N

N

A Fast Verified Liveness Analysis in SSA Form
Jean-Christophe Léchenet, Sandrine Blazy, David Pichardie

» To cite this version:

Jean-Christophe Léchenet, Sandrine Blazy, David Pichardie. A Fast Verified Liveness Analysis in
SSA Form. IJCAR 2020- International Joint Conference on Automated Reasoning, Jun 2020, Paris,
France. pp.324-340, 10.1007/978-3-030-51054-1_19 . hal-02904204

HAL Id: hal-02904204
https://inria.hal.science/hal-02904204
Submitted on 21 Jul 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-02904204
https://hal.archives-ouvertes.fr

A Fast Verified Liveness Analysis in SSA form

Jean-Christophe Léchenet () [0000-0003-0420=2745] " Sandrine
Blazy!0000-0002-0189-0223] " 51\ q David Pichardie

Univ Rennes, Inria, CNRS, IRISA, Rennes, France

{jean-christophe.lechenet,sandrine.blazy,david.pichardie}@irisa.fr

Abstract. Liveness analysis is a standard compiler analysis, enabling
several optimizations such as deadcode elimination. The SSA form is
a popular compiler intermediate language allowing for simple and fast
optimizations. Boissinot et al. [7] designed a fast liveness analysis by
combining the specific properties of SSA with graph-theoretic ideas such
as depth-first search and dominance. We formalize their approach in the
Coq proof assistant, inside the CompCertSSA verified C compiler. We
also compare experimentally this approach on CompCert’s benchmarks
with respect to the classic data-flow-based liveness analysis, and observe
performance gains.

Keywords: Liveness analysis - SSA form - Dominance - Verified com-
pilation

1 Introduction

In order to be precise, several important compiler analyses need to know the life-
time of variables. This is of course the case with deadcode elimination and regis-
ter allocation, but also for instance with software pipelining and trace scheduling.
Computing this information efficiently is thus of utmost importance. This is the
purpose of liveness analysis.

Given a program and a variable, liveness analysis consists in determining the
points of the program where this variable is needed, i.e. the points from which
an execution can reach an instruction where this variable is used. At such points,
this variable is said to be live. Like many other semantic properties, this property
is undecidable and is classically over-approximated by its syntactic counterpart
which considers, instead of real executions, paths in the control flow graph (CFG)
of the program.

Traditionally, liveness information is computed by a backward data-flow anal-
ysis that computes monolithically the liveness status of all program variables at
all program points [2]. In 2008, Boissinot et al. [7] described another method
to compute this information, with two particularities. Firstly, their technique
is applicable only to programs in SSA form, an intermediate language adopted
by most of the modern compilers, e.g. LLVM [11]. Indeed, their approach relies
on one of the key properties of SSA, that they combine with graph-theoretic
notions. Secondly, it is not designed to compute the whole liveness information

[13

of the program, but instead to answer so-called liveness queries, of the form “is
variable a live at point ¢?”. They call this approach, considering only one vari-
able and one program point at a time, “liveness checking”. Since this approach
computes only limited information compared to the data-flow based one, they
claim that it outperforms it as long as the number of asked queries is low, which
their experiments confirm.

In this paper, we focus on liveness checking, as presented in [7], from the point
of view of formally verified compilation. In this context, an implementation of
liveness checking should not only be efficient, as usual in compilation, but also
needs to be formally proved correct.

We tackle this problem in the context of CompCert [12,13], a verified C
compiler written in the Coq proof assistant, and its fork with an SSA middle-
end, CompCertSSA [3]. CompCert and CompCertSSA already contain several
liveness analyses (e.g. in module Liveness), but all of them, like in the other ver-
ified compilers (e.g. CakeML [15]), are data-flow based. Our goal is to implement
liveness checking on the SSA form of CompCertSSA, taking into account the par-
ticularities of Coq and CompCertSSA, and carefully enough so that we observe
the expected performance improvement w.r.t. the data-flow based approach.

After describing liveness checking, as well as the required background, in
detail in Section 2, we present the following contributions:

— an implementation of liveness checking in CompCertSSA (Section 3) adapt-
ing the ideas of [7] to CompCertSSA, including some advanced optimizations;

— a proof of correctness of this algorithm (Section 4) showing the validity of
Boissinot et al.’s subtle graph-theoretic arguments;

— experiments on CompCert’s benchmarks (Section 5) showing that two vari-
ants of the liveness checking algorithm compare favorably w.r.t. the data-flow
based approach.

The formalization and the experiments are available online [1].

2 Background

We first recall some notions from graph theory and compilers in Section 2.1,
then we give the idea of liveness checking in Section 2.2, before describing it in
detail in Sections 2.3 and 2.4.

2.1 Basic Concepts in Graphs and Compilers

Depth-first Search. DFS classifies the
edges of a graph into four categories (cf.
Figure 1): the tree edges that form a span-
ning tree, the forward edges connecting a
node to one of its descendants in the span-
ning tree, the cross edges connecting a node
to an unrelated node in the spanning tree,
and the back edges connecting a node to one Fig. 1. Example of edge classification
of its ancestors in the spanning tree.

—> tree edge
> forward edge
——> cross edge

- —> back edge

Encoding reachability in a tree. It is possible to label each node of a tree
with a pair of integers, allowing to determine whether a node is an ancestor of
another node just by comparing their labels. One possible labeling is based on a
DFS preorder numbering, the first integer of a node being its preorder number
and the second one being the maximum preorder number in the subtree rooted
at that node. An example of such a labeling is provided in Figure 2b.

Dominance. The dominance relation is traditionally defined on a flow graph,
i.e. a graph with a distinguished node entry such that every vertex is reachable
from that node. We say that a node u dominates a node v if every path from
entry to v goes through u; u strictly dominates v if © dominates v and u and
v are distinct. Dominance is an order relation, i.e. it is reflexive, transitive and
antisymmetric. Moreover, each node u distinct from entry has a unique strict
dominator dominated by all the strict dominators of u, showing that dominance
can be encoded as a tree, called the dominance tree.

SSA form. The SSA form, standing for Static Single Assignment, is a program
representation where each variable is textually defined at most once. To turn a
non-SSA representation into SSA, variables that are assigned to multiple times
are renamed so that each renamed version is associated to one definition point
only. When two flows of the program, carrying two different versions of the
same initial variable, merge at a so-called join point, we need a way to express
which version is selected. SSA introduces special nodes for this, called ¢-nodes.
The ¢-function inside the ¢-node takes as many arguments as the number of
predecessors of the node. When the flow comes from the i*" predecessor, the
¢-function returns the i*" argument, thus selecting the version of the variable
corresponding to that predecessor. ¢-nodes must be handled with care in terms
of where they use and define variables. In this paper, each argument of a ¢-
function is considered used at the corresponding predecessor of the ¢-node. The
variables defined by the ¢-node are treated normally. An example SSA program
is shown in Figure 2, along with its dominance tree.

A program in strict SSA form is a program where each use of a variable is
preceded by its definition (unique per definition of SSA). A program in strict
SSA form obeys the dominance property [7], stating that each use of a variable
is dominated by its definition.

Liveness. In this paper, by “live”, we mean “live-in”, which in the context of a
program in strict SSA form can be defined as follows. A variable a is live-in at
point g if there exists a path in the CFG from ¢ to a use of a that does not go
through the definition of a.

2.2 Liveness Checking

Boissinot et al.’s algorithm answers liveness queries efficiently based on some
precomputed information. The algorithm is thus composed of two parts: a pre-

[7,7] 8,8] 9,9]

(a) CFG (b) Dominance tree

Fig. 2. The CFG and dominance tree of an SSA program, both labeled with reacha-
bility intervals based on preorder numberings

computation part that captures information about the CFG structure and an
online part that answers the liveness queries based on this information.

This architecture has two main advantages compared to the classic one.
Firstly, the precomputation step is faster than the full liveness analysis. Thus,
if the number of queries is rather small, this algorithm is faster than the classic
one. Secondly, since the precomputation step depends on the CFG structure and
not on liveness information, its result remains correct if the program is modified
by some transformations that preserve its structure. In this sense, precomputed
information is more robust than the liveness one.

Actually, the classic liveness analysis approach can also be seen as being made
of a precomputation part (the analysis), followed by an online part (reading in
the liveness table). From this point of view, Boissinot et al.’s algorithm just
chooses a different trade-off than the classic approach: a faster precomputation
at the cost of slower queries. As mentioned above, this compromise is interesting
if the number of queries is low.

2.3 Precomputation

Let us consider the following liveness query: “is variable a live at point ¢7?”. This
query amounts to checking whether a path exists between ¢ and a use of a that
does not go through the definition d of a. Note that, by the dominance property,
we know that all uses of a are dominated by d. It is possible that a is used at d,
but since in this paper by “live” we mean “live-in”, such a case has no impact

on the answer to the query. We can thus restrict ourselves to the uses of a that
are strictly d-dominated.

Let 7 be a path from ¢ to a use u of a that does not go through d. If there
is a node x on 7 that is not strictly d-dominated, we can show that u is not
dominated by d, contradicting the dominance property. Reciprocally, a strictly
d-dominated path from ¢ to w does not go through d. This shows that a is live
at ¢ if and only if there exists a strictly d-dominated path from ¢ to a use of a.

Boissinot et al. show more. If ¢ is strictly .
d-dominated, any non-strictly d-dominated
path from ¢ to a use u of a goes through
d, since it reenters the set of strictly domi-
nated nodes, and the part of the path from
q to d contains a back edge (intuitively, we
need to go back up from ¢ to d), represented
as a dashed arrow in Figure 3. Stated in the
opposite way, if there exists a path from Fig. 3. Leaving and reentering the
q to u that does not contain a back edge, set of strictly dominated nodes re-
then the path is strictly d-dominated, which quires a back edge.
shows that a is live at q.

Based on this observation, Boissinot et al.’s main idea is that back edges
must be dealt with separately from the other edges. They suggest to decompose
the reachability in the original graph into two relations, called R and T'. Relation
R captures the reachability in the reduced graph G, the acyclic graph obtained
by removing the back edges from the original graph. Relation T associates to
each program point both itself and a set of interesting back edge targets.

Formally, T is the reflexive and transitive closure of T, where T} (cf. Def. 1)
is the set of back edge targets not reduced reachable (i.e. reachable in the reduced
graph) from node ¢ but whose source is reduced reachable from ¢. For instance,
in Figure 2a, T) = {4}, T] = {3}, and thus 75 = {3,4,5}.

Definition 1 (77 and T).
TV ={t' e V\Ry | 3s' € Ry A(s',t') € ETY and T = (T™)"

where ET is the set of back edges, * is the reflexive and transitive closure.

2.4 Online Part

The online part leverages precomputed and dominance information to answer
liveness queries efficiently. Boissinot et al.’s algorithm ([7, Algorithm 1)) is repro-
duced as Algorithm 1. Given a variable a and a program point ¢, the algorithm
filters the content of T, to keep only the set T, .y of points that are strictly
dominated by the definition point of a (line 2). Then it tests whether one of
these points can reach a use of a in the reduced graph (lines 3-4). If one test
succeeds, then it returns ¢rue (line 4), the variable a is live at ¢, otherwise it
returns false (line 5), the variable a is not live at ¢. In Figure 2a, T(5) = {4, 5},
uses(x1) = {4,9}, 4 € Ry, thus x; is live at 5. T(5 4,y = 0, thus x5 is not live at
5. T1o = {3,10}, T(10,x,) = {10}, Rio Nuses(x1) = (), thus x; is not live at 10.

Tiq,a) < Ty N sdom(def (a))
for t € T(q,a) do
| if R; N uses(a) # 0 then return true
return false
Algorithm 1: Online part of Boissinot et al.’s algorithm

U W N =

Function IsLiveIn(variable a, node q):

3 Formalization

Our Coq implementation follows approximately the same structure as the al-
gorithm described in Section 2. In particular, it is divided into two parts: the
precomputation and the online parts.

3.1 Precomputation

As highlighted in Section 2.2, the precomputation step depends only on the
CFG structure. Thus, we can abstract the specific features of the SSA form and
only work at the graph-theoretic level. We model the CFG as a map of type
graph = map (list node)! associating to each node the list of its successors, and
a node entry representing the entry point of the CFG. Moreover, to implement
the second optimization described in Section 3.2, we need to model the preorder
numbering on the dominance tree. We assume that we are given a function
dom_pre : node — Z associating to each node the corresponding number.

As proposed in [7], the precomputation step itself is split into two parts. In
[7], the first one computes R, while the second one computes T based on R. We
slightly adapted both parts. In our implementation, the first part computes R
and T, and the second part computes T in a different way than in [7].

Precomputation of R and T" . Boissinot et al. [7] suggest encoding the set
of reduced reachable nodes from node t, R;,? as a set (using bitsets or sorted
arrays). But they assume, as is the case for most compilers, that the nodes
in the CFG represent blocks of instructions, which means that the CFG is not
really large. CompCertSSA’s peculiarity is that, like CompCert, each node in the
CFG represents only one instruction, and thus the CFG is noticeably bigger. To
avoid manipulating large sets, we decided to encode R differently, drawing our
inspiration from Boissinot et al.’s idea to treat back edges specially. We choose
to treat cross edges specially, and to break down reachability in the reduced
graph into reachability in the spanning tree from sets of cross edge targets. This
decomposition seems to forget forward edges, but as far as only reachability is
concerned, they can be safely ignored, as they are just shortcuts of tree edges.

! node is an alias for positive, a binary encoding of strictly positive integers; map is
implemented using PTree.t, an associative map whose keys are positive and which
is used pervasively in CompCertSSA.

2 Given a relation R, R, denotes the set of elements related to x in R.

© 00N Uk W

Record state := {
gr: graph; (* current graph, without already-visited nodes *)
wrk: list (node * positive * list node * (set * list (node * Z)));
(* worklist: node, label, children to be treated, results from treated children *)

next: positive; (* number to use for next numbering *)
r : map itv; (¥ reachability relation using intervals *)
Cc : map set; (* cross nodes to test for reduced reachability *)
t_up : map (list (node * Z)); (* sorted list of back nodes to test for reachability *)
back : list (node * node) (* back edges *)
}.
(* result is the expected type of the returned tuple (r, c, t_up, back) *)
Definition result := map itv * map set * map (list (node * Z)) * list(node * node).

Definition transition (dom_pre : node — Z) (s: state) : result + state :=
match s. (wrk) with
| 0 = inl (s.(r), s.(c), s.(t_up), s.(back)) (* end of the DFS *)

| (u, n, [1, (s_c, s_t)) :: wrk’ = (* end of processing of node u *)
let r’ := update u (n, Pos.pred s.(next)) s.(r) in
let s_c’ := filter (fun v _ = negb (is_directly_included r’ u v)) s_c in
let s_c¢’’ := add u s_c’ in
let ¢’ := update u s_c’’ s.(c) in
let s_t’ := List.filter (fun ’(v, _) = negb (is_cross_included r’ ¢’ u v)) s_t in
let t_up’ := update u s_t’ s.(t_up) in
inr {| s with wrk := wrk’; r :=r’; c := c’; t_up := t_up’ |}
| (u, n, v :: succs_u, (s_c, s_t)) :: wrk’ = (* processing of child v of node u *)
match s.(gr) ! v with (* "!" is the lookup operator in maps *)

| None = (x v has already been discovered *)
match s.(r) ! v with
| None = (* back edge *)

let s_t’ := merge [(v, dom_pre v)] s_t in (* merge is order-preserving *)
let back’ := (u, v) :: s.(back) in
inr {| s with wrk := (u, n, succs_u, (s_c, s_t’)) :: wrk’; back := back’ |}

| Some _ = (* processed tree edge, forward edge or cross edge *)
let s_c’ := match s.(c) ! v with | None = s_c | Some s = union s s_c end in
let s_t’ := match s.(t_up) ! v with | None = s_t | Some s = merge s s_t end in
inr {| s with wrk := (u, n, succs_u, (s_c’, s_t’)) :: wrk’ |}

end

| Some succs_v = (* new tree edge *)
inr {| s with gr := remove v s.(gr);

(* v is left in the worklist so that we can propagate the result *)
wrk := (v, s.(next), succs_v, (empty, [1)) :: s.(wrk);
next := Pos.succ s.(next) |}
end
end.

Wflter.iterate (transition dom_pre)
1t_state 1lt_state_wf (transition_decreases dom_pre)
(init_state g root).

Definition precompute_r_t_up (g: graph) (root: node) (dom_pre : node — Z) : result :=

Fig. 4. Function precompute_r_t_up implements the first part of the precomputation.

We introduce the relations R that denotes the reachability in the spanning
tree, and C that associates to each program point both itself and a set of cross
edge targets that are interesting for checking reduced reachability at this point.
Like T', C' is defined as the reflexive and transitive closure of CT, where C/ (cf.
Def. 2) associates to node ¢ the set of cross edge targets not tree reachable (i.e.
reachable in the spanning tree) from ¢ but whose source is tree reachable from
t. In Figure 2a, only C’g = {7} is non-empty. We have thus Cs = {7, 8}.

Definition 2 (CT and C).
Cl={t' eV\R, |35 € ReA(s',¥') € ET} and C = (CT)"
where BT designates the set of cross edges.

Moreover, since the spanning tree is a tree, we can use the technique men-
tioned in Section 2.1, i.e. encode R as a labeling of each node in the spanning tree
with a pair of integers representing an interval. We can then answer reachability
queries in the spanning tree efficiently by testing inclusion of those intervals.

In the Coq development, function precompute_r_t_up, shown in Figure 4,
implements this first step of precomputation. For the sake of clarity, the Coq
code was a little prettified. In particular, the notation {| .. with .. := .. |},
allowing to update only some fields of a record, is not a valid Coq expression.
precompute_r_t_up returns a quadruple (r, c, t_up, back), where:

— r : map itv encodes R by associating to each node an interval of positive;

— ¢ : map set® implements C;

— t_up : map (list (node * Z)) encodes T (t_up associates to each node a
list of pairs (u, n) where uis a node and n is just dom_pre u; this list is sorted
on the second component (see Section 3.2); that second component is not
really needed, it is a slight optimization that allows to reduce the number of
calls to dom_pre u by storing its result next to u the first time it is called);

— back : list (node * node) is the list of identified back edges.

Function precompute_r_t_up performs a DFS traversal of the CFG. In the
style of module Postorder of CompCert, it calls iteratively a transition func-
tion (1. 47) that updates a state (initialized 1. 49) with the guarantee that the
iterations eventually terminate (1. 48). The state aggregates seven fields (1. 1).
Four fields (r, ¢, t_up and back) correspond to the final results. The three other
fields are used to implement the DFS: gr remembers whether a node has already
been seen during the traversal; next is the current value of the counter used to
number the encountered nodes; and wrk is a worklist of nodes to be treated. Each
element of wrk is a quadruple (u, n, succs, (s_c, s_t)), where u is a node la-
beled with number n, succs is the list of successors of u yet to be treated, and s_c
and s_t (detailed below) are pieces of information, retrieved from the successors
of u that have already been treated, and used to compute the value attached to
u in ¢ and t_up respectively.

3 set = map unit is a map where only keys are meaningful.

Function transition begins with checking whether the worklist is empty.
If so (1. 16), it is the last iteration and the appropriate fields of the state are
returned. If not, it analyzes the status of the first node u of the worklist. If it
has still children to be treated (1. 25), it checks the status of the first child v.
If v is new to the DFS (1. 38), it is given number s.(next), and is explored
recursively by extending the worklist (1. 41). If v has already been seen before
during the DFS (1. 27), we retrieve from it the pieces of information that need
to be propagated to u, and we update s_c and s_t accordingly depending on the
type of edge connecting u and v (1l. 28-37). Note that, in the first case (1. 38), v
is intentionally left as a child of u in the worklist (1. 41), so that it can be seen
again in the second case (1. 33), and results can be propagated from v to u. If all
the children of u (1. 17) have been treated, we use the data available in the state
and the worklist to update maps r, c and t_up at key u.

To update r, we attach to u (1. 18) an interval based on the number n associ-
ated to u when it was discovered (1. 41) and the current value of the counter next.

The update of c relies on the following equation: C,, = {u}U {U(u nep Cv} \ R,.
Cy is computed from the sets C, of its children in the reduced graph (i.e. chil-
dren v where (u,v) is not a back edge). The union of these sets (1. 34) is filtered

(1. 19), so that only nodes that are not already tree reachable from u are kept.
Finally, node u is added to the set (1. 20). The update of t_up relies on a simi-
lar equation: T = Ugumyepr{viU U(u,v)eE Tﬂ \ R,. T is computed from its
children in the graph. If (u,v) is a back edge, then the contribution of v is {v}
(1. 30). If (u,v) is not a back edge, then the contribution of v is 7} (1. 35). These
sets are merged in an order-preserving way, and then filtered so that only nodes
that are not already reduced reachable from u are kept (1. 22).

The edges in back are classically identified during the DFS (1. 31) as the edges
from the current node to nodes already discovered but not fully processed.

In terms of structure, our code is really close to the code of module Postorder.
There are two key differences, though. The first one is that we need to remember
some information between the time a node is discovered and the time it is fully
processed (the preorder number n). The second one is that we need to propa-
gate some information during the traversal (the sets s_c and s_t). This implied
the two following changes. Firstly, the tuples in our worklist are more complex,
since they contain the additional data. In Postorder, the worklist has the sim-
pler type 1list (node * list node). Secondly, as mentioned above, a node that is
discovered is left in the worklist as a child of its parent, so that some information
can be propagated to its parent the second time it is seen.

Precomputation of T. The second part of the precomputation consists in
computing T from 7T, i.e. computing the reflexive and transitive closure of 7.
For this, we follow another suggestion from Boissinot et al consisting in using

the following equation ([7, Equation (1)]): T, = {v} U [UweTT Tw}, that we also
call Equation (1). They note that, given a node ¢, all nodes ¢ in 7] have a

DFS preorder number* smaller than that of ¢. This means that if we treat the
back edge targets by growing DFS preorder number, we can use this equation
to compute T for all the back edge targets.

In our Coq development, this step is performed by precompute_t_from_t_up_1.
It takes as arguments dom_pre, the preorder numbering on the dominance tree,
pre, the DFS preorder number, and t_up and back, returned by the previous
step. It extracts the back edge targets from back, sorts them according to pre,
and uses Equation (1) to compute T for the back edge targets. It returns a map
t’ which is t_up updated with the new values for the back edge targets. We are
careful to preserve in t’ the sorting of the values of t_up according to dom_pre.

Boissinot et al. also suggest computing T for the rest of the nodes by travers-
ing the reduced graph in a second phase. Instead, we choose to use the same
equation. This is the role of function precompute_t_from_t_up_2. It takes as an
argument dom_pre and the map t’ returned by precompute_t_from_t_up_1, and
applies Equation (1) to every node in any arbitrary order. This means that we
also apply it to back edge targets, though they already have the right value, but
this is correct and probably not costly. As before, we take care to ensure that
the values of the returned map, t, are sorted according to dom_pre. However, we
drop the preorder number component from the elements of t. They are no longer
necessary, and, as mentioned in Section 3, were only there as an optimization.

Finally, function precompute_t_from_t_up assembles both previous functions
to compute T from TT.

Definition precompute_t_from_t_up dom_pre pre t_up back :=
let t’ := precompute_t_from_t_up_1 dom_pre pre t_up back in
precompute_t_from_t_up_2 dom_pre t’.

Assembling. To obtain the full precomputation step, we just have to assemble
the pieces introduced in the previous sections. This is the role of precompute_r_t.

Definition precompute_r_t (g:graph) (entry:node) (dom_pre:node— Z) :=
let ’(r, c, t_up, back) := precompute_r_t_up g entry dom_pre in
let pre u := match r ! u with | None =1 | Some (n, _) = n end in
let t := precompute_t_from_t_up dom_pre pre t_up back in
(r, c, t, back).

It takes as arguments a graph g, an entry node entry and a preorder num-
bering on the dominance tree, dom_pre. It returns R (encoded as r and c), T
(encoded as t) and the list of back edges, back. Note that pre, the DFS preorder
number, is simply defined as a lookup in r.

3.2 Online Part

The implementation of the online part in Coq is faithful to Algorithm 1, but also
takes advantage of optimizations discussed in [7]. More precisely, it is an adap-

4 This numbering must not be confused, with dom_pre, the preorder numbering on
the dominance tree.

tation of [7, Algorithm 3] that uses sorted lists instead of bitsets, and functional
instead of imperative programming.

Indeed, Boissinot et al. suggest two optimizations to speed up Algorithm 1.
The first one, that we call (optl), consists in testing at the beginning whether
q is strictly dominated by the definition point of a. If that is not the case, as
explained in Section 2.3, false can be returned immediately. The second one,
denoted (opt2), uses dominance information more. The idea is that if we test a
node t in T{, .y and that fails, then the test for any ¢ dominated by ¢ will fail too,
and thus we can skip all such nodes. For instance, in Figure 2a, T(5 x,) = {3, 4,5},
R3 N uses(xg) = 0, and 3 dominates 4 and 5, thus we can return false without
testing 4 and 5. Boissinot et al. suggest taking advantage of a preorder numbering
on the dominance tree. This numbering can be used in two ways. It can be used
to sort Ty, since the node with the lowest number is likely to dominate the other
nodes to be tested (this is always the case if the CFG is reducible). It can also
be used as described in Section 2.1, to build a dominance test in constant time.

Our implementation is parameterized by the following objects. dom : map itv
associates to each node an interval based on its preorder number in the domi-
nance tree (this numbering is actually used to implement dom_pre in the precom-
putation step, cf. Section 3.1); def : reg — node associates to each variable of
type reg its definition point; du_chain : map (list node) connects each variable
to the points where it isused; r : map itv,c : map set and t : map (list node)
are the results of the precomputation part. Based on these objects, we implement
function is_live_in, given in Figure 5. is_live_in x u returns whether variable
x is live at point u. It is a bit difficult to read due to Coq syntax and notations,
but it is rather straightforward.

First, we get the definition point, d, of variable x (1. 1). Then we get the
preorder intervals in the dominance tree of d and u (1l. 3-8). We check that the
interval of u is strictly included in that of 4 (1. 9), meaning that w is strictly
dominated by d, otherwise we directly return false (this is (optl)). Then we
get the list uses of program points where u is used (1. 10), and we read in t the
list 1 of points to test to answer the liveness query (1. 11). Recall that 1 is sorted
according to the preorder numbering on the dominance tree. Then we call fold_t
that tests the nodes in 1 one after the other.

fold_t performs case analysis on 1. If it is empty (1. 20), this means that we
have tested all the nodes and none of them have revealed a path to a use of x,
thus we return false. Else, we consider the first element v of 1 (1. 21) and its
preorder interval n_v in the dominance tree (1. 22). If n_v. (pre), the left bound
of the interval n_v, is greater than max (1. 25), this means that v is not dominated
by d, and neither are the other nodes in 1, thus we can answer false. Otherwise,
if n_v.(pre) is not larger than min (1. 26), this means that v is not strictly
dominated by d or is dominated by a node that has been tested unsuccessfully
in a previous iteration, thus we can skip v. Otherwise (1. 27), we test if a node
in uses is reduced reachable from v thanks to function is_cross_included. If
yes, we return true. Otherwise, we test the other nodes of 1 and update the

O~ Uk WK~

Definition is_live_in (x : reg) (u : node) :=
let d := def x in
match dom ! d with
| None = false (* impossible *)
| Some n_d =
match dom ! u with
| None = false (* impossible *)
| Some n_u =
(n_d.(pre) <? n_u.(pre)) && (n_d.(post) <=7 n_u.(post)) &&
let uses := du_chain ! x in
match t ! u with
| None = false (* impossible *)
| Some 1 = fold_t uses 1 n_d.(pre) n_d. (post)
end
end
end.

Definition fold_t (uses 1 : list node) (min max : itv) :=
let fix aux 1 min :=
match 1 with
| [1 = false (* all nodes tested, not live *)
| v :: 1 =
match dom ! v with
| None = false (* impossible *)
| Some n_v =
if max <7 n_v.(pre) then false
else if n_v.(pre) <=7 min then aux 1 min
else existsb (is_cross_included r ¢ v) uses || aux 1 num. (post)
end
end
in
aux 1 min.

Fig. 5. Function is_live_in implements the online part of the algorithm.

minimal bound to n_v. (post), the right bound of the interval n_v, so that nodes
dominated by v are skipped in the next iterations.

4 Proof of Correctness

The functions described in Section 3 all come with proofs of their correctness.
However, among the pieces of CompCertSSA on which we build our work, one,
namely the formalization of the dominance test [4], turned out to be too weak for
our purposes. Indeed, it is proved correct, but not complete, while its complete-
ness is necessary to prove the correctness of our approach. There is an ongoing
effort based on [10] to build a correct and complete dominance test, but for now,
completeness is admitted.

Most of the proof effort lies in the precomputation part (precompute_r_t,
1700 lines of specification and 4000 lines of proof), and especially in the proof of
precompute_r_t_up that required dozens of invariants. While this number could
undoubtedly be decreased, it shows that the justification of the operations per-
formed during the DF'S is non-trivial.

For lack of space, we do not detail the proofs of precompute_r_t_up and
precompute_t_from_t_up. We just want to emphasize one point in the proof of

the latter. precompute_t_from_t_up is written using a fold_left operation on the
list of back-edge targets, and the validity of this computation is really subtle. In-
deed, it relies on Equation (1) and the fact that nodes are considered in the right
order, i.e. in increasing DF'S preorder number. To ease the definition of complex
invariants, we reuse the architecture of precompute_r_t_up (cf. Figure 4), but this
time only on the proof side. This form allows to express more easily properties
involving the nodes that have already been processed or those that are to be
processed. We then show the equivalence of this form with the fold_left-based
version, and we conclude about the correctness of precompute_t_from_t_up.

To state the correctness theorems of precompute_r_t, we assume we are given
a graph g, a node entry in g, and a labeling function dom_pre. We make two
reasonable assumptions about dom_pre and g.

Hypothesis dom_pre_inj : forall u v, dom_pre u = dom_pre v —
reachable g entry u — reachable g entry v .—u = v.
Hypothesis g_closed : forall u, reachable g entry u — g ! u <> None.

dom_pre_inj ensures that the preorder numbering on the dominance tree modeled
by dom_pre is injective. g_closed ensures a kind of well-formedness of g, namely
that all nodes reachable from entry must be in g.

We can note that both hypotheses take as preconditions that the considered
nodes are reachable from the entry node of the CFG. Actually, most of the results
have this kind of hypothesis, since the DFS from node entry can only discover
nodes reachable from entry. In this section, such hypotheses will appear in the
formal statements, but we will ignore them in the discussion.

Under these hypotheses, we can state the two main correctness theorems of
precompute_r_t. They state that it computes correctly relations R and T'.

let ’(r, c, t, back) := precompute_r_t g root dom_pre in
forall u v, cross_included r c u v
<> (reachable g root u Ag ! u <> None A reduced_reachable g back u v).

node u if and only if u and v are related by predicate cross_included, meaning
that v is tree reachable from one node in C,,.

let ’(r, c, t, back) := precompute_r_t g root dom_pre in
forall u v, reachable g root u Ais_in_t g back u v <> t_linked t u v.

Theorem precompute_r_t_t_correct :

precompute_r_t_t_correct states that a node v is in T, (modeled by is_in_t) if
and only if v is in the list associated to u in t (specified by t_linked).

The proof of correctness of the online part is much smaller (230 lines of
specification, 1000 lines of proof). One big fragment of it is the proof of the link
between T and the existence of strictly dominated paths, that justifies the use
of T in the liveness analysis. is_in_t_sdom_1 is a lemma from this fragment. It
states that if p is a strictly d-dominated path between u and v, then there exists

a node w in Ty, strictly d-dominated and from which v is reduced reachable.

Lemma is_in_t_sdom_1 :
let ’(r, c, t, back) := precompute_r_t (succs f) f.(entry) dom_pre in
forall d u p v, SSApath f (PState u) p (PState v) —
Forall (sdom f d) (p ++ [v]) —
exists w, is_in_t (successors f) back u w Asdom f d w
N reduced_reachable back w v.

The proof of this lemma is interesting, because the proof given by Boissinot
et al. in [7] was not easily translatable in Coq. Indeed, their proof consists in
considering a path with a minimal number of back edges among the strictly
d-dominated paths from u to v. Such a property is not easy to express in Coq.
We proved this result in another manner, by induction on the path.

Finally, theorem analyze_correct states the correctness of the liveness anal-
ysis, namely that if the analysis succeeds, a liveness query is answered true
if and only if the considered variable is live at the considered program point.
wf_ssa_function is a predicate guaranteeing that function £ is well-formed. It
allows to prove the hypotheses of the lemma described above (e.g. g_closed).

Theorem analyze_correct :
forall (f : function), wf_ssa_function f —
let live := analyze f in
forall a q, live a q = true <> live_spec f a q.

5 Experiments

To evaluate the efficiency of the liveness checking approach, we compare it ex-
perimentally w.r.t. a standard liveness analysis.

More precisely, our reference implementation, called (impll), is a standard
analysis based on data-flow equations. As already mentioned, CompCertSSA
contains several liveness analyses, but actually none of them are defined on
SSA, so we adapted one of them to SSA. Like the existing ones, this analysis
uses the data-flow solver provided by CompCert in module Kildall, but takes
into account the particularities of SSA, especially the ¢-nodes.

The two other implementations, called (impl2) and (impl3), are variations
of the implementation presented in Section 3. They both implement (optl)
mentioned in Section 3.2. However, (impl2) implements (opt2) only partially, it
only sorts the nodes in T; by their preorder number in the dominance tree, while
(impl3) implements it fully, since it can also skip a subtree of the dominance
tree when a test fails.

We ran the three implementations on a set of programs taken from Com-
pCert’s benchmarks. These programs cover a wide range of size. Most of these
programs are one or a few hundred lines long, some of them (e.g. bzip2 and
raytracer) are a few thousand lines long, and one of them (spass) contains more
than 50,000 lines. Experiments were conducted on a Dell Latitude 7490 with an
Intel Core i7-8650U processor at 1.90GHz and 16 GB of memory.

To perform the comparison, we need a set of liveness queries. To generate
these, the best option would be to use a real compiler pass relying on liveness.

I (impl2) B (impl3)
1.60
1.40
1.20
1.00F-------------------------ooo o - ----N -

0.80

Overhead

0.60

0.40

0.00

»pw
soe
S3sl|
Apoqu
ujad
uosb
Teys
ceys
ssz|
Mz
sseds

1623ul
[STCEVETST]

zdizq
nauydisu
youagewe
saaljhieulq
199siq
dwoyd
yonyuuey
ap10a|dNuy
j01q|apuew
aA3ISU
vzyseydis
|esyoads
yoewA
apoole
Jaoenhel

Fig. 6. Total overhead of (impl2) and (impl3) w.r.t. (impll)

However, CompCertSSA does not include such a pass at the level of SSA. We
came up with the following, admittedly contrived, solution. We generate one
query per variable and per natural loop header (a node dominating one of its
predecessors). We do not know whether this kind of query is representative of ac-
tual queries. However, we can verify that the number of queries is reasonable. In
particular, we have two programs in common with Boissinot et al.’s benchmarks:
bzip2 and mcf. On both programs, we ask more queries (bzip2: 275071 vs. 10100,
mcf: 3748 vs 2369). As doing too many queries penalizes us, the results we give
underestimate the benefits of our implementation. Yet, this way of generating
queries is fundamentally biased, since depending on the number of loops in a
function, the number of queries varies widely. In particular, the functions with
no loops are not tested. One program (fib) even has no loop, thus no query. We
thus removed it from the experiments.

We first compared separately the precomputation and online parts of (impl2)
and (impl3) w.r.t. (impll). The results, not included in the paper for lack of
space, but available in [1], confirm the expected trends: (impll) is significantly
slower than (impl2) and (impl3) in the precomputation part, and significantly
faster in the online part. Then, we compared the total time taken by both parts
performed successively in (impl2) and (impl3) w.r.t. the time they take in
(impl1) (see Figure 6). We can observe that (impl2) and (impl3) are in nearly
all the cases faster than (impll). With the set of queries considered, liveness
checking is thus a better trade-off than standard liveness analysis in terms of
efficiency. If we compare our results to those obtained by Boissinot et al. [7], we
observe a better average speedup (1.48, with (impl3)) of liveness checking w.r.t.
standard liveness than them (1.16). But there are many differences in terms of

implementation and testing process between Boissinot et al.’s work and ours,
thus the comparison of these numbers is of limited value. On the comparison
of (impl2) and (impl3), we can notice that (impl3) is in almost all cases
faster than (impl2), although moderately, showing that the added complexity
of (impl3) is worthwhile. There are two exceptions, aes and gsort, but with
no clear explanation.

6 Conclusion and Perspectives

We have described the formalization and implementation in the CompCertSSA
verified compiler of the liveness analysis described in [7]. This analysis belongs
to the “liveness checking” category, i.e. it is designed to answer liveness queries
of the form “is variable a live at point ¢?”. Its proof of correctness involves the
combination of non-trivial arguments about liveness, SSA form, dominance and
depth first search. Limited experiments show that, as expected, this algorithm
outperforms the classic data-flow based approach if the number of queries is low.

Boissinot et al.’s work is not the only alternative to the data-flow based
technique. Appel [2] describes how to propagate liveness information backwards
from uses to definitions in programs in SSA form. Boissinot et al. [5] extended
the ideas of [7] in 2011, still for SSA-form programs, by taking advantage of an
auxiliary structure called a loop-nesting forest. They also propose two variants
of Appel’s approach, and experimentally compare the three algorithms. Das et
al. suggest DJ-graphs rather than loop-nesting forests as auxiliary structures.
Among all these works, only [7] and [8] embrace the “liveness checking” approach.

One limitation of this work is that it has not been used in a real pass of Com-
pCertSSA yet. This is the reason why we came up with an artificial criterion to
evaluate our approach. One pass where it could be used is SSA destruction. In-
deed, Boissinot et al. detail in yet another work [6] an SSA destruction pass that
uses liveness checking. We could take advantage of [9] that already formalized
most of [6] in CompCertSSA, but used a traditional data-flow-based liveness
analysis. However, [6] describes an approach with a linear number of queries,
while, for the sake of simplicity, [9] makes a quadratic number of them. As the
“liveness checking” approach is interesting only if the number of queries is low,
we would need to implement the clever approach of [6] first.

A natural extension of this work is the mechanization of Boissinot et al.’s
algorithm based on loop-nesting forests [5]. The formalization of a such a complex
structure would certainly add a level of difficulty to the correctness proof, but
this structure is generic enough to serve as a basis for other program analyses and
transformations (e.g. [14]), thus formalizing it could turn out to be profitable.

Acknowledgments. This work is supported by a European Research Council
(ERC) Consolidator Grant for the project “VESTA”, funded under the European
Union’s Horizon 2020 Framework Programme (grant agreement no. 772568).

References

10.

11.

Companion website. http://www.irisa.fr/celtique/ext/fast_liveness/
Appel, A.W., Palsberg, J.: Modern Compiler Implementation in Java, 2nd edition.
Cambridge University Press (2002)

Barthe, G., Demange, D., Pichardie, D.: Formal verification of an ssa-based middle-
end for compcert. ACM Trans. Program. Lang. Syst. 36(1), 4:1-4:35 (2014).
https://doi.org/10.1145/2579080, https://doi.org/10.1145/2579080

Blazy, S., Demange, D., Pichardie, D.: Validating dominator trees for a fast, veri-
fied dominance test. In: Urban, C., Zhang, X. (eds.) Interactive Theorem Proving
- 6th International Conference, ITP 2015, Nanjing, China, August 24-27, 2015,
Proceedings. Lecture Notes in Computer Science, vol. 9236, pp. 84-99. Springer
(2015). https://doi.org/10.1007/978-3-319-22102-1_6, https://doi.org/10.1007/
978-3-319-22102-1_6

Boissinot, B., Brandner, F., Darte, A., de Dinechin, B.D., Rastello, F.:
A non-iterative data-flow algorithm for computing liveness sets in strict
SSA programs. In: Yang, H. (ed.) Programming Languages and Systems
- 9th Asian Symposium, APLAS 2011, Kenting, Taiwan, December 5-7,
2011. Proceedings. Lecture Notes in Computer Science, vol. 7078, pp. 137—
154. Springer (2011). https://doi.org/10.1007/978-3-642-25318-8_13, https://
doi.org/10.1007/978-3-642-25318-8_13

Boissinot, B., Darte, A., Rastello, F., de Dinechin, B.D., Guillon, C.: Revisiting
out-of-ssa translation for correctness, code quality and efficiency. In: Proceedings
of the CGO 2009, The Seventh International Symposium on Code Generation
and Optimization, Seattle, Washington, USA, March 22-25, 2009. pp. 114-125.
IEEE Computer Society (2009). https://doi.org/10.1109/CG0.2009.19, https://
doi.org/10.1109/CG0.2009.19

Boissinot, B., Hack, S., Grund, D., de Dinechin, B.D., Rastello, F.: Fast
liveness checking for ssa-form programs. In: Soffa, M.L., Duesterwald, E.
(eds.) Sixth International Symposium on Code Generation and Optimization
(CGO 2008), April 5-9, 2008, Boston, MA, USA. pp. 35-44. ACM (2008).
https://doi.org/10.1145/1356058.1356064, https://doi.org/10.1145/1356058.
1356064

Das, D., de Dinechin, B.D., Upadrasta, R.: Efficient liveness compu-
tation using merge sets and dj-graphs. TACO 8(4), 27:1-27:18 (2012).
https://doi.org/10.1145/2086696.2086706, https://doi.org/10.1145/2086696.
2086706

Demange, D., de Retana, Y.F.: Mechanizing conventional SSA for a ver-
ified destruction with coalescing. In: Zaks, A., Hermenegildo, M.V. (eds.)
Proceedings of the 25th International Conference on Compiler Construction,
CC 2016, Barcelona, Spain, March 12-18, 2016. pp. 77-87. ACM (2016).
https://doi.org/10.1145/2892208.2892222, https://doi.org/10.1145/2892208.
2892222

Georgiadis, L., Tarjan, R.E.: Dominator tree certification and diver-
gent spanning trees. ACM Trans. Algorithms 12(1), 11:1-11:42 (2016).
https://doi.org/10.1145/2764913, https://doi.org/10.1145/2764913

Lattner, C., Adve, V.S.. LLVM: A compilation framework for lifelong
program analysis & transformation. In: 2nd IEEE / ACM International
Symposium on Code Generation and Optimization (CGO 2004), 20-24
March 2004, San Jose, CA, USA. pp. 75-83. IEEE Computer Society

12.

13.

14.

15.

(2004). https://doi.org/10.1109/CG0O.2004.1281665, https://doi.org/10.1109/
CG0.2004.1281665

Leroy, X.: A formally verified compiler back-end. J. Autom. Reasoning 43(4),
363-446 (2009). https://doi.org/10.1007/s10817-009-9155-4, https://doi.org/
10.1007/s10817-009-9155-4

Leroy, X., Blazy, S., Késtner, D., Schommer, B., Pister, M., Ferdinand, C.: Com-
pCert — A Formally Verified Optimizing Compiler. In: ERTS 2016: Embedded Real
Time Software and Systems. SEE (2016)

Ramalingam, G.: On loops, dominators, and dominance frontiers. ACM Trans. Pro-
gram. Lang. Syst. 24(5), 455-490 (2002). https://doi.org/10.1145/570886.570887,
https://doi.org/10.1145/570886.570887

Tan, Y.K., Myreen, M.O., Kumar, R., Fox, A.C.J., Owens, S., Norrish,
M.: The verified cakeml compiler backend. J. Funct. Program. 29, €2
(2019). https://doi.org/10.1017/S0956796818000229, https://doi.org/10.1017/
S0956796818000229

