M. Arnaudon, F. Barbaresco, and L. Yang, Riemannian medians and means with applications to radar signal processing, IEEE Journal of Selected Topics in Signal Processing, vol.7, issue.4, pp.595-604, 2013.

D. Asta and C. Shalizi, Geometric Network Comparison, Journal of Machine Learning Research, 2014.

B. Aaron, . Adcock, D. Blair, M. W. Sullivan, and . Mahoney, Tree-like structure in large social and information networks, 2013 IEEE 13th International Conference on Data Mining, pp.1-10, 2013.

J. Angulo and S. Velasco-forero, Morphological processing of univariate Gaussian distribution-valued images based on Poincaré upper-half plane representation, Geometric Theory of Information, Signals and Communication Technology, vol.5, pp.331-366, 2014.

A. Barachant, PyRiemann: Python package for covariance matrices manipulation and Biosignal classification with application in Brain Computer interface, 2015.

J. Michael-m-bronstein, Y. Bruna, A. Lecun, P. Szlam, and . Vandergheynst, Geometric deep learning: Going beyond euclidean data, IEEE Signal Processing Magazine, vol.34, issue.4, pp.18-42, 2017.

G. Bécigneul and O. Ganea, Riemannian Adaptive Optimization Methods, Proc. of ICLR 2019, pp.1-16, 2018.

M. Boguná, F. Papadopoulos, and D. Krioukov, Sustaining the internet with hyperbolic mapping, Nature communications, vol.1, issue.1, pp.1-8, 2010.

E. Chevallier, F. Barbaresco, and J. Angulo, Probability density estimation on the hyperbolic space applied to radar processing, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.9389, pp.753-761, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01121090

J. Benjamin-paul-chamberlain, M. P. Clough, and . Deisenroth, Neural embeddings of graphs in hyperbolic space, 13th International Workshop on Mining and Learning with Graphs, 2017.

A. Censi, PyGeometry: Library for handling various differentiable manifolds, 2012.

A. Cherian and S. Sra, Positive Definite Matrices: Data Representation and Applications to Computer Vision, Algorithmic Advances in Riemannian Geometry and Applications, 2016.

I. R. Sueli, S. A. Costa, J. E. Santos, and . Strapasson, Fisher information matrix and hyperbolic geometry, IEEE Information Theory Workshop, p.3, 2005.

I. L. Dryden, A. Koloydenko, and D. Zhou, Non-Euclidean statistics for covariance matrices, with applications to diffusion tensor imaging, Annals of Applied Statistics, vol.3, issue.3, pp.1102-1123, 2009.

M. Faraki, T. Mehrtash, F. Harandi, and . Porikli, Material Classification on Symmetric Positive Definite Manifolds, 2015 IEEE Winter Conference on Applications of Computer Vision, vol.1, pp.749-756, 2015.

O. Ganea, G. Becigneul, and T. Hofmann, Hyperbolic neural networks, Advances in Neural Information Processing Systems 31 (NIPS), pp.5345-5355, 2018.

M. Gromov, Hyperbolic Groups, pp.75-263, 1987.

Y. +-19]-zhi-gao, X. Wu, T. Bu, J. Yu, Y. Yuan et al., Learning a robust representation via a deep network on symmetric positive definite manifolds. Pattern Recognition, vol.92, pp.1-12, 2019.

, /retrieve/pii/S0031320319301062

+. Gerald, H. Zaatiti, H. Hajri, N. Baskiotis, and O. Schwander, From node embedding to community embedding : A hyperbolic approach, 2019.

M. T. Harandi, R. Hartley, B. Lovell, and C. Sanderson, Sparse coding on symmetric positive definite manifolds using bregman divergences. IEEE Transactions on Neural Networks and Learning Systems, vol.27, pp.1294-1306, 2016.

S. Huckemann, P. Kim, J. Y. Koo, and A. Munk, Möbius deconvolution on the hyperbolic plane with application to impedance density estimation, Annals of Statistics, vol.38, issue.4, pp.2465-2498, 2010.

J. Hong, J. Vicory, M. Schulz, J. Styner, S. S-marron et al., Non-Euclidean Classification of Medically Imaged Objects via s-reps, Med Image Anal, vol.31, pp.37-45, 2016.

S. Jung, I. L. Dryden, and J. S. Marron, Analysis of principal nested spheres, Biometrika, vol.99, issue.3, pp.551-568, 2012.

T. John, T. Kent, and . Hamelryck, Using the Fisher-Bingham distribution in stochastic models for protein structure, Shape Analysis, and Wavelets, vol.24, issue.1, pp.57-60, 2005.

M. Kochurov-;-dmitri-krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá, Hyperbolic geometry of complex networks, Geoopt: Riemannian Adaptive Optimization Methods with pytorch optim, vol.82, p.36106, 2010.


L. Kühnel and S. Sommer, Computational Anatomy in Theano, 2017.

N. Mglb-+-]-nina-miolane, A. L. Guigui, J. Brigant, B. Mathe, Y. Hou et al., Geomstats : a Python Package for Riemannian Geometry in Machine Learning, 2018.

I. +-13]-tomas-mikolov, K. Sutskever, G. S. Chen, J. Corrado, and . Dean, Distributed representations of words and phrases and their compositionality, Advances in Neural Information Processing Systems 26 (NIPS), pp.3111-3119, 2013.

B. Ng, M. Dressler, G. Varoquaux, J. Baptiste-poline, M. Greicius et al., Transport on Riemannian manifold for functional connectivity-based classification, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume, vol.8674, pp.405-412, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01058521

M. Nickel, D. Kiela-;-i-guyon, U. Luxburg, S. Bengio, H. Wallach et al., Poincaré Embeddings for Learning Hierarchical Representations, Advances in Neural Information Processing Systems, vol.30, pp.6338-6347, 2017.

X. Pennec, P. Fillard, and N. Ayache, A Riemannian Framework for Tensor Computing, International Journal of Computer Vision, vol.66, issue.1, pp.41-66, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00070743

M. +-12]-fragkiskos-papadopoulos, Á. Kitsak, M. Serrano, D. Boguná, and . Krioukov, Popularity versus similarity in growing networks, Nature, vol.489, issue.7417, pp.537-540, 2012.

M. R. Postnikov and . Geometry, Encyclopaedia of Mathem, Sciences, 2001.

X. Pennec, S. Sommer, and T. Fletcher,

, Riemannian Geometric Statistics in Medical Image Analysis, 2019.


F. Sala, C. D. Sa, A. Gu, and C. Re, Representation tradeoffs for hyperbolic embeddings, Proceedings of the 35th International Conference on Machine Learning, vol.80, pp.10-15, 2018.

Y. Shinohara, T. Masuko, and M. Akamine, Covariance clustering on Riemannian manifolds for acoustic model compression, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing, pp.4326-4329, 2010.

O. Sporns, G. Tononi, and R. Kötter, The human connectome: A structural description of the human brain, PLOS Computational Biology, vol.1, issue.4, pp.245-0251, 2005.

J. Townsend, N. Koep, and S. Weichwald, Pymanopt: A python toolbox for optimization on manifolds using automatic differentiation, Journal of Machine Learning Research, vol.17, issue.137, pp.1-5, 2016.


E. Wong, J. S. Anderson, B. A. Zielinski, and P. Fletcher, Riemannian Regression and Classification Models of Brain Networks Applied to Autism, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), volume, vol.11083, pp.78-87, 2018.

K. Wynn, PyQuaternions: A fully featured, pythonic library for representing and using quaternions, 2014.

X. Wang, Z. Zuo, M. Dai, Z. Xia, X. Zhao et al., Disrupted functional brain connectome in individuals at risk for Alzheimer's disease, Biological Psychiatry, vol.73, issue.5, pp.472-481, 2013.

Y. Yuan, H. Zhu, W. Lin, and J. Marron, Local polynomial regression for symmetric positive definite matrices, Journal of the Royal Statistical Society Series B, vol.74, issue.4, pp.697-719, 2012.