Med 
Imaging 2019 Stroke Local 85 TSS <4.5hrs, 46 TSS 

≥4.5hrs PWI, DWI, FLAIR 
LR, RF, gradient 
boosted regression 
tree, SVM, stepwise 
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multilinear 
regression, CNN 

[20**] Pulini et al.† 
Biol Psychiatry 
Cogn Neurosci 
Neuroimaging 

2019 ADHD - - - - 

[30] Chen et al. Artif Intell Med 2020 ADHD ADHD-200 
consortium8 248 ADHD, 299 HC rs-fMRI Subspace learning 

[1] Fan et al. MICCAI 2005 Schizophrenia Unknown 23 SZ, 38 HC T1w MRI RBF SVM 

[29] Zeng et al. EBioMedicine 2018 Schizophrenia Local, 
OpenfMRI9 474 SZ, 607 HC rs-fMRI Linear SVM 

[44*] Cai et al. Hum Brain Mapp 2020 Schizophrenia Local 85 SZ, 78 HC rs-fMRI Linear discriminant 
analysis 

 
† Review 
 
1 Alzheimer's Disease Neuroimaging Initiative (http://adni.loni.usc.edu), 2 Australian Imaging, Biomarker & Lifestyle Flagship Study of Ageing (https://aibl.csiro.au), 3 
Open Access Series of Imaging Studies (https://www.oasis-brains.org), 4 https://www.alzheimercentrum.nl/wetenschap/amsterdam-dementia-cohort, 5 http://www.ftld.de, 
6 https://www.alz.washington.edu, 7 http://www.erasmus-epidemiology.nl/research/ergo.htm, 8 http://fcon_1000.projects.nitrc.org/indi/adhd200/, 9 https://openfmri.org  
 
Diseases AD, Alzheimer's disease; HC, healthy control; MCI, mild cognitive impairment; aMCI, amnestic MCI; pMCI, progressive MCI ; sMCI, stable MCI; uMCI, 
unknown MCI; FTLD, frontotemporal lobar degeneration; FTD, frontotemporal dementia; bvFTD, behavioral variant FTD; VaD, vascular dementia; CBD, corticobasal 
degeneration; LBD, Lewy body dementia; PPA, primary progressive aphasia; nfvPPA, non-fluent variant PPA; svPPA, semantic variant PPA; lvPPA, logopenic variant 
PPA; SCD, subjective cognitive decline; SMC, subjective memory complaints; ALS, amyotrophic lateral sclerosis; PD, Parkinson’s disease; MSA, multiple system 
atrophy; MS, multiple sclerosis; CIS, clinically isolated syndrome; RRMS, relapsing-remitting MS; MTLE-HS, mesial temporal lobe epilepsy with hippocampal sclerosis; 
TSS, time-since-stroke; ADHD, attention deficit hyperactivity disorder; SZ, schizophrenia 
 
Modalities T1w, T1-weighted; MRI, magnetic resonance imaging; FDG, 18F fluorodeoxyglucose; PET, positron emission tomography; CSF, cerebrospinal fluid; DWI, 
diffusion weighted imaging; rs-fMRI, resting state functional magnetic resonance imaging; FLAIR, fluid-attenuated inversion recovery; PWI, perfusion weighted imaging 
 
Algorithms MKL, multiple kernel learning; CNN, convolutional neural network; SVM, support vector machine; RF, random forest; RBF, radial basis function; GLM, 
generalized linear model; LR, logistic regression; kNN, k-nearest neighbors; ANN, artificial neural network 
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Table 4. Challenges for accelerating clinical translation 

● Rigorous validation. Bad practices remain too common in the literature. Data leakage (see 
Table 1) can be insidious. This leads to over-optimistic evaluations of performance. 

● Reproducibility. Code should be shared. Data also whenever possible. Standardized 
community practices need to be adopted for data management and preprocessing. 

● Generalizability.  Most studies are based on highly controlled research data. More studies 
with routine clinical data are needed. Generalization to widely variable settings (different 
hospitals, different acquisition devices, different populations) is critical. 

● Interpretability. Ability to understand the decision of an ML method is key for safe use and 
for adoption by clinicians. Methodological advances are needed in this area. 

● Workflow integration. This aspect has been overlooked by most studies. It is crucial to 
identify at which steps of the clinical workflow ML should be used and how. We also need to 
reflect on its place in the patient’s journey through the healthcare system.    
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Figure 1. ML concepts. There are two main phases in building and evaluating an ML model. The training 
(upper panel) aims at building the model. For that, one uses a training set comprising both inputs and 
outputs for a set of N patients. Input data can be of any kind, for instance neuroimaging scans (MRI, PET), 
clinical/cognitive scores, genotyping, or the combination of those. Output data can also be of various 
kinds, for instance a diagnostic category, the future value of a clinical/cognitive score or even a 
neuroimaging scan of the patient. The learning phase estimated the function !" that best transforms the 
input to the output data across the different patients of the training set. In the second phase, the estimated 
model is applied to new input data in order to predict the output.   
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Figure 2. Interpretation of ML methods. The classifiers were trained to distinguish cognitively normal 
controls from patients with Alzheimer’s disease (AD). Highlighted regions are the ones that contribute 
the most to the decision. a) Results obtained with a linear support vector machine (SVM) classifier [41]. 
Only voxels that contribute the most to the classification of subjects as patients (and not as controls) are 
displayed. b,c) Results obtained with a convolutional neural network (CNN) classifier and a visualization 
approach that consists in optimizing a mask that will perturb the trained CNN so it will classify masked 
images in the wrong class [23]. The mask can be generated using the images of a group of subjects (b), 
here AD patients), thus highlighting regions that are in general relevant for the AD classification, or using 
the image of a single subject (c), here an AD patient), thus highlighting how the ML algorithm took its 
decision for this specific patient. 

a)

b)

c)

a.u.

Interpreting classifiers trained to distinguish cognitively normal controls from patients with 
Alzheimer’s disease (AD). Highlighted regions are the ones that contribute the most to the 
decision. a) Results obtained with a linear SVM classifier (Samper, MLMI, NeuroImage). Only 
voxels that contribute the most to the classification of subjects as patients (and not as controls) 
are displayed. b,c) Results obtained with a CNN classifier and a visualization approach that 
consists in optimizing a mask that will perturb the trained CNN so it will classify masked images 
in the wrong class (Thibeau-Sutre). The mask can be generated using the images of a group of
subjects (b), here AD patients), thus highlighting regions that are in general relevant for the AD 
classification, or using the image of a single subject (c), here an AD patient), thus highlighting 
individual variations.
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