, 3 2.2 Physical parameters used for the numerical tests

, Potentials and expansion of the unknowns

. .. , 2.2 Tangential component of the solid stress

, Comparison between the coefficients of outgoing solution and truncated solution, p.17

, 3 Effect of the size of the truncated domain

.. .. Effect,

.. .. Effect,

, Discretization of condition (63a)

, Discretization of condition (63b)

.. .. Elementary,

T. Akiyoshi, K. Fuchida, and H. Fang, Absorbing boundary conditions for dynamic analysis of fluidsaturated porous media, Soil Dynamics and Earthquake Engineering, vol.13, pp.387-397, 1994.

T. Akiyoshi, X. Sun, and K. Fuchida, General absorbing boundary conditions for dynamic analysis of fluid-saturated porous media, Soil Dynamics and Earthquake Engineering, vol.17, pp.397-406, 1998.

H. Barucq, J. Diaz, R. Meyer, and H. Pham, Analytic solutions and transmission eigenvalues in isotropic poroelasticity for bounded domain, scattering of obstacles and fluid-solid interaction problems in 2d, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02408315

, Implementation of HDG method for 2D anisotropic poroelastic first-order harmonic equations, 2020.

J. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, Journal of computational physics, vol.114, pp.185-200, 1994.

. Biot, General theory of three-dimensional consolidation, Journal of Applied Physics, vol.12, 1941.
URL : https://hal.archives-ouvertes.fr/hal-01368635

, General solutions of the equations of elasticity and consolidation for a porous material, Journal of Applied Mechanics, 1956.

, Generalized theory of acoustic propagation in porous dissipative media, Journal of the Acoustical Society of America, 1962.

M. A. Biot, Theory of elasticity and consolidation for a porous anisotropic solid, Journal of Applied Physics, 1955.
URL : https://hal.archives-ouvertes.fr/hal-01368659

. Biot-willis, The elastic coefficients of the theory of consolidation, Journal od Applied Mechanics, 1957.

L. Boillot, Contributionsà la modélisation mathématique età l'algorithmique parallèle pour l'optimisation d'un propagateur d'ondesélastiques en milieu anisotrope, 2014.

M. Bonnasse-gahot, High order discontinuous Galerkin methods for time-harmonic elastodynamics, 2015.
URL : https://hal.archives-ouvertes.fr/tel-01292824

J. M. Carcione, Wave fields in real media: Wave propagation in anisotropic, anelastic, porous and electromagnetic media, vol.38, 2015.

J. De-la-puente, M. Dumbser, M. Käser, and H. Igel, Discontinuous Galerkin methods for wave propagation in poroelastic media, vol.73, pp.77-97, 2008.

G. Degrande and G. De-roeck, An absorbing boundary condition for wave propagation in saturated poroelastic mediaPart I: Formulation and efficiency evaluation, Soil Dynamics and Earthquake Engineering, vol.12, pp.411-421, 1993.

, An absorbing boundary condition for wave propagation in saturated poroelastic mediaPart II: Finite element formulation, Soil Dynamics and Earthquake Engineering, vol.12, pp.423-432, 1993.

, Release 1.0.24 of 2019-09-15

B. Dupuy, L. De-barros, S. Garambois, and J. Virieux, Wave propagation in heterogeneous porous media formulated in the frequency-space domain using a discontinuous Galerkin method, Geophysics, pp.13-28, 2011.
URL : https://hal.archives-ouvertes.fr/insu-00680273

S. Garambois and M. Dietrich, Full waveform numerical simulations of seismoelectromagnetic wave conversions in fluid-saturated stratified porous media, Journal of geophysical research, 2002.

Y. He, T. Chen, and J. Gao, Unsplit perfectly matched layer absorbing boundary conditions for secondorder poroelastic wave equations, Wave Motion, vol.89, pp.116-130, 2019.

V. Mattesi, M. Darbas, and C. Geuzaine, A high-order absorbing boundary condition for 2D timeharmonic elastodynamic scattering problems, Computers & Mathematics with Applications, vol.77, pp.1703-1721, 2019.

T. B. Senior and J. L. Volakis, Approximate boundary conditions in electromagnetics, Institution of Electrical Engineers, p.32509096, 1995.

Y. Zeng, J. He, and Q. Liu, The application of the perfectly matched layer in numerical modeling of wave propagation in poroelastic media, Geophysics, vol.66, pp.1258-1266, 2001.