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Abstract. As one of the most important knowledge sources of TRIZ, the collec-
tion of Physical effects is currently searched in a very basic way. In order to en-
hance its use, different proposals have been brought to the community to classify 
effects into different categories. Among them, a rule-based approach classified 
the collection of physical effects into four categories and built a set of rules to 
facilitate its direct use. However, this approach is not robust enough due to the 
lack of instances of physical effects. In this paper, we propose a new approach to 
classify physical effects in order instantiate the existing ontology. In addition, 
preliminary results are presented to demonstrate the feasibility of the approach. 
The results brought us evidences that we facilitate the direct access to the collec-
tion of physical effects. 
Keywords: TRIZ; Inventive Design Theory; Wikipedia; Physical effects. 

1 Introduction 

According to Altshuller [1] the use of the scientific effects is one of the most important 
approaches that facilitates solution finding. For the reason that this collection of 
knowledge contains natural phenomena previously unused in the engineering domain. 
The use of this collection of effects often give rise to simple and reliable designs. In 
order to facilitate its use, the collection of physical effects provides the mapping be-
tween the technical functions and the available technical laws.  

 
However, the technical functions and the available technical laws while the physical 
effects are a collection of physical phenomenon. They are at different levels of abstrac-
tion, thus making the access of the collection of physical effects from technical func-
tions quite difficult. In order to address this problem, existing researches have proposed 
different ways to classify this collection of knowledge in order to ease its usage. These 
classifications are either based on the physical parameters that describe the effects or 
based on the categories defined by the constructed domain models such as ontologies. 
However, the existing classifications do not support the direct use of the collection of 
the physical effects, as a consequence, it requires knowledge both in engineering and 
physical domain. 
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Tackling at this drawback, existing research have proposed a physical effects ontology 
to facilitate its direct access by classifying the physical effects into two categories (sub-
stance effects and field effects) [2]. However, the knowledge base is not complete thus 
limits its use. Therefore, in this paper, we focus on instantiating the existing physical 
effects ontology based on machine learning to support the construction and the popula-
tion of the physical effect knowledge base, with the aim of support decision making by 
reusing existing ontology. 
 
The remainder of this paper is organized as follows. In chapter two, we give a literature 
review about the existing classifications of physical effects and the need of ontology 
instantiation. In chapter three, we present the proposed method. In chapter four, we 
present the preliminary result to validate the proposed method. Finally, in chapter five, 
we conclude this paper by discussion and conclusion. 

2 Literature review 

The classical way to classify the physical effects is by their functions, which is knownas 
the pointers to scientific-engineering effects (as it is depicted in Figure 1). The pointers 
classified the effects by different technical functions they perform. For example, the 
technical function Change shape can be achieved by the use of the effects like Curie 
point, Evaporation, Ferromagnetism, crystallization etc. 
 

 
Fig. 1. Pointers to scientific-engineering effects 

 
In this way, the effects can be accessed by searching for the technical functions. How-
ever, the use of the scientific-engineering depends on the user's experience in the engi-
neering domain to map between conceptual (technical functions) and actual (scientific-
engineering effects) solutions. Therefore, this type of classification is useful for expe-
rienced users but making its use for novice users very difficult.  
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Apart from the pointers to scientific-engineering effects, the classification of effects 
based on the construction of a domain ontology is getting more and more attention. This 
is because the construction of an ontology not only facilitates the description of the 
modeling domain, but also enables the knowledge induction by the establishment of 
rules. Combined together, the construction of ontology enables the automatic inference 
of needed knowledge without the intervention of human. 
 
An ontology is a formal and explicit specification  of  a  shared  conceptualization  [30].   
It  is  composed  of  classes,  instances and  their  binary  relations that  are  used  to  
express knowledge about the domain of interest. In an ontology, classes are abstract 
collection of objects. The instances are concrete objects of its class. Relations are links 
between pairs of classes, pairs of instances or between classes and instances. Rules are 
another form of expressing knowledge in the domain of interest [2]. They are used to 
reflect the notion of consequence and are in the form of IF-THEN-constructs. In this 
way, rules are able to express complex statements of different types. Based on the con-
struction of rules, techniques of automated reasoning allow a computer system to draw 
conclusions from the existing ontology. 
 
The work of [3] organized the effects by a chain of design elements at different abstrac-
tion level. It creates the causal relationship between the functions and structures by 
physical variables. It is based on the fact that most of the physical laws include variables 
and constants. And the application of these physical laws depends on such descriptors. 
The work in [4] constructed an ontology that classifies the physical effects based on the 
language descriptors. In this ontology, the classes are input, output and object. The re-
lations for representing the interactions between the classes are: Cause Action, Effec-
tAction and ActionObject. In this way, different effects can be classified and repre-
sented by different text descriptors that are extracted from natural language texts. Other 
direction of this research has conducted by authors in [5] as well, who proposed a dy-
namic approach that does not rely on the classification in advance. 
 
The work in [6] developed the physical effects ontology that classified the physical 
effects into two categories: Sub_PE and Field_PE (Figure 2) in order to facilitate its 
use with the Inventive Standards. The physical effects ontology classified the physical 
effects based on the substances and fields it concerns. Along with it, this work also 
constructed the rules based on the Inventive Standards. These notions are particularly 
interesting because they enable the user to access directly to the needed effects by rea-
soning on rules once they have obtained the substance-field model of the his/her prob-
lem. Therefore, the novice user can access to the needed effects through the substance-
field model without understanding what function that is performed by which effects. 
However, even though the physical effects ontology has been built, it should be instan-
tiated largely in order to provide enough knowledge for the users. Therefore, we should 
consider a method to instantiate the physical effects ontology to facilitate its reuse.   
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Fig. 2. The physical effects ontology (from [5]) 

 
Ontology instantiation is the process of building the knowledge base. It consists of add-
ing new instances of concepts and relations into an existing ontology. This process usu-
ally starts after the conceptual model of ontology is built [7].  
 
The construction of the knowledge base makes it possible to perform reasoning tasks 
with the aim of assisting decision making. However, to construct a knowledge base is 
not an easy task because it is based on the capture of categorized knowledge. Therefore, 
it is often done manually by domain experts.  
 
In order to solve this problem, we adopt machine learning to automatically classify the 
physical effects in order to instantiate the physical effect ontology and in this way, con-
structing the physical effects knowledge base. 

3 Methodology 

In this chapter, we propose a new approach based on machine learning which enables 
the instantiation of  physical effects knowledge base. The proposed approach is imple-
mented to classify the collection of physical effects as two classes (Sub_PE and 
Field_PE). The proposed methodology is composed of three steps as it is illustrated in 
Figure 3: 

x Step1: data collection 
x Step2: feature extraction  
x Step3: classification and ontology instantiation 
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Fig. 3. The proposed methodology 

 
The first step is to collect the data needed. In here, the data should be in the machine 
interpretable form in order to apply the classification techniques later.  However, there 
are two main difficulties. One is that the physical effects are in the form of natural 
language and we need to find a way to represent them in a computer process able way. 
The other is to find an appropriate text similarity measure in order to perform the clas-
sification task.  
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We address these problems by using Wikipedia2 as a knowledge base to create a graph 
for each effect based on the Wikipedia category network. In this way, each physical 
effects will be represented as a hierarchical graph composed of a set of its related cate-
gories.  
 
The second step is feature extraction. Based on the characteristics of the obtained 
graphs, which are not suitable for applying classification algorithm, we have to find a 
way to extract features from them. Feature extraction consists in transforming arbitrary 
data, such as text or images, into numerical features usable for machine learning tasks 
(e.g. classification task). In order to extract features from the obtained graphs, we are 
inspired by the vector-space model [8] and represent each effect by all the categories 
associated with it. We assign the value of each feature by the distance between the 
effect and each category on the shortest path from the effect to the category. In this 
way, we obtained a multi-dimensional vector for each effect, where each category re-
lated to this effect on the retrieved graph corresponds to an axis. Such that the values 
along the axes for the effect correspond to the distance between this category and the 
effect on the shortest path linking them. 
 
In this way, we can construct a large feature matrix where each row corresponds to an 
effect and each column corresponds to a category that is retrieved from the Wikipedia 
network. However, the resulting feature matrix is too large which will increase the 
training time. Therefore, we have to reduce the dimensions of the matrix by preserving 
the most significant features to shorten the training time for the predictive model. To 
do so, the Principal Component Analysis (PCA) is applied to achieve this goal.  
 
Once the feature extraction is done, we can apply the classification algorithm to classify 
the data. To do so, we have to train a classifier. A classifier is a function that maps an 
unclassified piece of data to a class by applying an induction algorithm, which builds a 
classifier from a given dataset [9]. In order to train the classifier, we have to apply a 
proper classification algorithm [10] on the training set obtained from the previous step. 
One of such method is the k-Nearest Neighbor algorithm (kNN) [10]. The advantages 
of applying the kNN classification algorithm is obvious: There is no existing model to 
classify the physical effects but a collection of correctly classified effect instances that 
is labelled by the domain experts. kNN method assumes that the observations which 
are close together will have the same classification, making it possible to classify the 
given effects based on the effects with a label. Once the classifier is obtained, we can 
instantiate the physical effect ontology based on the obtained label. 
 

                                                           
2  https://en.wikipedia.org/wiki/Main_Page 
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4 Preliminary result 

In our experiment, we try to validate the proposed approach to classify the physical 
effect Boiling. We take 11 physical effects to conduct our experiment. Among them, 
we use 10 as the training set and 1 as the testing set. The aim is to classify the effect 
boiling into one of the two categories. 
 
Firstly, we have to obtain the graph of each effect. It is obtained by retrieving the Wik-
ipedia category network. Therefore, for each effect, we obtain a category graph by que-
rying Wikipedia. In Figure 4, an excerpt of the obtained graph of boiling is presented. 
Once the graph of each effect is obtained, we eliminate the irrelevant categories. For 
example, at the first level of the category graph of boiling, there are two irrelevant cat-
egories. They are All_Articles_needing_additional_references and All_Articles_need-
ing_additional_refences_from_June_2017. In figure 4, these irrelevant categories pre-
sented by the red nodes. In our approach, these categories are deleted in step 1. 

 

 

Fig. 4. An excerpt of the effect Boiling (Visualized by LaTeX3) 

The next step is to apply the feature extraction method to transform the obtained graph 
into a multi-dimensional vector. To achieve this goal, we assign the shortest distance 
between a category and the effect on the shortest path between them.  For example, the 
value of feature Phase_transitions is 1 because the distance between the category 
Phase_transitions and the effect Boiling on the shortest path is one. In addition, a special 
case is that there is no path between the effect and a category, for example, the category 
Electromagnetic_radiation, Electrodynamics and Radiation. In this case, we assume 
that the distance is 11. This is because in our graphs, the distance from an effect to the 
Contents category (root node) ranges from 3-10, therefore, 11 means that the value is 
infinity. 

                                                           
3 https://www.latex-project.org/ 
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Once the vector of each effect is obtained, we construct a feature matrix with 11 rows 
and 89 columns where each row corresponds to an effect and each column corresponds 
to a category that is retrieved from the Wikipedia network (as it is presented in Fig.5). 
With the obtained matrix, PCA method is employed for feature selection. We fit the 
PCA preserving 95% of components and obtained a new matrix with 11 rows and 5 
columns, where each row corresponds to an effect and each column corresponds to the 
assigned k principle components after the feature selection. 

 

Fig. 5. Visualization of the feature matrix 

Then, the obtained training set is used as the input for classification task by applying 
the kNN method. And finally the 10-fold cross validation is applied to determine the 
value of k. To do so, we divide the training set into 10 subsets of equal size and repeat 
the 10-fold cross validation 10 times, where each time one subset is assigned as the 
Testing_set_cv and the rest are assigned as the Training_set_cv. Therefore, each time 
the cross validation is performed, we can evaluate its performance by calculating its 
accuracy rate. The accuracy rate is obtained by dividing the sum of TP and TN by the 
sum of P and N, where TP is the number of true positive samples, TN is the true nega-
tive samples, P is the number of positive samples and N is the number of positive sam-
ples. In this way, the mean accuracy rate is obtained by calculating the sum of the 10 
accuracy rates and divide it by 10 as it is depicted by Equation (1). 

 ACC_mean = ∑ (𝑇𝑃+𝑇𝑁)/(𝑃+𝑁)10
𝑥=1

10
 (1) 

The 10-fold cross validation is used to determine the value of k, which is the number 
of the nearest neighbors. We varied the value of k from 1 to 5 and the ACC_mean of 
k=1, k=2, k=3 and k=5 are respectively presented in Table1. From this result, we can 
observe that k=5 is a better choice than the others since it yields a better accuracy rate 
than the other values of k. 
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Category k=1 k=2 k=3 k=5 
Substance_effect 0.5 0.5 0.873 0.955 
Field_effect 0.5 0.7 0.7 0.873 

Table 1. Experiment result 

5 Discussion and conclusion 

In this paper, we proposed a new approach to classify the physical effects based on 
machine learning. More specifically, it is based on the use of Wikipedia and kNN 
method. The proposed method can be applied to instantiate the physical effects database 
automatically which contributes the reusability of domain ontologies and the independ-
ence from domain experts. 
 
The preliminary result showed that we have successfully applied the proposed method 
to classify the physical effects, and achieved the mean accuracy of 0.995 when k=5. 
This encouraging result enables further directions of research: 

x To largely populate the physical effects into two classes by a bigger data set; 
x To populate the relations of the physical effects ontology with more refined classifi-

cations. 
 

However, the proposed method relies on labelled data which is sometimes difficult to 
obtain, therefore, there is a need to find some ready to use dataset in order to instantiate 
the physical effects ontology with more individuals. Moreover, it is also interesting to 
test other machine learning techniques on a larger dataset in order in increase the pre-
cision of the classification result, such as naive bayes classifiers [11], support vector 
machines [12], radial basis function (RBF) networks [13] etc. 
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