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Figure 1: Our real-time camera control system automatically anticipates and avoids static and dynamic occluders. Starting from the same
frame, our system without anticipation activated (red camera) is unable to anticipate, hence remains occluded until the character moves
away from the column (middle image 1); using our anticipation technique (green camera), our system enables the camera to predict the
occlusion, and move to an unoccluded view of the character (middle image 2).

Abstract
Ef�cient visibility computation is a prominent requirement when designing automated camera control techniques for dynamic
3D environments; computer games, interactive storytelling or 3D media applications all need to track 3D entities while ensuring
their visibility and delivering a smooth cinematic experience. Addressing this problem requires to sample a large set of potential
camera positions and estimate visibility for each of them, which in practice is intractable despite the ef�ciency of ray-casting
techniques on recent platforms. In this work, we introduce a novel GPU-rendering technique to ef�ciently compute occlusions
of tracked targets in Toric Space coordinates – a parametric space designed for cinematic camera control. We then rely on this
occlusion evaluation to derive an anticipation map predicting occlusions for a continuous set of cameras over a user-de�ned
time window. We �nally design a camera motion strategy exploiting this anticipation map to minimize the occlusions of tracked
entities over time. The key features of our approach are demonstrated through comparison with traditionally used ray-casting
on benchmark scenes, and through an integration in multiple game-like 3D scenes with heavy, sparse and dense occluders.

CCS Concepts
� Computing methodologies! Rasterization;Procedural animation;� Applied computing! Media arts;

1. Introduction

Controlling cameras is a core aspect of nearly all interactive com-
puter graphics applications (e.g. computer-aided design, cultural
heritage exploration or entertainment). Indeed, one key component
is to make the user able to automatically track target objects in the

y marc.christie@irisa.fr

scene (most often one or two objects of interest) through the lens
of a virtual camera. Hence, controlled cameras should at any time
provide interesting viewpoints, with as much visibility as possible
on these target objects, while providing smooth camera motions.

In most interactive 3D applications, cameras are traditionally
controlled through low level interaction metaphors (e.g.trackball)
which offer a limited degree of control and still remain un-intuitive
for non-expert users. Furthermore, no convincing solutions are of-
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fered for camera collisions or occlusion avoidance. Hence, there
is a clear requirement to provide a higher level of automation in
the control of virtual cameras. On the one hand, in the last two
decades, researchers have proposed solutions to account for the ge-
ometry of 3D scenes and/or to incorporate more cinematographic
knowledge in camera systems. However, few works have focused
on the issue of real-time occlusion avoidance and occlusion an-
ticipation when dealing with fully dynamic scenes, and most of
which require heavy pre-computations. In the other hand, recent ef-
forts have been made in the industry to propose more evolved, yet
lightweight, tools; for instance, Unity'sCinemachinetool provides
ways to manually craft camera rails along which the camera will
be moved at run-time to follow objects. Yet, it is still required that
users manually handle cinematic camera placement, avoid colli-
sions, and setup triggers for camera-switching operations (i.e. cuts)
as soon as the current camera lacks visibility on �lmed objects.
Providing a lightweight yet evolved camera system which maxi-
mizes visibility of targets requires to address three main challenges:
�rst ef�ciently estimating the visibility of moving targets remains
(a complex and computationally expensive process in a real-time
context), second anticipating changes in the environment to reduce
the occlusion of targets by the camera, �nally maintaining the qual-
ity of camera motions despite necessary displacements to anticipate
occlusion and improve visibility.

In this paper we address these challenges by proposing a real-
time cinematic camera control system for fully dynamic 3D scenes,
which maximises visibility of one or two targets with no pre-
computation. To do so, we leverage previous contributions of
[LC12, LC15] on the Toric Space, which offer an ef�cient way to
address cinematic camera placement, yet without addressing the is-
sues of visibility computation/maximization nor quality of camera
motions. Our contributions are:

� an ef�cient shadow-mapping algorithm to compute visibility in-
formation into a Toric space coordinate system;

� a customizable anisotropic blurring algorithm to generate, in
Toric space, anocclusion anticipation map;

� a texture-based style model to encode viewpoint preferences
(i.e.directorial styles in viewpoints can be expressed astextures);

� a physically-plausible camera control model enabling, from
these information, to create smooth camera motions in real-time.
We supplement this model with a set of strategies (e.g.introduce
cuts) to handle symptomatic cases (e.g. when no un-occluded
viewpoint can be found locally).

2. Related Work

Positioning cameras in 3D scenes is highly connected to the no-
tion of viewpoint entropy [VFSL02],i.e. measuring the quality of
a viewpoint with regard to the amount of information it conveys for
a given scene. When addressing the problem of moving cameras
that should follow moving targets in a cinematographic way, three
criteria are crucial: (i) maintain enough visibility on these targets,
(ii) provide viewpoints in which the visual arrangement of targets
follow common aesthetic rules used by cinematographers [RT09b]
and (iii) provide smooth camera motions.

Figure 2: Toric space representation proposed by [LC12,LC15] to
algebraically solve combinations of on-screen constraints. A view-
point is parameterized with a triplet of Euler angles (a, q, j ) de-
�ned around a pair of targets (A and B);a (red) de�nes the angle
between the camera and both targets – it generates a spindle torus
on which to position the camera –,q (green) de�nes the horizontal
angle andj (blue) the vertical angle around the targets.

2.1. Virtual Camera Control

General problem Most approaches have tackled this problem as
a search or a constraint-solving problem in a 7D camera space
(i.e. optimizing a 3D position, 3D orientation, and �eld of view
for each camera, and each time step). One key issue is the strongly
non-linear relation between the low-level camera parameters and
the visual arrangement constraints (e.g.targets on-screen positions,
size, or viewing angles) to satisfy. Hence, for ef�ciency, it is often
required to reduce the dimension of the problem, by either optimiz-
ing the camera position and orientation in two separate steps or by
constraining the possible camera positions. For instance, Burtnyk
[BKF� 02] proposed an interactive control of cameras through 2D
inputs, where the authors constrain the cameras to move on hand-
crafted 3D surfaces aimed at providing interesting views around
targets. Recently, Lino and Christie [LC12, LC15] proposed the
Toric space, a 3D compact space in which some visual constraints
can be directly encoded (in terms of both camera position and ori-
entation) or solved algebraically. This space is de�ned as a continu-
ous set of spindle torii, around two targets. A 7D camera con�gura-
tion is fully determined by 3 parameters: an angle (a) algebraically
computed from the desired targets on-screen positions – any cam-
era position (and its associated orientation) on thisa-Toric surface
satis�es this key constraint –, as well as a horizontal and a vertical
angle (q andj ) on the torus (see �gure 2). Furthermore, visual con-
straints can be robustly and interactively enforced or manipulated,
while this is a dif�cult problem in the 7D camera space. Yet, visi-
bility information remains not straightforward to compute in Toric
space, which is a key motivation of this work.

Physically-based motionsContributions have also recently inves-
tigated camera physics in their cinematic control, both for virtual
cameras (a.k.a.virtual cinematography) or for real cameras held
onto unmanned aerial vehicles (a.k.a.aerial cinematography).

The primary focus in virtual cinematography is to output
more plausible paths,i.e. visual constraints are of higher im-
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portance compared to strictly obeying physics laws. Galvane
et al.[GCLR15] and Littenekeret al.[LT17] proposed quite compa-
rable path smoothing techniques. Both take as input the animation
of one or two characters and a set of desired on-screen layouts along
time, and output a smooth camera path. The satisfaction of on-
screen constraints along this path is �rstly maximized either using
a costly optimization in 7D camera space [LT17] (with simulated
annealing, plus a gradient descent) or algebraic solutions in Toric
space [GCLR15]. Both would provide a noisy camera path. They
hence secondly smooth the computed path: [GCLR15] proposed to
approximate it as a cubic Bezier curve, then locally optimize the
camera velocity and acceleration (in position and orientation) by
using constrained optimization. In a way similar, [LT17] proposed
to locally optimize the path curvature and stretch by using an active
contour model. However, [GCLR15] is an of�ine method, and does
not account for visibility or collisions. Litteneker's method is simi-
lar to ours in term of path smoothing. One major difference is their
use of a sparse visibility/occlusion evaluation (through ray-casting
from a grid of neighbor camera positions) together with an inaccu-
rate visibility prediction (through an isotropic blur kernel). In con-
trast, we use a smooth visibility evaluation (shadow maps), together
with an anisotropic occlusion prediction following a predicted evo-
lution of the scene. In parallel, as in [GCLR15], we can enforce on-
screen constraints by projecting our camera paths in Toric space.

In parallel, the aerial cinematography community has focused
on computing feasible and collision-free paths (this is a high-order
requirement), while maximizing visual constraints' satisfaction.
Nageliet al.[NAMD � 17] formulated this real-time camera control
process as a receding-horizon optimal control in the low-level aerial
vehicle parameters, while optimizing a set of visual constraints
and collision constraints. They further extended their technique to
following handcrafted paths and avoiding collision between mul-
tiple aerial vehicles [NMD� 17]. Galvaneet al. [GLC� 18] have
built upon an extended version of the Toric Space (aC2 surface,
named Drone Toric Space) which additionally enforces a collision-
avoidance distance around targets. They then proposed to rely on
graph-oriented motion planning algorithms (on camera positions)
to dynamically re-compute feasible (C4) paths, while optimizing
visual constraints in the Drone Toric Space to follow hand-drawn
paths or to coordinate multiple vehicles. Both Nageliet al.and Gal-
vaneet al.consider a rather static environment, with a small number
of dynamic occluders (the targets) and colliders (targets and other
vehicles) declared by the user and approximated as ellipsoids. In
contrast, our method works for 3D scenes with unknown dynamic
objects of any complexity.

2.2. Visibility for computer graphics

Visibility (and by extension shadow) computation in 3D scenes
has received much attention in computer graphics, mainly for ren-
dering purposes. An extensive overview of general visibility and
shadow computation is beyond the scope of this paper, though a
good insight in visibility problems classi�cation can be found in
[COCSD03], and overviews of modern shadow computation tech-
niques can be found in [WP12, ESAW16]. Hence, we here only
review techniques that area relevant to our domain of interest.

Ray-casting techniquesheavily rely on direct ray-primitive inter-
sections [Rot82] to check if some geometry exist between two 3D
points. This is mostly used in path-tracing techniques, as it allows
computing point-point visibility very ef�ciently. By casting many
rays, one can obtain a rough approximation of the from-point vis-
ibility of a complex geometry. It however remains more expensive
than rasterization, as it requires to cast many rays, and to dynami-
cally maintain a bounding-volume hierarchy. One reason is that it
still heavily relies on CPU computations (at least until hardware
ray-tracing GPUs become the norm).

Rasterization-based techniquesheavily rely on the hardware
graphics pipeline, which offers a very powerful tool (called the
depth map or z-buffer). It enables approximatingshadow maps
[Wil78] by computing a depth map from a light source, or even
soft shadows[HH97] by using multiple shadow maps computed
from sampled points on an area light source. [RGK� 08] reversed
this concept by computing many low-cost (128x128 pixel) shadow
maps from sparse 3D scene points. They approximate the scene
as a set of sample points, split them into subsets, and render each
subset into a shadow map, with a point-based rendering method.
As a result, they obtain inaccurate shadow maps. These maps pro-
vide a very poor approximation of direct visibility, but are good
enough to ef�ciently approximate indirect visibility (illumination
and shadows) from punctual or area light sources. Our technique
is inspired by the shadow mapping concepts, which remain cheap
(i.e. the z-buffer is encoded in the hardware of most GPUs) and
provide a precise-enough approximation of the from-point visibil-
ity in complex and dynamic scenes. More generally, we design our
computation pipeline to be massively parallel (i.e.shader-oriented).

2.3. Visibility for camera control

Visibility is also a central issue when controlling virtual cameras,
though its has been paradoxically under-addressed in this domain.
Different concerns must be reconciled: (i) the level of precision
(from rough to precise approximation), (ii) whether dynamic oc-
cluders or complex geometries are accounted for, and (iii) whether
the camera can anticipate on future occlusions. In most existing
works, the visibility is computed by casting rays toward a rough
geometric abstraction (often a bounding box or sphere) of targets,
with no or few anticipation. We hereafter focus on techniques han-
dling visibility for camera motions. For a more general overview of
camera control problems, see [CON08a].

Global visibility planning To reduce the cost of computing vis-
ibility from a camera path, some approaches proposed to pre-
process a visibility data structure. Oskamet al. [OSTG09] create
a visibility-aware roadmap, where nodes represent a set of spheres
sampled so that together they cover the whole scene, and an edge
represents the connectivity (i.e. intersection) between two spheres.
They pre-compute a huge table of approximated sphere-sphere vis-
ibility by launching rays between each pair of spheres. At run time,
for a single target positioned in one sphere, they can plan camera
paths in the roadmap. They account for the travelled distance and
the target visibility along the path, by simply fetching the visibility
table for any travelled sphere. They also propose a simple anticipa-
tion process. They �nd the sphere closest to the camera, while not
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Figure 3: Overview of the system: (left) a dynamic 3D scene serves as input, (middle) our visibility anticipation process consists in computing
shadow maps together with occluder velocity maps for each target, and combining them to construct an occlusion anticipation map (right)
we use this anticipation map together with a physical camera model to both maximize visibility and camera motion smoothness.

visible from it, and compute its occlusion risk. They �nally slightly
move the camera around the target to maximize its visibility. Lino
et al. [LCL � 10] rely on a real-time global visibility computation.
They �rst pre-compute a 2.5D cell-and-portal [TS91] of an indoor
scene. They can, in real-time, re-compute the visibility of moving
targets, into 2.5D volumes (visibility volumes) storing their visibil-
ity degree (from fully visible to fully occluded). They further com-
bine this visibility information with volumes storing the viewpoint
semantics (i.e.how �lmed targets can be arranged on the screen), to
form director volumes. They �nally connect director volumes into
a roadmap. This enables to dynamically re-plan camera paths ac-
counting for the travelled distance, visibility and intermediate view-
points semantics along the path. Their approach can also make cuts
(i.e. teleport the camera), by �ltering director volumes according to
�lm editing conventions. Global approaches are quite ef�cient, but
require heavy pre-computation on the scene geometry and are not
adapted to compute visibility or plan paths in fully dynamic scenes
or with complex geometries (e.g.trees or furniture).

Local visibility planning To plan paths in scenes with dynamic
occluders, researchers have also focused on reactive planning tech-
niques. Inspired by occlusion culling methods used in rendering,
Halper et al. [HHS01] proposed an occlusion avoidance relying
on Potential Visibility Regions(PVR). They �rstly de�ne preferred
viewpoints as a set of bounding spheres. Each sphere is shaded re-
garding to its preference level (the higher, the brighter the color).
They secondly use a depth buffer from the target position. They
render all volumes from most to least desirable, while considering
the depth of occluders. As output, they generate an image buffer
whereby the brightest color (i.e. most desirable camera position)
that �rst pass the depth test is visible. To anticipate occlusions,
they also consider the past occluders trajectories and accelerations,
and solve the camera for that predicted state. In turn, the camera
path is adapted so that the camera can be at this predicted posi-
tion at the prediction time. Christieet al.[CNO12] extend this con-
cept to two targets. They �rst compute low-resolution depth buffers
from a large sample of points on each target, in the direction of
the camera. They combine these depth buffers to create visibility
volumes around the camera. They also extend it to three or more
targets [CON08b] by combining pair-wise computations, and ag-

gregate visibility in a temporal window to avoid over-reactive cam-
era behaviors. Our technique relies on similar concepts, while we
project results in a con�guration space (the Toric space) allowing to
also solve for the viewpoint semantics. Local approaches can be ef-
�cient too. They are however best suited for planning paths step-by-
step. Hence, if no solution exists in the rendering, they will fail to
�nd an unoccluded position (even if one exists). In turn they cannot
plan a global path to this position. In our approach, we overcome
this problem by considering more global visibility information, to
make cuts, as an alternative when no local solution is found.

Visibility in Toric Space remains an under-addressed problem.
[LC15] proposed to compute a set of camera positions in Toric
space, satisfying other visual constraints. They convert them back
to Cartesian space, evaluate targets visibility with ray-casting, and
discard those with low visibility. The main drawbacks is that their
visibility computation remains imprecise and costly, while they tar-
get placing cameras in static scenes only. To our knowledge, there
has been no other attempt to compute visibility, and none to antici-
pate occlusions in Toric space.

3. Overview

The core of our method consists in solving an optimization problem
in a 6D camera space (position and orientation) in real-time that ac-
counts for 3 main criteria: (i) computing a sequence of viewpoints
that satisfy a user-speci�ed visual arrangement of targets (e.g.de-
sired on-screen positions), while (ii) maintaining as much visibility
on the �lmed targets as possible, and (iii) ensuring that camera mo-
tions remain as smooth as possible. First, by using the Toric space
coordinate system [LC15], given two desired on-screen positions
for two distinct targets, the camera orientation is fully determined
by a given position in the Toric space. We leverage this property to
re-write the overall problem as a constrained-optimization on the
camera 3D position only (rather than a 6D).

The Toric space being de�ned by two targets (abstracted as two
3D points), we propose a tracking with only one target but rely on
the classical gaze-room �lming convention [RT09b] by considering
another 3D point placed in the forward direction of the target that
represents the target's anticipated 3D location. By composing on
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Table 1: Notations

(u;v) angle between two vectors
u � v dot product

o target object
s sample point index
r number of sampled points on target objecto

(i.e. s2 [1 : : r])
i camera motion iteration

(x;y) pixel/texture coordinates
T(x;y) value in a 2D buffer/mapT

So
s map computed for sample pointson objecto

the screen, the target together with its anticipated position, we pro-
vide enough visual space ahead of the character, hence satisfying
the gaze-room convention. The desired on-screen positions of these
two targets is enforced by maintaining the camera on a given Toric
surface within the Toric space [LC12]. This addresses criterion (i).

To address criterion (ii) (visibility), a key requirement is the abil-
ity to ef�ciently evaluate the visibility of our two targets for a large
number of camera con�gurations. To further maximize this visi-
bility over time, we need to anticipate the motions of the camera,
targets and occluders,i.e. computing the visibility ahead of time.

To do so, we propose a 2-stage computation pipeline (see �g-
ure 3). In the �rst stage (deferred projection), we draw inspiration
from the shadow mapping technique to compute the visibility of
both target objects. We render occluders from the viewpoint of each
target and project this information onto the current Toric surface
(see �gure 2). We therefore obtain a 2D scalar �eld on this surface
which we refer to as atarget shadow map(or S-map). The �eld en-
codes the composed visibility of target objects at the current frame.
Then, in addition, we compute the velocity of our occluders and
generate a corresponding 2D vector �eld in the Toric space which
we refer to as theoccluder velocity map(or V-map). In the sec-
ond stage, we combine theS-mapand theV-mapto compute a new
2D scalar �eld corresponding to an anisotropic blur of occlusions
along the occluders' velocity directions given byV-map. In a word,
we compute the predicted visibility of the occluders knowing their
velocity into a scalar �eld to which we refer asanticipation map
(occlusion anticipation mapor A-map). This encodes the proba-
bility of future occlusion of the targets, expressed in Toric space,
within a given time window.

To address criterion (iii) (smooth camera motions) we propose
the design of a physically-driven camera motion controller in which
our camera is guided by a number of external forces. We start by
de�ning a search area which approximates the locus of future cam-
era positions, given a time window and our physical camera model.
We then sample points in the search area and project them on the
Toric surface. For each projected point, we extract the anticipation
information stored inocclusion anticipation map, and then decide
where to move the camera. To handle speci�c cases, different cam-
era motion strategies have been de�ned (see Section 5. This ad-
dresses the combination of criteria (i) and (iii).

+

-

+

-

Figure 4: (x;y) texture mapping expressed in the Toric space(q; j ).

4. Visibility computation pipeline

We detail the two stages of our visibility computation: (i) com-
puting pairs oftarget shadow mapandoccluder velocity mapfor
the two targets; (ii) combining both maps to generate anocclusion
anticipation map. Both stages rely on a mapping between a Toric
surface and a texture.

The texture is mapped to through anglesq (horizontal angle) and
j (vertical angle) of the Toric surface. Before performing the pro-
jection, we build a mesh representation of this surface on which ev-
ery vertex is supplied with two additional channels of information:
(a) its texture coordinates, that will linearly map the Toric angles
(q; j ) illustrated in �gure 4, (b) the normal and tangent to the sur-
face at this vertex that compose the local surface basis matrixTBN
which is later required in the camera motion strategy.

We rely on these additional channels to (a) transform any local
pixel of a projected map into its corresponding Toric texture coor-
dinates (as illustrated in �gure 5), and (b) transform an occluder
velocity expressed in the Cartesian space, into a plane tangent to
the Toric surface (i.e.a local Toric-space velocity vector). With this
in mind, we can detail our visibility computation pipeline.

4.1. Deferred projection of shadows and velocities

In order to obtain a good approximation of the visibility of poten-
tially complex 3D targets, we propose to perform visibility compu-
tation for a number (r) of random sample points on the surface of
each target object (inspired by [CNO12]). Let's consider one such
point s, picked on target objecto. For this point, we will render the
S-map(So

s) as well as theV-map(Vo
s ) using deferred projections.

G-Buffers To compute these two projections, we �rst need to ren-
der required information into a set of screen-space textures. We
perform two render passes, both using the same camera projection
(looking fromsto the current camera position on the Toric surface):
the �rst render pass only renders the mesh of the Toric surface, and
the second renders the occluders (i.e. the rest of the scene without
the objecto to avoid self-occlusions. In the �rst pass, we store the
depth map in textureZtoric, the mesh 3D positions inPtoric, and
the surface texture coordinates provided in the extra information
channels on the mesh in textureUV together with its normal and
tangent vectors (in two texturesN andT). ThePtoric map is later
used to compute the velocity of the Toric by �nite differences at the
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Figure 5: Deferred projection performed from one sample on each
target, with at the top the shadow maps, and at the bottom the ve-
locity maps.

current location. In the second render pass, we store the depth map
(in textureZocc) and the occluders 3D positions (in texturePocc).
The information stored in the mapUV(x;y) is required to express a
local position(x;y) of a map into the corresponding global position
in Toric coordinates on theS-maps andV-maps.

4.1.1. Target shadow maps

For each pointson the target objecto, we �ll the 2D target shadow
mapby simply comparing depths:

So
s(UV(x;y)) =

(
1 if Zocc(x;y) < Ztoric(x;y)

0 otherwise

4.1.2. Occluder velocity maps

We now want to predict locations from which this sample point
will be occluded in the next frames. To do so, we will rely on the
current occluders velocity. What we propose is to �rst render this
velocity into a velocity map (Vo

s ). By deriving our position buffer
Pocc using �nite difference between two frames, we determine such
a world-space velocityvocc(x;y) = dPocc(x;y)=dt. In the same way,
we determine the world-space velocityvtoric(x;y) of the Toric sur-
face. We �nally express the occluders velocity in the Toric space:

Vo
s (UV(x;y)) = TBNt :(vocc(x;y) � vtoric(x;y))

where the matrixTBNis computed from the normal and tangent
vectorsN(x;y) andT(x;y). Do note that by removing the torus ve-
locity, we get the relative velocity with respect to the torus (moving
with targets). Then, by projecting it in the tangent space, we can

Figure 6: Uncertainty function U. (left) graphical representation of
U accounting for the distanced and angleg to the velocity vector
V . (right) blur kernel in texture space for a pixel at position(x;y);
the length and angular cutoffs are marked as red lines.

in fact remove its 3rd component (orthogonal with the normal) to
obtain a 2D vector expressed in its tangent plane, which we store
in the map.

4.2. Computing the Occlusion Anticipation Map

We now have generated 2r pairs of shadow+velocity maps (one for
every sample point). We combine all maps to generate a singleoc-
clusion anticipation map A(q; j ) encoding the area of probabilities
of our target objects being occluded or not (from 0 – none will
be occluded – to 1 – both will always be occluded).Do note that
shadow+velocity maps contain information only for a region of the
torus, typically where the information has been projected around
the current camera location. So at this stage, we will only update
theA-mapin these regions.

Now, in order to account for uncertainty in the future location of
occluders, we propose anocclusion prediction modelwhich relies
on classical image processing operators for ef�ciency.

Given a points, sampled on a targeto, we can easily check
whether it is (or not) occluded from a location(q; j ) by read-
ing the associated valueSo

s(q; j ). Knowing the occluder's veloc-
ity (i.e. Vo

s (q; j )), we propose to estimate the amount of future
occlusion through an uncertainty functionU, which in practice is
an anisotropic blur operator, directed along the occluder's velocity.
The operator takes as input a pair of 2D vectors (expressed in Toric
space):

U(v1;v2) = Ul (d):Ua(g) (1)

whered = kv1k � k v2k andg= ( v1;v2).

In other words, for a neighbor location(q0; j 0), we compare
the length and angular differences of the extracted velocityv1 =
Vo

s (q; j ) and vectorv2 = ( q0; j 0) � (q; j ).In practice, we cast both
comparisons into falloff functions (as illustrated in �gure 6):

Ul (d) = max
�

1�
jdj
dW

;0
�

, Ua(g) = max
�

1�
jgj
gW

;0
�

wheredW andgW are custom parameters that represent the length
and angular cutoff values of our uncertainty function (in our tests,
we used values given in table 2).

Applying the prediction model Given our prediction model for
one points on one objecto, we can now focus on computing
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the probability of occlusion from any possible camera location,
i.e. Ao

s(q; j ). In theory, this can be computed by integrating func-
tion U over the coupleSo

s andVo
s :

ZZ + 1

�1
U

�
Vo

s (q+ x; j + y); (� x; � y)
�

So
s(q+ x; j + y) dx dy

But in practice, we rely on textures. Hence, we compute its value
at a pixel-wise level, through a double sum over pixels ofSo

s.

Aggregating predictions for all samples Our 2r partial occlusion
predictions (each for a single points) can now be aggregated into
an overallA-map:

A(q; j ) =
1
2r å

o2f A;Bg

"
r

å
s= 1

Ao
s(q; j )

#

5. Camera motion

We have all required information to design a camera motion con-
troller that can enforce on-screen constraints (this is the purpose
of our supporting Toric surface) and avoid future occlusions of tar-
get objects. Put altogether, we provide a low-dimensional camera
space (the 2D Toric surface), supplied with a scalar �eld encoding
the risk of our targets being occluded in the next frames.

In the following, we propose to mimic a physical model [Rey99,
GCR� 13] where our camera will behave as a particle on which ex-
ternal forces are applied steering it toward unoccluded camera lo-
cations. The motion of the camera can therefore be formulated as
a function of its previous position (pi), velocity (vi) andk external
forces (F):

vi+ 1 = vi +

"
1
m

k

å
j= 1

F j
i+ 1

#

dt then pi+ 1 = pi + vi+ 1:dt

with dt the time step, andm the particle mass. Note that we also
need to ensure the camera remains on the surface of our moving
torus.

Physically plausible camera motionTo enforce visibility at a low
computational cost, we propose a ad-hoc position update, which
is nonetheless explained by a physical model with two external
forces:

� a visibility force (Fv) that steers the camera towards a location
with a lower occlusion risk;

� and a damping force (� cvi) controlling the camera's reactivity
(the higher the damping factorc, the lower the reactivity).

We �rstly observe that, in a physical model

pi+ 1 = pi +
h
vi

�
1�

c
m

dt
�

dt
i

+
1
m

Fv:dt2 (2)

the middle part is a �xed translation, function of the velocity, damp-
ing, and elapsed time. The right part represents a bounded sur-
rounding area, function of the two external forces and the elapsed
time, containing all possible camera locations at the next frame (or
if we increasedt, after a few frames).Starting from this observation,
our general strategy is to search within this surrounding area for a
less occluded camera location. This should provide a physically-
plausible camera motion, near-optimal in the sense of the three

constraints we stated earlier (smooth motion, on-screen composi-
tion, and occlusion avoidance).

In order to move the camera to a potentially less occluded lo-
cation (if one exists), we propose three local sampling strategies,
applied in this order:

1. we use asingle framesearchDS for a less occluded camera lo-
cation in the next frame (i + 1). We therefore restrict the search
to the surrounding area which the camera can reach at the next
frame (see �gure 9a).

2. whenDS �nds no satisfying solution (i.e. a con�guration less
occluded), we use alook-aheadsearchDLA in a wider surround-
ing area that the camera can reach after a given �xed number of
frames. We then steer the camera, by selecting the closest posi-
tion inside areaDS (see �gure 9b).

3. whenDLA still �nds no satisfying solution, we search acut to
a further, less occluded, location. We cast this into a stochas-
tic search in areaDC (in practice the whole surface) and then
instantly teleport the camera to this position; this is a common
strategy in video games as well as movies (camera "cut" pol-
icy [RT09a]).

Note that ourA-mapwill here act as a regularization operator in
these local searches, by casting high-frequencies contained in theS-
maps into a low-frequency prediction valid for a few frames ahead.

To perform the search processwe evaluate the anticipated occlu-
sion at positionp(vi) (i.e. if no external force applies), and then
randomly sample locations in a given surrounding areaDX . The
selected location̂p must provide an improvement in the predicted
occlusion:

p̂ = argmin
(q;j )2 DX

A(q; j ); subject toA(p̂) � A(p(vi))

Moving cameras in Toric spaceA purely physical model of cam-
era motion is de�ned in world space, while ourA-mapis expressed
in Toric space along the coordinates(q; j ). An easy way to de�ne
our camera motion model would be to compute the motion directly
in Toric space coordinates. However since the mapping introduces
distortions,i.e. the same amount of motion in Toric coordinates
does not correspond to the same amount of motion in Cartesian
space, depending on where the computation is performed on the
surface and on the size of the Toric surface. The size is dependent
on the Torica value (angle between the camera and the targets) and
the distance 3D between the targets. We instead propose to de�ne
the camera motions in Cartesian world coordinates using a plane
tangent to the Toric space. We �rst de�ne the search area on the
tangent plane of the torus at the current camera position; we then
uniformly sample points in the search area, which we project onto
the Toric surface,i.e. to now obtain plausible 2D locations in Toric
coordinates (q,j ) so to exploit the information held in theocclusion
anticipation map. This process is illustrated in �gure 7.

5.1. Physically-plausible search areas

In the following, we de�ne the shape of the search areasDS and
DLA, as well as explain how to evaluate occlusions in areaDC.
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Figure 7: 3D view of our local search process for one frame.

(a) Low velocity (b) Medium velocity (c) High velocity

Figure 8: Impact of camera velocity on the single-frame search
area.

(a) Single-frame search strategy.
(b) Look-ahead search strategy
(over several frames).

Figure 9: Local strategies

Single-frame searchThe locations which our camera can phys-
ically reach within a single frame de�ne an area bounded by the
range of possible forcesFv which can be applied to the camera.
Here we propose to approximate this range of possibilities using a
linear threshold and a rotational threshold (fl and fr respectively,
see �gure 8),i.e. enabling the camera to perform, at each frame, a
range of changes in velocity and in direction. Obviously the range
of changes are dependant on camera physical parameters such as
previous velocity (vi) and damping factor (c). In an empirical way,
we propose to express both changes as:

fr =
2p � c
eg:kvikdt

+ c , and fl = 2h:kvikdt (3)

where fr represents the angle threshold dependant on the speed,
which is used to de�ne the range of possibilities in angle
[� fr=2; fr=2]. Constantc is a constant (in radian) representing the
angular span at high speed, andg is a constant de�ning how the an-
gles evolves as a function of the camera velocity.fl represents a rel-

ative distance threshold, also dependent on the speed, used to de�ne
the range of possibilities in positions aspi + vi :dt+ [ � fl =2; fl =2].
h is a constant controlling the linear freedom in speed. By playing
with these parameters, one can easily control the camera reactivity
to match speci�c requirements of an application.

With the current formulation, at low camera speeds
(e.g. kvik = 0), the thresholdfl is null. To handle such situa-
tions, we provide another constantr representing the radius in a
way that fl � r in all cases. Thanks to this, we will keep searching
at low camera speeds (see �gure 8a) and provide a suf�cient
impulse as soon as a local solution is found. After this local search,
if we have successfully found a less occluded location, we can
update the camera position,i.e. pi+ 1 = p̂.

Look-ahead strategy In case there is no better solution inDS, we
search a larger areaDLA by bounding locations which the camera
can physically reach within a few frames, rather than just the next
frame. We simply need to replacedt by Ndt in equation 3 (N > 1
is a user-de�ned value). After this new local search, if a solution is
found, we can update the camera position, moving it in the direction
of the best solution, while staying inDS, i.e.pi+ 1 is the intersection
of the edge ofDSand the segment[p(vi); p̂] (see Fig. 9b). Assuming
that a solution has been found, we need to update the velocityvi+ 1,
which could be done by simply deriving the camera's position. In
practice, this velocity is dampened so that the camera stabilizes
when there are no occlusions:

vi+ 1 =
�

pi+ 1 � pi

dt

� �
1�

c
m

dt
�

Cut strategy The cut strategy is applied when no better solution
can be found inDS andDLA and enables the camera to jump to an-
other location. In such case we search in the areaDC, which is much
larger than the current camera neighborhood. Indeed, as illustrated
in �gure 5, theA-mapcomputation is only performed in a local area
around the current camera position. In fact, recomputing the entire
map (Toric surface) would be too inaccurate because of high distor-
tion in the rendered buffers, and low precision around the camera
position. Furthermore the camera performs a continuous motion in
most cases, so computing the whole map is unnecessarily expen-
sive. ThisDC area is additionally pruned for camera locations with
a 30� angle rule of the current camera location. This a very com-
mon �lm editing convention [RT09a] preventing jump-cuts.

To perform this search inDC we propose to rely on ray-casting.
We cast rays to the same sample pointss as before, and only rely
on these tests to compute an occlusion ratio (i.e. there is no occlu-
sion prediction). As soon as a less occluded position is found we
perform a cut by teleporting the camera,i.e. pi+ 1 = p̂. Further, in
this case, we reset the camera's velocity,i.e. vi+ 1 = 0.

When no better solution has been found in these 3 searches, then
we consider that the best option is to leave our camera particle fol-
low its current path,i.e. pi+ 1 = p̂ = p(vi).

5.2. Style masks

While the camera moves autonomously to minimize occlusion,
one might also want to avoid some viewpoints, depending on the
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(a) (b) (c) (d)

Figure 10: Examples of masks (top) and the impact on theA-map
(bottom). (a) Empty mask, (b) �exible exclusion of viewpoints be-
hind targets (with a gradient), (c) hard exclusion of viewpoints be-
hind targets, (d) smooth repulsive mask avoiding regions behind
the targets, top views and bottom views. Mask images (top) are sur-
rounded by a box so as to highlight edge gradients.

Table 2: The set of default values we used to run our tests

parameter r dw gw c g h r
value 5 0.6 0.5 10� 5 0.5 0.1

0.5

0.6

0.7

0.8

0.9

1

64x64 128x128 256x256 512x512

vi
si

bi
lit

y

Moving Cylinders

(a) Visibility performance for different maps resolutions (the higher
the better).

Size 64x64 128x128 256x256 512x512
FPS 197.09 130.04 88.80 18.96

(b) Framerate for different map resolutions.

Figure 11: Comparison of performances for different map sizes.
Red: median value; Blue: 1st to 3rd quartile. The resolution im-
pacts strongly the computational cost (b) but not the capacity to
maintain visibility (a).

targeted application. For example, in interactive applications with
character control, one might prefer to not see the scene from bellow
or from above angles. For this purpose, we propose the notion of
style masks on theA-mapto in�uence the camera motion, or avoid
speci�c areas (see examples in �gure 10). We update theA-map
using the following formulation:

A(x;y) = 1� (1� A(x;y) � Mask(x;y))

6. Results

Implementation We implemented our camera system within the
Unity3D 2018 game engine. We compute our G-buffers through
the Unity's integrated pipeline, while we perform our image pro-
cessing stages (sections 4.1.1, 4.1.2, 4.2 and 5.2) through Unity

Figure 12: Visibility comparison on 3 complex scenes, using the
ray-cast method (R), our method with anticipation (A) or our
method without anticipation (W). (top) Visibility along time (in s),
(bottom) side-by-side comparison of performances. Red line: me-
dian value; Blue: 1st to 3rd quartile; Red crosses: outliers.

Compute Shaders. All our results (detailed in section 6) have been
processed on a desktop computer with a Intel Core i7-7820X CPU
@ 3.60GHz and a NVidia Titan Xp.

We evaluate our camera system along two main criteria: how
much the targets are visible (1 meaning that both targets are visi-
ble, 0 both targets are occluded), and how smooth the camera mo-
tions are. We compare the performance of our system with different
sets of parameters and featuresi.e. changing the size of computed
maps, and using (or not) our occlusion anticipationvs.a commonly
used occlusion computation. We perform comparisons on 4 scene
con�gurations (illustrated in the accompanying video) made of a
simple scene and three complex scenes: (ii) a scene with a set of
columns and a gate (Columns+Gate) which the target avatar goes
through (iii) a scene with the avatar travelling a forest (Forest) and
(iv) a scene with the avatar travelling a mix of forest and corridors
with big walls (Forrest+Corridor ).

Comparisons are performed as a post-process to not in�uence
the performance of the system. To provide a fair comparison be-
tween techniques, we measure the visibility degree on both targets
by casting a large number of rays (1 ray per vertex on each tar-
get) . In a way similar, we evaluate the quality of camera motions
by computing their derivatives,i.e. speed and acceleration, which
provide a good indication of camera smoothness.

Impact of map resolution As a stress test, we ran our system on
our simple scene con�guration, where a pair of targets (spheres)
is moving in a scene which we progressively �ll with cylinders
moving in random directions. We add up to 70 cylinders (4 per
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(a) Speed

(b) Acceleration

Figure 13: Motion features on complex scenes, if using the ray-cast
method (R), or our method with (A) or without (W) anticipation.
(top) reported camera speed for 3 benchmarks, (bottom) speed (a)
and (acceleration) distribution.

frame) until 47s of simulation; the whole simulation lasts about
60s. We ran this test with medium-size cylinders, or large cylin-
ders. We have evaluated the ability of our system to compute and
enforce visibility by comparing the mean (actual) visibility along
time, and the average frame rate. As shown in �gure 11, decreasing
the map resolution does not yield any noticeable loss in visibility
enforcement, even for 64x64 maps. Conversely, there is a notice-
able computational speedup. In all our following tests we rely on
64x64 maps.

As a second test, we ran our system on the three complex scenes
and focused on the system's performances when using a brute-
force ray-casting to evaluate visibility (R), or using our computed
maps while enabling (A) or disabling (W) the occlusion anticipa-
tion stage. When disabled (W), ourA-mapwas computed as the
averaged value in eachS-map, i.e. we remove the use of our uncer-
tainty function. Brute-force raycasting is very common in game en-
gines, but its cost prevents the computation of our anticipation map
with real-time performances; hence, in this case (R) we directly
cast rays (to the 2r sample points) at the search stage (i.e. we com-

Each map update Each frame

Steps
Projections

A-map Search
Camera

(S-map+ V-map) update
mean 9.8 11.9 4 2.8
(st. dev) (3.16) (2.25) (0.95) (1.34)

Table 3: Computation time in ms. We use 64x64 maps, 3 sample
points per target (at each update, we recompute the maps for one
sample on each target), and 50 sampled points in the search area.

pute no anticipation map). For all three techniques, we compare
their cost, and ability to enforce visibility (�gure 12) and to provide
smooth camera motions (�gure 13). We then provide a breakdown
of the computational cost of our method (A) (table 3).

Impact of the visibility computation technique From our results,
it appears clearly that with (A) or without (W) anticipation meth-
ods always improve visibility on targets compared to the ray-cast
based method (R). Further, enabling the anticipation stage (A) pro-
vides an improvement compared to disabling it (W). Typically, in
theForestscene which is a scene speci�cally designed with a high
density of occluders, the method with anticipation (A) shows best
performance (see �gure 12). In theColumns + Gatescene, their is
a clear bene�t in using our anticipation step, especially at moments
where the camera has to follow the target through the gate.

Motion smoothnessOur motion strategies lead to smaller varia-
tions of velocity and acceleration (�gure 13), while outliers can be
due to either cuts, or our strategy at low camera speed, providing
some impulse to the camera. Furthermore, when anticipation is not
used ((R) and (W)), the acceleration remain lower, but at the cost
of reducing the visibility.

Cost of the visibility evaluation As expected, casting rays (on the
CPU) is much more expensive than computing our maps (on the
GPU). In our tests, we experimentally choser = 5 to enable a fair
comparisons of the system's performances (i.e.a fast-enough frame
rate for the ray-cast based method (R)). As expected intuitively, the
cost of computing our maps is linear in the numberr of samples,
while computing and fetching the anticipation map is made at a
�xed cost, as we perform the search on the GPU (hence in parallel).

Computational costs breakdown As shown in table 3, the most
expensive stage per frame is the computation of theA-map, then the
projections of allS-maps andV-maps. The search and camera up-
date are conversely inexpensive stages. To improve computational
costs, we notice that, by tweaking parametersdW andgW, we can
predict occlusion for a long-enough time windowW. Doing so, we
propose an optimization: to not update all 2r partial A-mapat ev-
ery frame, but 2 of them only (one per target). In other words, each
mapAo

s would be re-computed everyr frames. Moreover, we pro-
pose to not make an update at every frame, but instead to use a
refresh rate matching our time windowW. It will dictate when to
make an update,i.e. everyW=r seconds. In our tests, we make an
update every 0:1 second (e.g.if r = 5, any map is updated every 0:5
second). We experimentally noticed that, for moderate values ofr,
the impact of this optimization on our system's visibility criteria is
not noticeable.
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7. Discussion and limitations

We have highlighted the key features of our approach: low com-
putational cost and improved visibility through anticipation. There
however remains some limitations. First, there is an intrinsic limi-
tation in the underlying Toric space representation,i.e. the camera
must move at the surface of a moving torus, while there is no such
restriction in the 7D camera space. We would like to investigate the
provision of slight changes in the desired screen locations of targets
to expand the range of motions; for instance we could also compute
a slightly smaller and a slightly wider torus, leading to the computa-
tion of a 3DA-map. Typically, this would enable to move the cam-
era closer to the avatar,e.g.to avoid some occlusion. In our future
work, we would like to better exploit the depth information in theS-
mapto derive a camera motion control over all Toric-space param-
eters (j ;q anda). Second, our approach is primarily designed to
avoid occlusion, while simple secondary constraints can be added
with style masks. More complex (and ideally dynamic) secondary
constraints could be added by providing better representations. Fi-
nally, taking a step further, the Toric space we rely on is one pos-
sible model, allowing to enforce on-screen constraints; in the fu-
ture, we would like to adapt our rendering+anticipation framework
to perform our anticipation for 3D primitives de�ned around one
or more targets, on which we could de�ne more complex motions
with physical constraints, such as cranes or drones.

8. Conclusion

In this paper, we have proposed a real-time occlusion avoidance
approach for virtual camera control. The system �rst computes an
occlusion map by projecting occluders on a camera control surface
(the Toric surface), and then exploits information on the velocity of
the occluders vertices, to derive an anticipation map. The anticipa-
tion map is then exploited by a physical camera motion control to
compute a new camera position minimizing occlusions. We com-
pared our system with an elaborate ray-casting approach, and with
our system in which anticipation was disabled. Results reported
better performances both in terms of computational cost (compared
to ray-casting), overall visibility as well as smooth motions both in
terms of camera velocity and acceleration.
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