J. Ordonez, M. Schuettler, C. Boehler, T. Boretius, and T. Stieglitz, Thin films and microelectrode arrays for neuroprosthetics MRS Bull, vol.37, pp.590-598, 2012.

X. Navarro, T. Krueger, N. Lago, S. Micera, T. Stieglitz et al., A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems, J. Peripher. Nerv. Syst, vol.10, pp.229-58, 2005.

B. Rubehn, C. Bosman, R. Oostenveld, P. Fries, and T. Stieglitz, A MEMS-based flexible multichannel ECoG-electrode array, J. Neural. Eng, vol.6, p.36003, 2009.

M. Schiefer, D. Tan, S. Sidek, and D. Tyler, Sensory feedback by peripheral nerve stimulation improves task performance in individuals with upper limb loss using a myoelectric prosthesis, J. Neural. Eng, vol.13, p.16001, 2016.

H. Charkhkar, C. Shell, P. Marasco, G. Pinault, D. Tyler et al., High-density peripheral nerve cuffs restore natural sensation to individuals with lower-limb amputations, J. Neural. Eng, vol.15, p.56002, 2018.

R. Normann and E. Fernandez, Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies, J. Neural. Eng, vol.13, p.61003, 2016.

T. Davis, H. Wark, D. Hutchinson, D. Warren, O. Neill et al., Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves, J. Neural. Eng, vol.13, p.36001, 2016.

C. Hassler, T. Boretius, and T. Stieglitz, Polymers for neural implants J. Polym. Sci. B, vol.49, pp.18-33, 2011.

S. Cogan, Neural stimulation and recording electrodes, Annu. Rev. Biomed. Eng, vol.10, pp.275-309, 2008.

T. Stieglitz, H. Beutel, M. Schuettler, and J. Meyer, , 2000.

, Micromachined, polyimide-based devices for flexible neural interfaces, Biomed. Microdevices, vol.2, pp.283-94

B. Rubehn and T. Stieglitz, In vitro evaluation of the long-term stability of polyimide as a material for neural implants, Biomaterials, vol.31, pp.3449-58, 2010.

P. Rossini, Double nerve intraneural interface implant on a human amputee for robotic hand control, Clin. Neurophysiol, vol.121, pp.777-83, 2010.

T. Boretius, J. Badia, A. Pascual-font, M. Schuettler, X. Navarro et al., A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve, Biosens. Bioelectron, vol.26, pp.62-69, 2010.

J. Badia, T. Boretius, D. Andreu, C. Azevedo-coste, T. Stieglitz et al., Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles, J. Neural. Eng, vol.8, p.36023, 2011.

W. Jensen and . Ed, Direct Nerve Stimulation for Induction of Sensation and Treatment of Phantom Limb Pain, 2019.

, Boretius T 2013 TIME: A Transverse Intrafascicular Multichannel Electrode (Biomedical Microtechnologies), vol.4

T. Boretius, K. Yoshida, J. Badia, K. Harreby, A. Kundu et al., A transverse intrafascicular multichannel electrode (TIME) to treat phantom limb pain -towards human clinical trials Proc. of the IEEE Int. Conf. on Biomedical Robotics and Biomechatronics pp, pp.282-289, 2012.

T. Stieglitz, M. Schuettler, B. Rubehn, T. Boretius, J. Badia et al., Evaluation of polyimide as substrate material for electrodes to interface the peripheral nervous system, 5th Int. IEEE/EMBS Conf. on Neural Engineering, pp.529-562, 2011.

J. Badia, T. Boretius, A. Pascual-font, E. Udina, T. Stieglitz et al., Biocompatibility of chronically implanted transverse intrafascicular multichannel electrode (TIME) in the rat sciatic nerve, IEEE Trans. Biomed. Eng, vol.58, pp.2324-2356, 2011.

A. Kundu, K. Harreby, K. Yoshida, T. Boretius, T. Stieglitz et al., Stimulation selectivity of the 'thin-film longitudinal intrafascicular electrode' (tfLIFE) and the 'transverse intrafascicular multi-channel electrode' (TIME) in the large nerve animal model, IEEE Trans. Neural Syst. Rehabil. Eng, vol.22, pp.400-410, 2014.

K. Harreby, A. Kundu, K. Yoshida, T. Boretius, T. Stieglitz et al., Subchronic stimulation performance of transverse intrafascicular multichannel electrodes in the median nerve of the Göttingen minipig, Artif. Organs, vol.39, pp.36-48, 2015.

S. Raspopovic, Restoring natural sensory feedback in real-time bidirectional hand prostheses, Sci. Transl. Med, vol.6, pp.222-241, 2014.

C. Oddo, Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans Elife, vol.5, p.9148, 2016.

J. Ordonez, Miniaturization of Neuroprosthetic Devices and the Fabrication of a 232-channel Vision Prosthesis with a Hermetic Package, Biomedical Microtechnologies), vol.5, 2013.

J. Ordonez, C. Boehler, M. Schuettler, and T. Stieglitz, Improved polyimide thin-film electrodes for neural implants, Conf. Proc. IEEE Eng. Med. Biol. Soc, pp.5134-5141, 2012.

J. Barrese, N. Rao, K. Paroo, C. Triebwasser, C. Vargas-irwin et al., Failure mode analysis of silicon-based intracortical microelectrode arrays in non-human primates, J. Neural. Eng, vol.10, p.66014, 2013.

J. Barrese, A. J. Donoghue, and J. , Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates, J. Neural. Eng, vol.13, p.26003, 2016.

R. Daschner, U. Greppmaier, M. Kokelmann, S. Rudorf, R. Rudorf et al., Laboratory and clinical reliability of conformally coated subretinal implants Biomed. Microdevices, vol.19, p.7, 2017.

J. George, D. Page, T. Davis, C. Duncan, D. Hutchinson et al., 2020 Long-term performance of Utah slanted electrode arrays and intramuscular electromyographic leads implanted chronically in human arm nerves and muscles (submitted

T. Stieglitz, H. Beutel, and J. Meyer, Microflex'-A new assembling technique for interconnects, J. Intell. Mater. Syst. Struct, vol.11, pp.417-442, 2000.

S. Wurth, Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes, Biomaterials, vol.122, pp.114-143, 2017.

J. Williams, J. Hippensteel, J. Dilgen, W. Shain, and D. Kipke, Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants, J. Neural. Eng, vol.4, pp.410-433, 2007.

S. Stensaas and L. Stensaas, Histopathological evaluation of materials implanted in the cerebral cortex Acta Neuropathol, vol.41, pp.145-55, 1978.

S. Cogan, D. Edell, A. Guzelian, P. Liu, Y. Edell et al., Plasma-enhanced chemical vapor deposited silicon carbide as an implantable dielectric coating, J. Biomed. Mater. Res. A, vol.67, pp.856-67, 2003.

C. Hassler, J. Guy, M. Nietzschmann, D. Plachta, J. Staiger et al., Biomed. Microdevices, vol.18, p.81, 2016.

E. Khakani, M. Chaker, M. Jean, A. Boily, S. Kieffer et al., Hardness and Young's modulus of amorphous a -SiC thin films determined by nanoindentation and bulge tests, J. Mater. Res, vol.9, pp.96-103, 1994.

M. Salvadori, I. Brown, A. Vaz, L. Melo, and M. Cattani, Measurementnanostructured platinum surfaces of the elastic modulus of nanostructured gold and platinum thin films, Phys. Rev. B, vol.67, p.153404, 2003.

S. Krähenbühl, P. ?van?ara, T. Stieglitz, R. Bonvin, M. Michetti et al., Return of the cadaver: key role of anatomic dissection for plastic surgery resident training, Medicine, vol.96, p.7528, 2017.

E. Fiedler, J. Ordonez, T. Stieglitz, E. Fiedler, J. Ordonez et al., Laser-structured ceramic adapters for reliable assembly of flexible thin-film electrodes, Biomed. Tech, vol.58, 2013.

N. De-la-oliva, X. Navarro, and D. Valle, Time course study of long-term biocompatibility and foreign body reaction to intraneural polyimide-based implants, J. Biomed. Mater. Res. A, vol.106, pp.746-57, 2018.

K. Anselme, P. Davidson, A. Popa, M. Giazzon, M. Liley et al., The interaction of cells and bacteria with surfaces structured at the nanometre scale, Acta Biomater, vol.6, pp.3824-3870, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02384171

F. Variola, Improving biocompatibility of implantable metals by nanoscale modification of surfaces: an overview of strategies, fabrication methods, and challenges Small, vol.5, pp.996-1006, 2009.

N. Patrito, C. Mccague, P. Norton, and N. Petersen, Spatially controlled cell adhesion via micropatterned surface modification of poly(dimethylsiloxane), Langmuir, vol.23, pp.715-724, 2007.

S. Ni, L. Sun, B. Ercan, L. Liu, K. Ziemer et al., A mechanism for the enhanced attachment and proliferation of fibroblasts on anodized 316L stainless steel with nano-pit arrays, J. Biomed. Mater. Res. Part B, vol.102, pp.1297-303, 2014.

P. Elter, T. Weihe, R. Lange, J. Gimsa, and U. Beck, The influence of topographic microstructures on the initial adhesion of L929 fibroblasts studied by single-cell force spectroscopy, Eur. Biophys. J, vol.40, pp.317-344, 2011.

C. Chapman, H. Chen, M. Stamou, J. Biener, M. Biener et al., Nanoporous gold as a neural interface coating: effects of topography, surface chemistry, and feature size, ACS Appl. Mater. Interfaces, vol.7, pp.7093-100, 2015.

C. Pennisi, C. Sevcencu, A. Dolatshahi-pirouz, M. Foss, J. Hansen et al., Nanotechnology, vol.20, p.385103, 2009.