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Computing representation matrices for the Frobenius
on cohomology groups

Momonari Kudo

Department of Mathematical Informatics, The University of Tokyo
7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan

Abstract

In algebraic geometry, the Frobenius map F ∗ on cohomology groups play an
important role in the classification of algebraic varieties over a field of positive
characteristic. In particular, representation matrices for F ∗ give rise to many
important invariants such as p-rank and a-number. Several methods for com-
puting representation matrices for F ∗ have been proposed for specific curves.

In this paper, we present an algorithm to compute representation matrices
for F ∗ of general projective schemes over a perfect field of positive character-
istic. We also propose an efficient algorithm specific to complete intersections;
it requires to compute only certain coefficients in a power of a multivariate
polynomial. Our algorithms shall derive fruitful applications such as comput-
ing Hasse-Witt matrices, and enumerating superspecial curves. In particular,
the second algorithm provides a useful tool to judge the superspeciality of an
algebraic curve, which is a key ingredient to prove main results in Kudo and
Harashita (2017a,b, 2020) on the enumeration of superspecial genus-4 curves.

Keywords: Cohomology groups, Frobenius maps, Hasse-Witt matrices

1. Introduction

Let K be a perfect field of positive characteristic p. For a positive integer r,
let Pr = Proj(S) denote the projective r-space, where S = K[x0, . . . , xr] is the
polynomial ring of r + 1 variables over K. Given a projective scheme X ⊂ Pr

and q ∈ Z, we denote by OX and Hq(X,OX) its structure sheaf and its q-th
cohomology group, respectively. Note that in this paper we do not assume, un-
less otherwise noted, any condition (e.g., smoothness, irreducibility) on X other
than projectivity, while a curve means a smooth projective variety of dimen-
sion 1. Let F be the absolute Frobenius on X, and let F ∗ denote the induced
Frobenius map on the q-th cohomology group. Computing F ∗ is significant to
classify algebraic varieties over a positive characteristic field. For example, we
can check whether a curve is superspecial or ordinary, by computing whether
the Frobenius on its first cohomology group is zero or bijective. As another
example, a matrix representing F ∗ enables us to compute several invariants
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such as p-rank and a-number, which are also important in the classification of
curves. This classification is of interest not only in theory, but also for appli-
cations to cryptography using algebraic curves, see e.g., Castryck et al. (2019),
where superspecial genus-2 curves are used.

In case of specific (non-singular) curves, there are many previous works for
computing F ∗ on H1(X,OX), e.g., Manin (1961), Yui (1978), Bostan et al.
(2003), Komoto et al. (2010) and Harvey and Sutherland (2014) for hyperelliptic
curves, González (1997) for Fermat curves, Stöhr and Voloch (1987) for plane
projective curves given by an affine equation, Kudo and Harashita (2017a) and
Celik et al. (2018) for non-hyperelliptic curves of low genera (see also Tuitman
(2014) for computing the Zeta function of a curve over a finite field). For a simple
example, when X is an elliptic curve E defined by a cubic form f in K[x, y, z],
the Frobenius F ∗ : H1(E,OE) −→ H1(E,OE) is determined from the (xyz)p−1-
coefficient in fp−1, see Hartshorne (1977), Chapter IV for more details. For
another example, we consider when X is a hyperelliptic curve of genus g defined
by an affine equation y2 = f(x) with f(x) ∈ K[x] of degree 2g + 1. Instead of
F ∗, one can compute the matrix representing an operator on H0(X,Ω1

X) dual to
F ∗, where Ω1

X denotes the sheaf of differential 1-forms on X. The operator on
H0(X,Ω1

X) is called the Cartier operator. It is shown in Manin (1961) and the
proof of Yui (1978), Proposition 2.1 that the Cartier operator is determined from

the coefficients cip−j with 1 ≤ i, j ≤ g in f (p−1)/2 =
∑2g+1
k=0 ckx

k, where p is odd
(see also Theorem 1.1 of Stöhr and Voloch (1987) for a more general statement
over plane curves). In the proof of this fact, the image of a basis of H0(X,Ω1

X)
by the Cartier operator is converted into a K-linear combination of the same
basis, by using the relation y2 = f(x). Based on this fact, several algorithms
specific to the Cartier operator over a hyperelliptic curve have been proposed,
e.g., Bostan et al. (2003), Komoto et al. (2010) and Harvey and Sutherland
(2014).

While several algorithms have been proposed for specific cases as above, the
aim of this paper is to present a general-purpose algorithm, which works for
arbitrary projective schemes X (of dimension ≥ 1). For constructing such an
algorithm, it suffices to implement the following:

Step 1. Compute an explicit basis of the cohomology group Hq(X,OX).

Step 2. Make a representation matrix of F ∗ with respect to the computed basis.

For Step 1, we can apply an algorithm proposed in Kudo (2017). In general,
there are two main strategies to compute cohomology groups; the polynomial
ring-based method, and the exterior algebra-based method. The first (resp.
second) method is realized in Eisenbud (1998), Smith (2000), Maruyama (2002),
Kudo (2017) (resp. in Decker and Eisenbud (2002), Eisenbud et al. (2003)). In
particular, the algorithm in Kudo (2017), Section 3 based on a method from
Maruyama (2002) computes an explicit basis of Hq(X,OX).

For Step 2, to devise a concrete procedure, there exist difficulties in rep-
resenting the image of each basis element by F ∗ as a K-linear combination
of the original basis, since the map F ∗ is not K-linear but p-linear. We here
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briefly describe these difficulties (we will explain details in Subsection 2.2); The
desired representation matrix can not be computed only by linear algebra tech-
niques such as solving a system of linear equations over K. In fact, no algebraic
equation on unknown entries is derived directly from the image of each basis
element by F ∗. Besides that, different from the Cartier operator over hyper-
elliptic curves, using defining equations for X is not necessarily appropriate to
convert the image under F ∗ of each basis element. This also means that we
have to find a non-trivial algebraic relation satisfied in Hq(X,OX) between the
image of each basis and the original basis. Here we list our solution below;

(i) We decompose F ∗ into two computable maps; the first one raises all co-
ordinates of elements in Hq(X,OX) to their p-th powers, and the second
one corresponds to multiplying a matrix of homogeneous polynomials.

(ii) We give a method to compute a matrix corresponding to the second map
in (i). In particular, we prove that such a matrix always exists; it can be
computed from a free resolution of S/I.

(iii) We obtain our desired representation by multiplying the matrix computed
in (ii) to each basis element, and also by using linear algebra techniques.
This corresponds to find non-trivial algebraic relations between elements
of the original basis and those of its image.

Our solution (i)-(iii) is also a generalization of conventional approaches to spe-
cific projective curves defined by a few homogeneous polynomials; Hartshorne
(1977), Chapter IV for elliptic curves defined by one polynomial, and Kudo
and Harashita (2017a) for genus-4 curves (resp. Celik et al. (2018) for genus-3
curves) defined by two polynomials. See also Baker (2000), Section 3 for further
examples over curves defined by (at most two) concrete polynomials.

Based on the above (i)-(iii), we present two algorithms (Algorithm (I) in
Section 3 and Algorithm (II) in Section 4 below) to compute a representation
matrix for F ∗. Our algorithms are also based on theories of computational
algebraic geometry, where Gröbner bases play a key role. The first algorithm
(Algorithm (I)) works for arbitrary projective schemes.

Main Result 1. With notation as above, we fix r the dimension of Pr. Given
1 ≤ q ≤ r− 1, the characteristic p and an projective scheme X ⊂ Pr = Proj(S)
with defining homogeneous polynomials f1, . . . , fm ∈ S = K[x0, . . . , xr], there
exists an algorithm (Algorithm (I) in Section 3) to compute the representation
matrix for F ∗ : Hq(X,OX) −→ Hq(X,OX). The algorithm (not counting the
computation of free resolutions and lifting homomorphisms) terminates in

Õ
(
D4 +D2 · P(p) +D3pr

)
. (1.1)

arithmetic operations over K, where D is the maximal value of the dimensions
of the cohomology groups over Pr appearing in the computation of Hq(X,OX).
For each e ∈ Z≥1, we denote by P(e) the number of arithmetic operations over
K for computing the e-th power.
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Remark 1.1. Note that Algorithm (I) in Section 3 requires to compute a (min-
imal) free resolution, which can be constructed by successively computing syzy-
gies with Gröbner basis algorithms. However, as in Kudo (2017), we do not
count the cost of computing a free resolution for S/I with I := ⟨f1, . . . , fm⟩S ,
and set D as a complexity parameter for the following reason: First, it is rea-
sonable that the complexity is measured by properties of the algebraic structure
which we target (in our case, X, I, S/I, OX , Hq(X,OX) and so on). Second,
no precise complexity bound of computing a free resolution (in general case) is
known (see Subsection 2.4 for a review on this issue). This comes (partly) from
the difficulty on estimating the complexity of Gröbner basis computation for
syzygy modules. Furthermore, a minimal free resolution for S/I derives many
invariants such as projective dimension, (graded) Betti numbers, regularity, and
the invariant D (see Subsection 3.4 for its definition). Thus, once the minimal
free resolution is computed, D is appropriate for a complexity parameter of the
remaining computation.

By a similar reason to the case of free resolutions, any explicit complexity
bound of computing lifting homomorphisms has not been determined yet, see
Sub-algorithm LIFT(φ,φ′) of Subsection 3.2 and Remark 3.1 for details.

The second one (Algorithm (II)) is a simplified version of the first one, and
is specific to complete intersections. An advantage of Algorithm (II) is that the
cost (1.1) is negligible since all the entries of the matrix representing F ∗ are
obtained in the computation of free resolutions and lifting homomorphisms.

Main Result 2. With notation as above, we fix r the dimension of Pr. Let
S = K[x0, . . . , xr], and X = V (f1, . . . , fm) a complete intersection embedded
in Pr with an S-regular sequence (f1, . . . , fm) ∈ Sm. Assume dj1...jm−1 :=∑m−1
k=1 deg(fjk) ≤ r for all 1 ≤ j1 < · · · < jm−1 ≤ m and gcd(fi, fj) = 1

in S for i ̸= j. Given the characteristic p and (f1, . . . , fm), there exists an
algorithm (Algorithm (II) in Section 4) to compute the representation matrix
for F ∗ : Hq(X,OX) −→ Hq(X,OX) with q = dim(X) = r−m. The complexity
of the algorithm is bounded by the cost of computing (f1 · · · fm)p−1.

The rest of this paper is organized as follows: Section 2 introduces the notion
of the cohomology groups of projective schemes, and the Frobenius map on the
cohomology groups, and proves some properties of graded modules and their
homomorphisms. We also briefly review known algorithms to compute free res-
olutions, and describe some properties of the Frobenius functor for the category
of modules. In Section 3, we present an explicit algorithm to compute repre-
sentation matrices for the action of Frobenius over general projective schemes,
and estimate its complexity. In Section 4, we give an efficient algorithm specific
to complete intersections as a simplified version of the first algorithm proposed
in Section 3. Section 5 shows computational examples and experimental results
obtained from our implementation over Magma (Bosma et al. (1997), Cannon
et al. (2016)). In Section 6, we give some concluding remarks.
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2. Preliminaries

This section lists some mathematical facts which will be used in the rest
of this paper. The first and second subsections introduce the notion of the
cohomology groups of projective schemes, and the Frobenius action to the co-
homology groups, respectively. The third subsection shows some properties of
graded homomorphisms, which are necessary to construct our main algorithm
in Section 3. In the fourth subsection, we also recall the definition of free reso-
lutions, and briefly discuss known algorithms to compute free resolutions, and
their complexities. The fifth subsection reviews the Frobenius functor for the
category of modules.

Throughout this section, let K be a field. For a positive integer n and
variables x = (x1, . . . , xn), we denote by K[x] = K[x1, . . . , xn] the polynomial
ring of n variables over K.

2.1. Cohomology groups

Let X ⊂ Pr = Proj(S) be a projective scheme over K, where S = K[x] =
K[x0, . . . , xr]. In general, the cohomology groups of a sheaf on X are defined by
its flabby resolution, but in a view of computational points, the notion of Čech
cohomology gives a useful tool for computing the cohomology groupsHq(X,OX).
Here we review the Čech cohomology. Let F be a (coherent) sheaf on X, and let
U = {Ui}i∈I with I ⊂ Z be an open covering for X. To simplify the notation,
we set Ui0,...,iq := Ui0 ∩Ui1 ∩· · ·∩Uiq for each (i0, . . . , iq) ∈ Iq+1. For an integer

q ≥ 0, the Čech q-cochain is defined by

Cq(U ,F) :=
∏

(i0,...,iq)∈Iq+1 with i0<···<iq

F(Ui1,...,iq ).

We define the q-th differential map d(q) by

d(q) : Cq(U ,F) −→ Cq+1(U ,F) ; (fi0,...,iq )i0,...,iq 7→ ((d(q)f)i0,...,iq+1)i0,...,iq+1

with

(d(q)f)i0,...,iq+1 :=

q+1∑
j=0

(−1)jfi0,...,îj ,...,iq+1
,

where the hat means to omit ij . One can verify that d(q+1) ◦ d(q) = 0, and thus
the sequence

0 // C0(U ,F) d(0) // C1(U ,F) d(1) // C2(U ,F) d(2) // C3(U ,F) d(3) // · · ·

is a complex. Here, the q-th Čech cohomology group is defined as follows:

Hq(U ,F) := Ker
(
d(q)

)
/Im

(
d(q−1)

)
.
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Note that the group Hq(U ,F) depends on one’s choice of the covering U in
general. However, for any separable scheme X with an affine open covering U ,
the group does not depend on such a choice. In other words, we have

Hq(X,F) ∼= Hq(U ,F)

for any affine open covering U for X.
For the r-projective spaceX = Pr = Proj(S) with S = K[x] = K[x0, . . . , xr]

and a line bundle F = OX(m) with m ∈ Z, taking U to be the Zariski open
covering, we can compute a basis of Hq(Pr,OPr (m)). In the following, we
collect some basic facts on the cohomology groups Hq(Pr,OPr (m)). We grade
S by taking Sd to be the set of homogeneous polynomials of degree d. For an
integer m ∈ Z, let S(m) denote the m-twist of S defined by S(m)t = Sm+t. Let
S(m)x0···xr denote the localization of S(m) by the powers of x0 · · ·xr. We write
x = x0 · · ·xr and denote simply by xα the monomial xα0

0 · · ·xαr
r of total degree

|α| :=
∑r
i=0 αi for α = (α0, . . . , αr) ∈ Zr+1. For an integer d, we also denote by

(S(m)x0···xr
)d the homogeneous part of degree d of the localization S(m)x0···xr .

In particular, the homogeneous part (S(m)x0···xr
)0 of degree zero is the vector

space over K spanned by the set{
axα : a ∈ K, and α ∈ Zr+1 with |α| = m

}
.

We define Lm to be the subspace⟨
xα : α ∈ Zr+1 with αi ≥ 0 for some 0 ≤ i ≤ r and |α| = m

⟩
K

of the vector space (S(m)x0···xr
)0.

Theorem 2.1 (Hartshorne (1977), Theorem 5.1). With notation as above, we
have the following:

(1) We have the following isomorphisms of vector spaces over K:

H0 (Pr,OPr (m)) ∼=

{
Sm if m ≥ 0,

0 if m < 0.

In particular, for each m ≥ 0, the set{
xα : α ∈ (Z≥0)

r+1 with |α| = m
}

is a basis of the K-vector space H0 (Pr,OPr (m)).

(2) For 0 < q < r and arbitrary m, we have Hq (Pr,OPr (m)) = 0.

(3) One has the isomorphism

Hr (Pr,OPr (m)) ∼= (S(m)x0···xr
)0 / Lm (2.1)

of vector spaces over K. Thus for each m < 0, the set{
xα : α ∈ (Z<0)

r+1 with |α| = m
}

gives rise to a basis of Hr (Pr,OPr (m)) via the above isomorphism (2.1).
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Corollary 2.2 (Hartshorne (1977), Theorem 5.1). One has the following:

dimKH
0 (Pr,OPr (m)) =

{ (
m+r
r

)
if m ≥ 0,

0 if m < 0.

dimKH
r (Pr,OPr (m)) =

{ (−m−1
r

)
if m ≤ −r − 1,

0 if m > −r − 1.

For q /∈ {0, r} and m ∈ Z, one has dimK H
q (Pr,OPr (m)) = 0.

2.2. Frobenius action on cohomology groups

For a schemeX over a perfect fieldK of positive characteristic p, the absolute
Frobenius on X is a morphism F : X → X with the identity map on X and
a 7→ ap on sections. The absolute Frobenius F induces the action on the q-th
cohomology group Hq(X,OX). We write F ∗ for the induced action, say

F ∗ : Hq(X,OX) −→ Hq(X,OX).

The induced map F ∗ is a p-linear map, i.e., we have F ∗(af) = apF ∗(f) for all
a ∈ K and all f ∈ Hq(X,OX). As we mentioned in Section 1, a representation
matrix for F ∗ can define a number of invariants, which are important in the
classification of X.

Our goal is to compute a matrix representing F ∗ algorithmically. For this,
recall from Section 1 that the first step (Step 1) is to compute a basis B =
{b1, . . . ,bg} of Hq(X,OX) explicitly, with the algorithm proposed in Kudo
(2017), Section 3 from a method by Maruyama (2002). Each basis element bi
computed by the algorithm is the equivalence class of a vector of the form

t∑
j=1

 ∑
α∈(Z<0)r+1, |α|=−dj

bi,j,αx
α

 ej (2.2)

for some bi,j,α ∈ K, where x = x0 · · ·xr is a multiple of variables x0, . . . , xr. We
also denote by ej the vector with 1 in the j-th coordinate and 0’s elsewhere.

The second step (Step 2 in Section 1) is to make the matrix representing
F ∗ with respect to B. Since the absolute Frobenius F sends a section f to fp,
the Frobenius F ∗ acts on Hq(X,OX) by raising all coordinates of (2.2) to their
p-th powers. From this, constructing the desired matrix representing F ∗ with
respect to B means to compute elements yi,k ∈ K such that

t∑
j=1

 ∑
|α|=−dj

bpi,j,αx
pα

 ej =

g∑
k=1

yi,k

t∑
j=1

 ∑
|α|=−dj

bk,j,αx
α

 ej (2.3)

holds in Hq(X,OX) for each 1 ≤ i ≤ g, where α runs through elements in
(Z<0)

r+1. However, finding such yi,k is non-trivial for the following reasons:
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• While the representation matrix for a linear map is computed by solving a
system of linear equations, no algebraic equation on yi,k is obtained from
(2.3), admitting that one compares the j-th coordinates for each 1 ≤ j ≤ t.
Indeed, the degree of all monomials in the j-th coordinate of the left hand
side is −pdj , while that of the right hand side is −dj .

• Another considerable approach is using defining equations fi = 0 with
1 ≤ i ≤ m for X to convert the left hand side into the right hand side of
(2.3). However, a monomial dividing some xpα does not necessarily appear
in fi’s in general. Even if such a monomial xβ in fi exists, replacing x

pα

by (−(fi−xβ))xpα−β does not change the degree of monomials since fi is
homogeneous of degree |β|.

Thus, we need an alternative approach to the above two for finding the
algebraic relation (2.3).

On the other hand, there exist some methods to find (2.3) if X is a specific
projective curve defined by a few homogeneous polynomials. Here we introduce
a method in Hartshorne (1977), Chapter IV for elliptic curves defined by one
polynomial (see also Kudo and Harashita (2017a) for genus-4 curves (resp. Celik
et al. (2018) for genus-3 curves) defined by two polynomials).

Example 2.3. Let E be an elliptic curve defined by a cubic form f in K[x, y, z].
In this case, the decomposition E −→ Ep −→ E with Ep := V (fp−1) induces
the following commutative diagram:

H1(E,OE)
∼= //

��

H2(P2,OP2(−3))

F∗
1

��
H1(Ep,OEp)

∼= //

��

H2(P2,OP2(−3p))

×fp−1

��
H1(E,OE)

∼= // H2(P2,OP2(−3))

where F1 denotes the absolute Frobenius on P2. It follows from Theorem 2.1
that the cohomology group H1(E,OE) ∼= H2(P2,OP2(−3)) has one basis ele-
ment (xyz)−1, and thus its image by F ∗ is fp−1 ·(xyz)−p. Since fp−1 ·(xyz)−p is
a K-linear combination of monomials of degree −3, we obtain a relation corre-
sponding to (2.3) by regarding monomials other than (xyz)−1 in fp−1 · (xyz)−p
as zeros in H2(P2,OP2(−3)).

In Section 3, to device a concrete procedure for a general projective scheme
X, we will generalize the method of Example 2.3, and also those proposed in
Kudo and Harashita (2017a) and Celik et al. (2018). In particular, we construct
two maps corresponding to F ∗

1 and H1(Ep,OEp) −→ H1(E,OE) multiplying
fp−1, and prove that computing the image of each basis element by the com-
posite map always gives the relation (2.3).
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2.3. Properties of graded homomorphisms

We show some properties of graded homomorphisms. These properties are
necessary to construct our main algorithm in Section 3. Let Sd denote the d-
th homogeneous part of S = K[x0, . . . , xr]. For f ∈ S, we denote by f(d) its
homogeneous part of degree d.

Lemma 2.4. Let h ∈ S, and g a homogeneous polynomial of degree d1. Then
we have (gh)(d) = g(h(d−d1)).

Proof. Put d2 := deg(h). Writing h =
∑d2
j=0 h(j), we have gh = g

∑d2
j=0 h(j) =∑d2

j=0 gh(j). Since each gh(j) is homogeneous of degree d1+ j and since all gh(j)
have distinct degrees, the right hand side gives the decomposition of gh into its
homogeneous parts, say (gh)(d) = g(h(d−d1)).

Lemma 2.5. Let M =
⊕tM

i=1 S(mi), N =
⊕tN

k=1 S(nk) and P =
⊕tP

j=1 S(pj) be
graded free S-modules. Let ψ :M → P be a (not necessarily graded) homomor-
phism of S-modules. Let φ :M → N and τ : P → N be graded homomorphisms
of degree zero. Assume that the following diagram commutes:

M

ψ

��

φ

  B
BB

BB
BB

B

P
τ // N

Then there exists a graded homomorphism ψ′ :M → P of degree zero such that
τ ◦ ψ′ = φ. In fact, if (hi,j)i,j is the matrix representing ψ via standard bases,
such a ψ′ is given by

ψ′(ei) =

tP∑
j=1

(hi,j)(pj−mi)ej , (2.4)

where each (hi,j)(pj−mi) denotes the homogeneous part of hi,j of degree pj−mi.

Proof. Let (fi,k)i,k, (gj,k)j,k and (hi,j)i,j be the matrices representing φ, τ and
ψ respectively via standard bases. By our assumption, each fi,k is homogeneous
of degree nk −mi, and each gj,k is homogeneous of degree nk − pj . We define
a graded homomorphism ψ′ : M → P by (2.4). In the following, we show
τ(ψ′(ei)) = φ(ei). Note that

τ(ψ′(ei)) =

tN∑
k=1

 tP∑
j=1

gj,k(hi,j)(pj−mi)

 ek, and φ(ei) =

tN∑
k=1

fi,kek.

Thus it suffices to show fi,k =
∑tP
j=1 gj,k(hi,j)(pj−mi) for each (i, k). First we
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have

τ(ψ(ei)) = τ

 tP∑
j=1

hi,jej

 =

tP∑
j=1

hi,jτ(ej) =

tP∑
j=1

hi,j

(
tN∑
k=1

gj,kek

)

=

tP∑
j=1

(
tN∑
k=1

hi,jgj,kek

)
=

tN∑
k=1

 tP∑
j=1

hi,jgj,k

 ek.

On the other hand, it follows from τ(ψ(ei)) = φ(ei) that we have fi,k =∑tP
j=1 hi,jgj,k for each (i, k). Since fi,k is homogeneous of degree nk −mi, one

has

fi,k =

 tP∑
j=1

hi,jgj,k


(nk−mi)

=

tP∑
j=1

(hi,jgj,k)(nk−mi)
.

Moreover, since the polynomial gj,k is homogeneous of degree nk−pj , it follows
from Lemma 2.4 that

tP∑
j=1

(hi,jgj,k)(nk−mi)
=

tP∑
j=1

gj,k(hi,j)(nk−mi−dj,k) =

tP∑
j=1

gj,k(hi,j)(pj−mi),

where dj,k := deg(gj,k) = nk − pj . Hence we have fi,k =
∑tP
j=1 gj,k(hi,j)(pj−mi)

for each (i, k), as desired.

2.4. Free resolutions of finitely generated graded modules

As we will describe in Subsection 3.2, our main algorithm first computes a
(graded) free resolution (in fact minimal one) for the homogeneous coordinate
ring of a projective scheme. For the reader’s convenience, we here recall the
definition of free resolutions, and briefly discuss known algorithms to compute
free resolutions (over a polynomial ring), and their complexities. See also Cox et
al. (1998), Section 4.8 of Kreuzer and Robbiano (2005), or Section 2.5 of Greuel
and Pfister (2007) for the computation of free resolutions.

Let R be a commutative ring with unity. For a finitely generated graded
R-module M , a (graded) free resolution F• for M is an exact complex

· · · −−−−−→ Fs
φs−−−−−→ · · · φ2−−−−−→ F1

φ1−−−−−→ F0
φ0−−−−−→ M −−−−−→ 0, (2.5)

where Fi is a graded free R-module, and where φi is a graded homomorphism
of degree zero for each i ≥ 0. The greatest integer n with Fn ̸= 0 is called the
length of F• if it exists. We also call F• minimal if each φi sends the standard
basis of Fi to a minimal set of generators for Im(φi). If R is the polynomial
ring of n variables over a field, it is well-known that every finitely generated
graded R-module has a minimal free resolution of length ≤ n, and that minimal
free resolutions are uniquely determined up to a graded isomorphism of free
resolutions. In this case, minimal resolutions define many invariants of M , e.g.,
the length of a minimal resolution for M is the projective dimension of M .
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So far, several algorithms to compute free resolutions have been proposed,
e.g., Schreyer (1980), Schreyer (1991), Capani et al. (1997), La Scala and Still-
man (1998), Erocal et al. (2016), La Scala (2017), where many experimental
data showing practical behavior have been also reported. However, as we men-
tioned in Section 1, it is still an open problem to determine the complexity
of computing free resolutions. Schreyer’s algorithm(s) and La Scala-Stillman’s
one have been considered to be the most efficient algorithms in general case,
and they have been already widely implemented in computer algebra systems
such as Macaulay2, Magma, Singular and CoCoA. These algorithms construct
free resolutions called Schreyer resolutions by successively computing syzygy
modules with Gröbner bases over free modules. The complexities of these algo-
rithms would be measured by invariants such as projective dimension, (graded)
Betti numbers and so on, but they have not been estimated yet since Schreyer
resolutions are not minimal in general.

2.5. Frobenius functor for the category of modules

This subsection collects properties of the Frobenius functor for the category
of modules, see e.g., Miler (2003) for more details. Let R be a ring of positive
characteristic p, M an R-module, and f the Frobenius endomorphism on R.
We denote by fM the left R-module structure defined on M by restriction of
scalars via f , that is, for r ∈ R and m ∈M , we define r ·m := rpm.

The Frobenius functor is defined as a functor from the category of R-modules
to itself, and it is defined by FR(M) := M ⊗R fR. In the following lemma, we
enumerate some fundamental properties of the Frobenius functor FR(·):

Lemma 2.6. Let R be a ring of positive characteristic p, f the Frobenius endo-
morphism on R, and FR(·) the Frobenius functor from the category of R-modules
to itself. Then we have the following:

(1) The functor FR(·) is right exact.

(2) There exist isomorphisms FR(R) = R ⊗R fR ∼= fR ∼= R as R-modules via
a⊗b 7→ a·b = apb. For free modules, one has FR(R

t) = (
⊕t

i=1R)⊗RfR ∼=
(fR)t ∼= Rt via (a1, . . . , at)⊗ b 7→ (a1 · b, . . . , at · b) = (ap1b, . . . , a

p
t b).

(3) For any ideal J ⊂ R, we have FR(R/J) = (R/J) ⊗R fR ∼= R/Jp, where
Jp denotes the ideal generated by the p-th powers of elements in J .

(4) Let φ : Rt → Rs be a homomorphism of R-modules, and (ri,j)i,j a t × s
matrix which represents φ via standard bases. Then FR(φ) : R

t → Rs is
given by (rpi,j)i,j.

Proof. (1) Since tensor product is right exact, the claim holds. (2) Straightfor-
ward. (3) The claim follows from FR(R/J) = (R/J)⊗R fR ∼= R/(J · fR), where
in this case J · fR := ⟨apx : a ∈ J, x ∈ fR⟩R = Jp. (4) Let ei be an element
of the standard basis of Rt. By (2), we identify ei with ei ⊗ 1, and it follows
that FR(φ)(ei) = (φ⊗ idfR)(ei ⊗ 1) = (

∑s
j=1 ri,jej)⊗ 1 =

∑s
j=1(ri,jej ⊗ 1) =∑s

j=1(ri,j · 1)ej =
∑s
j=1 r

p
i,jej .
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Theorem 2.7 (Kunz’s Theorem, Kunz (1969), Theorems 2.1 and 3.3). Let R
be a local ring of characteristic p. Then R is a regular ring if and only if fn is
flat for all n > 0, where f denotes the Frobenius endomorphism on R.

Since regularity and flatness can be each checked locally, we have the follow-
ing corollary:

Corollary 2.8. Let R be a ring of positive characteristic p. Then R is a regular
ring if and only if fn is flat for all n > 0, where f denotes the Frobenius
endomorphism on R.

Lemma 2.9. Let L be a field of characteristic p > 0, and R := L[y1, . . . , yn]
the polynomial ring with n variables over L. Let f1, . . . , fm ∈ R be homogeneous

polynomials with d
(1)
j := deg(fj) for 1 ≤ j ≤ m, and J ⊂ R the ideal generated

by f1, . . . , fm. Suppose that R/J has the following graded free resolution:

0 −−−−−→ Fn
φn−−−−−→ · · · φ2−−−−−→ F1

φ1−−−−−→ R
φ0−−−−−→ R/J −−−−−→ 0, (2.6)

where each Fi is a graded free R-module given by Fi =
⊕ti

j=1R(−d
(i)
j ) for some

integers ti and d
(i)
j , and where each φi is a graded homomorphism of degree zero.

Let Jp := ⟨fp1 , . . . , fpm⟩R be the ideal in R generated by fp1 , . . . , f
p
m. Then R/Jp

has a graded free resolution of the form

0 −−−−→ F
(p)
n

φ(p)
n−−−−→ · · ·

φ
(p)
2−−−−→ F

(p)
1

φ
(p)
1−−−−→ R

φ
(p)
0−−−−→ R/Jp −−−−→ 0, (2.7)

where each F
(p)
i is a graded free R-module given by F

(p)
i =

⊕ti
j=1R(−d

(i)
j p), and

φ
(p)
i is given by the matrix with entries equal to the p-th powers of the entries

of the matrix for φi for each 0 ≤ i ≤ n.

Proof. By Lemma 2.6 and Corollary 2.8 together with the fact that R is a
regular ring of dimension n, the sequence

0 −−−−→ F
(p)
n

φ(p)
n−−−−→ · · ·

φ
(p)
2−−−−→ F

(p)
1

φ
(p)
1−−−−→ R

φ
(p)
0−−−−→ R/Jp −−−−→ 0 (2.8)

is exact. It is straightforward that the sequence (2.8) gives a graded free reso-
lution for R/Jp.

3. Algorithm

As in the previous section, let S = K[x] = K[x0, . . . , xr] denote the poly-
nomial ring of r + 1 variables over a perfect field K of characteristic p > 0.
Let I = ⟨f1, . . . , fm⟩S denote the ideal in S generated by homogeneous poly-
nomials f1, . . . , fm ∈ S. Let X = V (I) ⊂ Pr be the projective scheme defined
by I, and let OX denote its structure sheaf. Given f1, . . . , fm and an integer
1 ≤ q ≤ r − 1, we present an explicit algorithm to compute a representation
matrix for the Frobenius F ∗ on the q-th cohomology group Hq(X,OX).

Here, we recall our procedures in Section 1 to compute F ∗.

12



Step 1. Compute an explicit basis of the cohomology group Hq(X,OX).

Step 2. Make a representation matrix of F ∗ with respect to the computed basis.

After fixing the notation in Subsection 3.1 below, we shall construct the algo-
rithm in Subsection 3.2. The correctness with our solution (i)-(iii) in Section 1
and the complexity of the algorithm will be discussed respectively in Subsections
3.3 and 3.4.

3.1. Notation

Until the end of this section, we will keep the notation below for simplicity.
Let F• denote the minimal free resolution for S/I given by

0 −−−−−→ Fr+1
φr+1−−−−−→ · · · φ2−−−−−→ F1

φ1−−−−−→ S
φ0−−−−−→ S/I −−−−−→ 0, (3.1)

where each Fi is of the form Fi =
⊕ti

j=1 S(−d
(i)
j ) for some integers ti and d

(i)
j ,

and where each φi is a graded homomorphism of degree zero with a represen-

tation matrix
(
g
(i)
k,ℓ

)
k,ℓ

. Note that each entry g
(i)
k,ℓ is a homogeneous polynomial

in S of degree d
(i)
k − d

(i)
ℓ . Computing F• means to compute all the elements

ti, d
(i)
j , and

(
g
(i)
k,ℓ

)
k,ℓ

for 1 ≤ i ≤ r + 1. (3.2)

The above resolution (3.1) induces an exact sequence of sheaves as follows:

0 −−−−→ Fr+1

φ∼
r+1−−−−→ · · · φ∼

2−−−−→ F1
φ∼

1−−−−→ OPr

φ∼
0−−−−→ OX −−−−→ 0,

where we set Fi := F∼
i =

⊕ti
j=1OPr (−d(i)j ) for 1 ≤ i ≤ r + 1, and where each

φ∼
i is the morphism induced from φi. We denote by Hr(Pr,F•) the complex of

cohomology groups given by Hr(φ∼
i ) : H

r(Pr,Fi) −→ Hr(Pr,Fi−1). We set

g := dimKHr−q(Hr(Pr,F•)), g0 := dimKH
r(Pr,Fr−q),

g1 := dimKKer
(
Hr(φ∼

r−q)
)
, g2 := dimKIm

(
Hr(φ∼

r−q+1)
)
,

t := tr−q, and dj := d
(r−q)
j for 1 ≤ j ≤ t,

where Hr−q(Hr(Pr,F•)) := Ker
(
Hr(φ∼

r−q)
)
/Im

(
Hr(φ∼

r−q+1)
)
. It follows from

Theorem 2.1 that the K-vector space Hr(Pr,Fr−q) has the basis

V := {vk : 1 ≤ k ≤ g0} = {xαej : 1 ≤ j ≤ t, α ∈ (Z<0)
r+1, |α| = −dj},

where we may assume the following: For each k, there exists 1 ≤ j(k) ≤ t such
that vk = xα(k)ej(k) for some α(k) ∈ (Z<0)

r+1 with |α(k)| = −dj(k).

3.2. Main algorithm

In the following, we give our main algorithm. We first fix r, which is the
dimension of Pr = Proj(S) with S = K[x] = K[x0, . . . , xr]. The inputs are a
tuple of homogeneous polynomials (f1, . . . , fm) ∈ Sm with I = ⟨f1, . . . , fm⟩S
and X = V (I) ⊂ Pr, the characteristic p, and an integer 1 ≤ q ≤ r − 1.
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Algorithm (I). Given (f1, . . . , fm), p and q as above, this algorithm computes
a representation matrix for the Frobenius F ∗ : Hq(X,OX) −→ Hq(X,OX) with
respect to a suitable basis. This algorithm conducts the following two main
procedures Steps 1 and 2, where Step 1 (resp. Step 2) consists of two (resp.
four) sub-procedures (1-1)–(1-2) (resp. (2-1)–(2-4)):

Step 1. Compute a free resolution for S/I and an explicit basis of Hq(X,OX).
More precisely this step is divided into the following two steps:

(1-1) Set F• ← (the minimal free resolution for S/I), where a free res-
olution is given by the elements (3.2) in Subsection 3.1.

(1-2) Applying the algorithm given in Kudo (2017), Section 3, we obtain
the following four bases:

• V := {vk : 1 ≤ k ≤ g0} for Hr(Pr,Fr−q),
• A := {ai :=

∑g0
k=1 ai,kvk : 1 ≤ i ≤ g2} for Im

(
Hr(φ∼

r−q+1)
)
,

• B := {bi :=
∑g0
k=1 bi,kvk : 1 ≤ i ≤ g} for the right hand side

of Hq(X,OX) ∼= Ker
(
Hr(φ∼

r−q)
)
/Im

(
Hr(φ∼

r−q+1)
)
,

• A ∪ B for Ker
(
Hr(φ∼

r−q)
)
,

where A := (ai,k)i,k (resp. B = (bi,k)i,k) is a g2 × g0 (resp. g × g0)
matrix over K.

Step 2. For F• and (V,A,B) obtained in Step A, this step computes the rep-
resentation matrix for F ∗ : Hq(X,OX) −→ Hq(X,OX) with respect to
the basis B. This step is divided into the following four steps:

(2-1) Set F
(p)
• ← (the minimal free resolution for S/Ip), which is com-

puted by taking the p-th powers of the entries of each represen-
tation matrix for F•, see Lemma 2.9.

(2-2) Set ψ• ← ComputeAll LIFT(F•,F
(p)
• ).

(2-3) Set B(p) := {b(p)
i : 1 ≤ i ≤ g} ← Make image by Frobenius(B).

(2-4) Set Y ← REP(B(p), ψr−q,V,A,B), and return Y as the final output
of Algorithm (I).

Sub-algorithm ComputeAll LIFT(F•,F
(p)
• ). This sub-algorithm computes a

morphism of complexes ψ• : F
(p)
• −→ F•, which is given by a sequence of graded

homomorphisms ψi of degree zero such that the following diagram commutes:

0 // F(p)
r+1

ψr+1

��

φ
(p)
r+1 // · · ·

φ
(p)
2 // F(p)

1

ψ1

��

φ
(p)
1 // S

φ
(p)
0 //

ψ0

��

S/Ip //

ψ

��

0

0 // Fr+1

φr+1 // · · ·
φ2 // F1

φ1 // S
φ0 // S/I // 0

where ψ0 is the identity map on S, and ψ is given by h+ Ip 7→ h+ I for h ∈ S.
More specifically, compute all representation matrices for ψi with 1 ≤ i ≤ r+ 1
by repeating the three procedures below until i = r + 1: Set i← 1.
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1. Set φ← φi, φ
′ ← ψi−1 ◦ φ(p)

i and t′ ← ti

2. Execute LIFT(φ,φ′) below to obtain a matrix Ci representing a graded
homomorphism ψi of degree zero such that φ′ = φ ◦ ψi.

3. Set i← i+ 1.

Sub-algorithm LIFT(φ,φ′). Compute φ(ej) and φ′(ej) for each 1 ≤ j ≤ t′.
By a module membership algorithm (see Section 2.8.1 in Greuel and Pfister
(2007) and Section 4.1 of Decker and Lossen (2000)), compute hj,k ∈ S such that

φ′(ej) =
∑t
k=1 hj,kφ(ek), where we note that this computation of hj,k’s requires

to compute a Gröbner basis of the syzygy module for φ′(ej) and −φ(ek) with
1 ≤ k ≤ t′. We may assume that each hj,k is homogeneous; if not homogeneous,
by Lemma 2.5 we replace it by its homogeneous part of some degree so that
the map ψ below is a graded homomorphism of degree zero. Define ψi by
ψi(ej) :=

∑t
k=1 hj,kek, and output its representation matrix (hj,k)j,k. Note

that ψi is a graded homomorphism of degree zero, see Lemma 2.5.

Sub-algorithm Make image by Frobenius(B). For the basis B computed in
Step (1-2), compute the image of each element of B by F ∗

1 , where F1 denotes
the absolute Frobenius on Pr. Note that the map F ∗

1 acts just like raising
the coordinates of each bi to their p-th powers. Thus each image is simply

computed as b
(p)
i =

∑g0
k=1 b

p
i,kv

(p)
k with v

(p)
k := xp·α(k)ej(k), but for the next

step (Step 2-4) we also compute each coordinate of b
(p)
i as follows: Repeat the

three procedures below until i = g: Set i← 1.

1. Set
gi,j ←

∑
1≤k≤g0, j(k)=j

bi,kx
α(k)

for each 1 ≤ j ≤ t, where we have bi =
∑t
j=1 gi,jej .

2. Compute gpi,j for all 1 ≤ j ≤ t, and set b
(p)
i ←

∑t
j=1 g

p
i,jej .

3. Set i← i+ 1.

Sub-algorithm REP(B(p), ψr−q,V,A,B). Let (hj,k)j,k be the representation
matrix for the graded homomorphism ψr−q. For each 1 ≤ i ≤ g, compute
the right hand side of

b
(p)
i · Cr−q =

t∑
k=1

 t∑
j=1

gpi,jhj,k

 ek, (3.3)

and write it as

t∑
k=1

 t∑
j=1

gpi,jhj,k

 ek =

g0∑
k=1

b′i,kvk (3.4)
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for some b′i,k ∈ K. Thanks to Lemma 3.5 below, such b′i,k’s are definitely found.
Solve the linear system b′1,1 · · · b′1,g0

...
...

b′g,1 · · · b′g,g0

 =

 x1,1 · · · x1,g2 y1,1 · · · y1,g
...

...
...

...
xg,1 · · · xg,g2 yg,1 · · · yg,g

( A
B

)
(3.5)

over K, and output the representation matrix Y = (yi,j)i,j

Remark 3.1. As we stated in Remark 1.1, the complexity of computing lifting
homomorphisms has not been estimated yet due to the difficulty of estimating
the cost of computing a Gröbner basis of a syzygy module. The complexity
might be measured by invariants such as (graded) Betti numbers appearing in
minimal free resolutions together with our lemma (Lemma 2.5) on the degrees
of entries of matrices representing lifting homomorphisms. (Also in Bayer and
Stillman (1988), a bound on the degrees of the entries of elements in the syzygy
module for a homogeneous ideal is given, and it could be extended to the case
of graded submodules.)

3.3. Correctness of the main algorithm

This subsection shows the correctness of Algorithm (I) in the previous sub-
section, based on mathematical foundations given in Section 2. In particu-
lar, we realize (i)-(iii) described in Section 1. We set Ip := ⟨fp1 , . . . , fpm⟩S and
Xp := V (Ip).

First, we give a key lemma, by which F ∗ : Hq(X,OX) −→ Hq(X,OX) can
be decomposed into two computable maps; a p-linear map followed by a K-linear
map between cohomology groups over Pr.

Lemma 3.2. With notation as above, there exist a resolution F (p)
• for OXp and

the following commutative diagram:

Hq(X,OX)
∼= //

��

Hr−q(Hr(Pr,F•))

F∗
1

��
Hq(Xp,OXp)

∼= //

��

Hr−q(Hr(Pr,F (p)
• ))

��
Hq(X,OX)

∼= // Hr−q(Hr(Pr,F•))

where F1 denotes the absolute Frobenius map on Pr. In particular, the map

Hr−q(Hr(Pr,F (p)
• )) −→ Hr−q(Hr(Pr,F•)) in the above diagram is a K-linear

map canonically induced by the homomorphism Hr(ψ∼
• ) : Hr(Pr,F (p)

• ) −→
Hr(Pr,F•) of complexes.
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Proof. We decompose the absolute Frobenius F : X −→ X into the com-
position of the following two morphisms X −→ Xp with ψ∼ : OXp −→ OX
followed by Xp −→ X with σ∼ : OX −→ OXp

, where σ : S/I −→ S/Ip is
defined by h + I 7→ hp + Ip. In particular, the p-th power map on the coor-

dinate ring S/I defined by F is decomposed into ψ ◦ σ. Let ψ• : F
(p)
• −→ F•

be a homomorphism of complexes computed by executing the sub-algorithm

ComputeAll LIFT(F•,F
(p)
• ). We have the following commutative diagram:

0 // Fr+1

σr+1

��

φr+1 // · · ·
φ2 // F1

σ1

��

φ1 // S
φ0 //

σ0

��

S/I //

σ

��

0

0 // F(p)
r+1

ψr+1

��

φ
(p)
r+1 // · · ·

φ
(p)
2 // F(p)

1

ψ1

��

φ
(p)
1 // S

φ
(p)
0 //

ψ0

��

S/Ip //

ψ

��

0

0 // Fr+1

φr+1 // · · ·
φ2 // F1

φ1 // S
φ0 // S/I // 0

where each σi is an S-homomorphism raising the coordinates to their p-th pow-
ers. Namely, we have the composition of the following two homomorphisms of

complexes: σ• : F• −→ F
(p)
• and ψ• : F

(p)
• −→ F•, which also induce mor-

phisms of coherent sheaves σ∼
• : F• −→ F (p)

• and ψ∼
• : F (p)

• −→ F•, where

F (p)
i := (F

(p)
i )∼ =

⊕ti
j=1OPr

(
−pd(i)j

)
for 1 ≤ i ≤ r + 1. Hence we have

the following homomorphisms of complexes of cohomology groups: Hr(σ∼
• ) :

Hr(Pr,F•) −→ Hr(Pr,F (p)
• ) and Hr(ψ∼

• ) : H
r(Pr,F (p)

• ) −→ Hr(Pr,F•). Fi-
nally we obtain the desired commutative diagram in the statement, as well as
the proof of the isomorphism

Hq(X,OX) ∼= Hr−q(Hr(Pr,F•)) = Ker
(
Hr(φ∼

r−q)
)
/Im

(
Hr(φ∼

r−q+1)
)

given in Kudo (2017), Theorem 5.

Remark 3.3. Each element in Hr−q(Hr(Pr,F (p)
• )) is given as the equivalence

class of an element in Ker
(
Hr((φ

(p)
r−q)

∼)
)
, which is a subspace of Hr(Pr,F (p)

r−q)

with F (p)
r−q =

⊕t
j=1OPr (−pdj). It follows from Theorem 2.1 that an element

in Ker
(
Hr((φ

(p)
r−q)

∼)
)

is of the form
∑t
j=1 g

′
jej , where each g′j is a K-linear

combination of monomials of negative degree −djp.

The following corollary from Lemma 3.2 shows that the image of each ele-

ment in Hr−q(Hr(Pr,F (p)
• )) by Hr−q(Hr(Pr,F (p)

• )) −→ Hr−q(Hr(Pr,F•)) is
computed just by multiplying the representation matrix Cr−q for ψr−q.

Corollary 3.4. Let
∑t
j=1 g

′
jej be an element in Ker

(
Hr((φ

(p)
r−q)

∼)
)
given in

Remark 3.3. The map Hr−q(Hr(Pr,F (p)
• )) −→ Hr−q(Hr(Pr,F•)) in Lemma
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3.2 sends the class of
∑t
j=1 g

′
jej to that of the element

∑t
k=1

(∑t
j=1 g

′
jhj,k

)
ek

in Ker
(
Hr(φ∼

r−q)
)
, where (hj,k)j,k is a matrix over S representing ψr−q.

Lemma 3.5. With the same notation as in Corollary 3.4, computing g′jhj,k for
1 ≤ j, k ≤ t enables us to find b′k ∈ K with 1 ≤ k ≤ g0 such that

t∑
k=1

 t∑
j=1

g′jhj,k

 ek =

g0∑
k=1

b′kvk.

Proof. Let Ci denote the representation matrix for ψi for 1 ≤ i ≤ r + 1.
From our construction of ψi in the sub-algorithm ComputeAll LIFT, it follows

from Lemma 2.5 that each (j, k)-entry of Ci is homogeneous of degree (−d(i)k )−
(−d(i)j p) = d

(i)
j p − d(i)k . In particular, the (j, k)-entry hj,k of Cr−q is of degree

djp − dk. Since g′j is a K-linear combination of monomials of negative degree
−djp, the k-th coordinate g′jhj,k is that of monomials of negative degree −dk.

On the other hand, the set V = {v1, . . . , vg0} consists of elements of the form
xα(k)ek for all 1 ≤ k ≤ t and all α(k) ∈ (Z<0)

r+1 with |α(k)| = −dk. Therefore
we can find desired b′k ∈ K.

Proof of the correctness of Algorithm (I). We show that Algorithm (I)
outputs the representation matrix for the composite map of the right column of
the diagram in Lemma 3.2. In Step (1), the basis B of Hr−q(Hr(Pr,F•)) is con-
structed. From Steps (2-1) to (2-2), the representation matrix Cr−q = (hj,k)j,k
for ψr−q is computed. The set B(p) computed in Step (2-3) is a subset of

Hr−q(Hr(Pr,F (p)
• )), and by the definition of F ∗

1 it is the image of B by F ∗
1 ,

see Sub-algorithm Make image by Frobenius(B). It suffices to show that the
sub-algorithm REP(B(p), ψr−q,V,A,B) computes the desired matrix representing
F ∗. In REP(B(p), ψr−q,V,A,B), we compute b′i,k ∈ K such that (3.4) holds. By

Lemma 3.5, such b′i,k’s are found by computing gpi,jhj,k for 1 ≤ j, k ≤ t. Since the
image of each F ∗

1 (bi) by the map Hr−q(Hr(Pr,F (p)
• )) −→ Hr−q(Hr(Pr,F•)) is

included in Ker
(
Hr(φ∼

r−q)
)
, there exist the (g × g2) matrix X = (xi,j)i,j and

the (g × g) matrix Y = (yi,j)i,j over K such that

g0∑
k=1

b′i,kvk =

g2∑
j=1

xi,jaj +

g∑
j=1

yi,jbj

=

g2∑
j=1

xi,j

(
g0∑
k=1

aj,kvk

)
+

g∑
j=1

yi,j

(
g0∑
k=1

bj,kvk

)
,

whereA∪B = {a1, . . . ,ag2 ,b1, . . . ,bg} is a basis of Ker
(
Hr(φ∼

r−q)
)
computed in

Step (1-2). ThusX and Y are definitely computed. Here we have
∑g0
k=1 b

′
i,kvk =∑g

j=1 yi,jbj in Ker
(
Hr(φ∼

r−q)
)
/Im

(
Hr(φ∼

r−q+1)
)
for each 1 ≤ i ≤ g, and thus

Y is the desired representation matrix.
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3.4. Complexity analysis

In this subsection, we investigate the complexity of Algorithm (I) given in
Subsection 3.2. Recall that the input objects of the algorithm are a tuple of
homogeneous polynomials (f1, . . . , fm) ∈ Sm with S = K[x] = K[x0, . . . , xr],
the characteristic p, and an integer 1 ≤ q ≤ r − 1. As we described in Re-
mark 1.1, the complexities of the computations of free resolutions and lifting
homomorphisms (Steps (1-1), (2-1) and (2-2)) have not been determined yet
in general. For fixed r and q, the output object is determined by p and the
elements of (3.2) and the t× t matrix Cr−q over S, which are computed in Steps
(1-1), (2-1) and (2-2). From this, we estimate the complexity of Algorithm (I)
according to the parameters p, t(max) := max{ti : r− q−1 ≤ i ≤ r− q+1}, and
d(max) := max{d(i,max) : r− q − 1 ≤ i ≤ r− q + 1}, where d(i,max) := max{d(i)j :
1 ≤ j ≤ ti}. In the following, we denote by P(e) the number of arithmetic
operations over K for computing the e-th power for each e ∈ Z≥1. We assume
that MultMono(s) (resp. PowerMono(m)) is a function such that the product
of two monomials xα and xβ (resp. the power (xα)n) can be computed in time
MultMono(|total. deg(xα+β)|) (resp. MultMono(|total. deg(xnα)|)), where α and
β can take elements in Zr+1 (not only in (Z≥0)

r+1).

Proposition 3.6. With notation as above, the total complexity of Steps (1-2),
(2-3) and (2-4) of Algorithm (I) in Subsection 3.2 (not counting the computation
of a basis of Hr(Pr,Fi) for r − q − 1 ≤ i ≤ r − q + 1) is

Õ

((
t(max)(d(max))r

)4

+
(
t(max)(d(max))r

)2

P(p) + (t(max))2(d(max))3rpr
)

(3.6)

arithmetic operations over K.

Proof. First consider Step (1-2), where we compute the basis B of Hq(X,OX).
From Kudo (2017), Corollary 16, the complexity for Step (1-2) is estimated as

O

((
t(max)(d(max))r

)4)
(3.7)

arithmetic operations over K. Note that we also used the following fact to
obtain (3.7): The number of the non-zero terms of each (j, k)-entry of the

representation matrix for φi is bounded by
(
d
(i)
j −d(i)k +r

r

)
= O((d(max))r), since

the (j, k)-entry is homogeneous of degree d
(i)
j − d

(i)
k in r + 1 variables.

Next we consider Step (2-3). This step computes b
(p)
i =

∑g0
k=1 b

p
i,kv

(p)
k for

each bi ∈ B. For this, we first compute v
(p)
k for all 1 ≤ k ≤ g0, which can be

done in O(g0PowerMono(pd(max))) bit operations. For each 1 ≤ i ≤ g, it follows
from g0 = O(t(max)(d(max))r) that computing b

(p)
i is estimated to be done in

g0 · P(p) = O
(
t(max)(d(max))r · P(p)

)
arithmetic operations over K. Since we

have g = O(t(max)(d(max))r), the complexity for Step (2-3) is estimated as

O

((
t(max)(d(max))r

)2
· P(p)

)
(3.8)
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arithmetic operations over K, plus

O
(
t(max)(d(max))rPowerMono(pd(max))

)
(3.9)

bit operations.
We determine the complexity for Step (2-4). In this step, one first computes

the right hand side of (3.3), which gives the representation (3.4). Note that
each gpi,j has been computed in Step (2-3). Recall that we have g = #B(p) =

O(t(max)(d(max))r). The representation matrix Cr−q is a (t × t) matrix over
S with t = tr−q, and its (j, k)-entry hj,k is homogeneous of degree djp − dk

with dj = d
(r−q)
j and dk = d

(r−q)
k . Thus the number of the non-zero terms

of each hj,k is bounded by
(
djp−dk+r

r

)
= O((d(max)p)r), whereas that of gpi,j

is bounded by g0 = O((d(max))r). Moreover, gpi,jhj,k is a K-linear combina-
tion of monomials of negative degree −dk. Hence, the computation of gpi,jhj,k

for all 1 ≤ j ≤ t requires O(t(max)(d(max))2rpr) arithmetic operations over K,
plus t(max)(d(max))2rprMultMono(dk) = O(t(max)(d(max))2rprMultMono(d(max)))
bit operations. For each 1 ≤ k ≤ g, the k-th entry of (3.3) is given as the
sum of gpi,jhj,k for all 1 ≤ j ≤ t. Therefore, we have that the total cost of

computing right hand side of (3.3) for all 1 ≤ i ≤ g is O((t(max))2(d(max))3rpr)
arithmetic operations over K, plus O((t(max))2(d(max))3rprMultMono(d(max)))
bit operations.

Next we solve the linear system (3.5) over K, where the coefficient ma-
trices A and B have been computed in Step (1-2). The size of the coeffi-

cient matrix

(
A
B

)
(resp. the matrix

(
X Y

)
) is g0 = O(t(max)(d(max))r)

(resp. g = O(t(max)(d(max))r)), and hence the computation can be done in
O
(
(t(max))4(d(max))4r

)
arithmetic operations over K. As a consequence, the

complexity for Step (2-4) is estimated as

O

(
(t(max))2(d(max))3rpr +

(
t(max)(d(max))r

)4)
(3.10)

arithmetic operations over K, plus

O
(
(t(max))2(d(max))3rprMultMono(d(max))

)
(3.11)

bit operations.
Considering (3.7)-(3.11), we have that the cost of Steps (1-2), (2-3) and (2-

4) is upper-bounded by (3.6) plus the sum of the bit complexities (3.9) and
(3.11). These bit complexities are estimated as follows: PowerMono(pd(max))
(resp.MultMono(d(max))) is upper-bounded byO(r(log(p)+log(d(max)))) = Õ(1)
(resp. O(rlog(d(max))) = Õ(1)), where we used that r is fixed. Thus the sum of
the bit complexities (3.9) and (3.11) is Õ

(
(t(max))2(d(max))3rpr

)
, which is lower

than the third term of (3.6).
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Putting D := max{dimK H
r(Pr,Fi) : r − q − 1 ≤ i ≤ r − q + 1}, we

can simply write (3.6) as (3.13) in Corollary 3.7 below. Note that we have
D = O(t(max)(d(max))r) since

dimK H
r(Pr,Fi) =

ti∑
j=1

(
d
(i)
j − 1

r

)
= O

(
t(max)(d(max))r

)
(3.12)

for r− q − 1 ≤ i ≤ r− q + 1. The value D is also appropriate as an asymptotic

parameter since it is determined from the values ti and d
(i)
j in (3.2).

Corollary 3.7. The notation is same as in Proposition 3.6. We fix r and
set D := max{dimK H

r(Pr,Fi) ; r − q − 1 ≤ i ≤ r − q + 1}. Then the
total arithmetic complexity of Steps (1-2), (2-3) and (2-4) of Algorithm (I) in
Subsection 3.2 over K is

Õ
(
D4 +D2P(p) +D3pr

)
. (3.13)

For K = Fp, the arithmetic complexity is

Õ(D4 +D3pr), (3.14)

and its binary complexity is

Õ(D4M∼(log(p)) +D3prM∼(log(p))) (3.15)

with M∼(n) := M(n)log(n), where M(n) denotes the time required to multiply
two n-bit integers.

4. Algorithm specific to complete intersections

As in the previous section, let K be a perfect field of characteristic p, and
let S = K[x] = K[x0, . . . , xr] denote the polynomial ring of r+ 1 variables over
K. Let X ⊂ Pr = Proj(S) be a projective scheme of dimension q = dim(X).

In this section, we give a specific method to compute a representation matrix
for the Frobenius F ∗ with q = dim(X) when X = V (f1, . . . , fm) is a complete
intersection defined by an S-regular sequence (f1, . . . , fm) ∈ Sm (in this case,
we have dim(X) = r −m). This method for dim(X) = 1 (i.e., X is a curve)
was already proposed in Kudo and Harashita (2017a), Appendix B, whereas it
works also for dim(X) > 1 and is viewed as a special case of Algorithm (I) in
Subsection 3.2. After verifying these stronger arguments in the first subsection
below, we shall give an algorithm in the second subsection. In particular, we
prove that the entries of the representation matrix for F ∗ with respect to a
suitable basis are coefficients in (f1 · · · fm)p−1.

21



4.1. The Frobenius action for complete intersections
The proposition below (Proposition 4.1) provides a method to compute F ∗

over complete intersections, and it includes Kudo and Harashita (2017a), Propo-
sition B.2.2 for dim(X) = 1. Both the propositions are proved in essentially
the same way, whereas no proof is given in Kudo and Harashita (2017a). For
the reader’s convenience, we here give a complete proof which works also for
dim(X) > 1. Another reason for writing the proof here is to describe how the
method is viewed as a special case of Algorithm (I) in Subsection 3.2.

Proposition 4.1. Let K be a perfect field with char(K) = p > 0. Let f1, . . . , fm
be homogeneous polynomials with dj1...jm−1 :=

∑m−1
k=1 deg(fjk) ≤ r for all 1 ≤

j1 < · · · < jm−1 ≤ m such that gcd(fi, fj) = 1 in S := K[x] = K[x0, . . . , xr]
for i ̸= j. Suppose that the sequence (f1, . . . , fm) is S-regular. Let X =
V (f1, . . . , fm) be the projective scheme defined by the equations f1 = 0, . . . , fm =
0 in Pr = Proj(S), and q := dim(X) = r−m. Write (f1 · · · fm)p−1 =

∑
α cαx

α

with xα = xα0
0 · · ·xαr

r for α = (α0, . . . , αr) ∈ (Z≥0)
r+1, and

Λ :=

β ∈ (Z<0)
r+1 : |β| = −

m∑
j=1

deg(fj)

 = {β(1), . . . , β(g)}, (4.1)

where g := #Λ and |β| :=
∑r
i=0 βi for β = (β0, . . . , βr) ∈ (Z<0)

r+1. Then we
have g = dimKH

q(X,OX), and a representation matrix for F ∗ is given by c−p·β(1)+β(1) · · · c−p·β(g)+β(1)

...
...

c−p·β(1)+β(g) · · · c−p·β(g)+β(g)

 , (4.2)

where p · β := (pβ0, . . . , pβr).

Proof. Since (f1, . . . , fm) is S-regular, and so is the sequence (fp1 , . . . , f
p
m), see

e.g., Eisenbud (1995), Corollary 17.8. Hence both the minimal free resolutions

F• and F
(p)
• in Subsection 3.2 are canonically given as graded Koszul complexes

(see Kudo and Harashita (2017a), Section B.2) of length m in the following way:
For each 1 ≤ i ≤ m, we set

Fi :=
⊕

1≤j1<···<ji≤m

S(−dj1...ji)ej1...ji , and

F
(p)
i :=

⊕
1≤j1<···<ji≤m

S(−pdj1...ji)ej1...ji ,

with dj1...ji :=
∑i
k=1 deg(fjk), and the graded homomorphisms φi : Fi −→ Fi−1

and φ
(p)
i : F

(p)
i −→ F

(p)
i−1 of degree zero are given by

φi(ej1...ji) :=
i∑

k=1

(−1)k−1fjkej1...ĵk...ji , and

φ
(p)
i (ej1...ji) :=

i∑
k=1

(−1)k−1fpjkej1...ĵk...ji ,

22



where the hat means to omit jk. Moreover, ψ• : F
(p)
• −→ F• is constructed

without using the division algorithm over S; we define each ψi : F
(p)
i −→ Fi by

ψi(ej1...ji) := (fj1 · · · fji)p−1ej1...ji .

In particular, ψr−q with r − q = m is a map just multiplying an element in
S(−

∑m
j=1 dj) by (f1 · · · fm)p−1. By the assumption dj1...jm−1 ≤ r for all 1 ≤

j1 < · · · < jm−1 ≤ m, we also have Im
(
Hr(φ∼

r−q+1)
)
= Im

(
Hr((φ

(p)
r−q+1)

∼)
)
=

0, and thus

Hr−q(Hr(Pr,F•)) = Ker
(
Hr(φ∼

r−q)
)
= Hr(Pr,OPr (−

m∑
j=1

dj)), and

Hr−q(Hr(Pr,F (p)
• )) = Ker

(
Hr((φ

(p)
r−q)

∼)
)
= Hr(Pr,OPr (−

m∑
j=1

pdj))

in the diagram in Lemma 3.2. It follows from Theorem 2.1 that the basis of
Hr(Pr,OPr (−

∑m
j=1 dj)) is given by B = {xβ : β ∈ Λ}. For each basis element

xβ
(i) ∈ B with β(i) ∈ Λ, its image by the composite map of the right column of

the diagram in Lemma 3.2 is computed as

(f1 · · · fm)p−1 ·
(
xβ

(i)
)p

= (f1 · · · fm)p−1 · xp·β
(i)

=
∑
α

cαx
α+p·β(i)

=

g∑
j=1

c−p·β(i)+β(j)xβ
(j)

.

Hence our claim holds.

Proposition 4.1 gives a simplification of Algorithm (I) in Subsection 3.2 if
the input (f1, . . . , fm) is S-regular and if q = dim(X) = r −m; to compute the
representation matrix for F ∗, we not necessarily compute any free resolution,
but only certain coefficients in (f1 · · · fm)p−1. Moreover this method is viewed
as a generalization of a standard method to compute F ∗ with q = 1 for elliptic
curves, see Example 2.3 in this paper or Hartshorne (1977), Chapter IV.

4.2. Algorithm and Complexity

With the same notation as in Proposition 4.1, we here write down an effi-
cient algorithm specific to complete intersections. Thanks to Proposition 4.1,
Algorithm (I) in Subsection 3.2 is quite simply written as follows:

Algorithm (II) (algorithm for complete intersections). Given an S-
regular sequence (f1, . . . , fm) and the characteristic p, this algorithm computes
a representation matrix for F ∗ on Hq(X,OX) with q = r −m = dim(X).

1. Compute the coefficients c−p·β(i)+β(j) for 1 ≤ i, j ≤ g in (f1 · · · fm)p−1.

2. Output the matrix (4.2).
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Complexity. The complexity is upper-bounded by the cost of computing the
multiple (f1 · · · fm)p−1. The cost of computing (f1 · · · fm)p−1 heavily depends
on one’s choice of algorithms for computing the multiplication and the power
computation over the multivariate polynomial ring K[x0, . . . , xr]; for a fixed
r, the complexity can be upper-bounded in polynomial time with respect to
max1≤j≤m(deg(fj)) and p, see e.g., Horowitz (1973), Theorem 3.1.

Open problems. Improving Algorithm (II) and its complexity bound is an
open problem since it is not necessary to compute all the non-zero coefficients
in (f1 · · · fm)p−1, but only the g2 coefficients c−p·β(i)+β(j) for 1 ≤ i, j ≤ g.

One possible way is to generalize a method adopted in computing the Cartier
operator for a hyperelliptic curve y2 = f(x), where f(x) is a univariate poly-
nomial in x over K of degree 2g + 1. Recall from Section 1 that the entries
of the matrix representing the Cartier operator are the xip−j-coefficients in
h := f (p−1)/2 for 1 ≤ i, j ≤ g. In this case, computing the Cartier operator is
reduced into multiplying matrices over the ring Zp of p-adic integers, see e.g.,
Bostan et al. (2003), p. 52 for more details. The reduction is based on the
following fact: The coefficients in h satisfy a linear recurrent sequence of order
2g + 1. From this, a linear recurrence with the coefficients in (f1 · · · fm)p−1, if
it exists, may be the key to the generalization.

Here we list the problems described above;

Problem 4.2. Find an algorithm to efficiently compute c−p·β(i)+β(j) for 1 ≤
i, j ≤ g in (f1 · · · fm)p−1.

Problem 4.3. Find a linear recurrence with the coefficients in (f1 · · · fm)p−1.

5. Computational examples and experimental results

This section shows computational examples and experimental results ob-
tained by our implementation over Magma (Bosma et al. (1997), Cannon et al.
(2016)). We implemented the main algorithms (Algorithms (I) and (II)) over
Magma V2.24-5 in its 32-bit version on a laptop with Windows OS, a 2.60 GHz
Inter Core i5-4210M processor and 8.00 GB memory.

5.1. Examples

Example 5.1. Let K be a perfect field of characteristic p > 2. Put

f := 5vz − 2wx− 3wy + wz,

g := 10v2 + 5wv − 5w2 + 4x2 − 12xy + 2xy − 2y2 − 35yz − 12z2,

h := 15v2 − 5wv + 5w2 + 8x2 − 12xy − 14xz − 11y2 − 3yz + 15z2,

and C := V (I) ⊂ P4 with S = K[x, y, z, v, w] and I = ⟨f, g, h⟩S . The non-
singular curve C is the (classical) modular curve of level 67, say C = X0(67).
For defining equations for modular curves, see e.g., Galbraith (1996). In the
following, we compute the representation matrix for the Frobenius on the first
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cohomology group H1(C,OC) for the case of p = 3. In this case, we have the
following commutative diagram:

0
φ
(p)
4 / / S(−6p)

ψ3

��

φ
(p)
3 //

3⊕
j=1

S(−4p)

ψ2

��

φ
(p)
2 //

3⊕
j=1

S(−2p)

ψ1

��

φ
(p)
1 // S

ψ0

��

φ
(p)
0 // S/Ip

ψ

��

// 0

0
φ4 // S(−6)

φ3 //
3⊕
j=1

S(−4)
φ2 //

3⊕
j=1

S(−2)
φ1 // S

φ0 // S/I // 0

For the representation matrices of the above homomorphisms, see the text files
on the web page of the author (Kudo (2020)). The first cohomology group
H1(C,OC) ∼= H4(P4,OP4(−6)) has a basis{

1

x2yzvw
,

1

xy2zvw
,

1

xyz2vw
,

1

xyzv2w
,

1

xyzvw2

}
,

which indicates that C is a curve of genus 5. From the output of our program,
the representation matrix for F ∗ with q = 1 is

1 1 0 0 0
2 0 2 0 0
0 2 1 0 0
0 0 0 0 0
0 0 0 1 0

 ,

and its rank is equal to 3. The Eigen polynomial is a5 + a4 + a3, where a is an
indeterminate.

Remark 5.2. In Example 5.1, the tuple (f, g, h) is an S-regular sequence with
deg(f) = deg(g) = deg(h) = 2.

Example 5.3. Let K be a perfect field of characteristic p > 0. Put

f1 := y2 + (−x3 − x1 − x0)y + 2x3x2 + 3x21 − 2x1x0 + 2x20,

f2 := x21 − x0x2, f3 := x22 − x1x3, f4 := x3x0 − x2x1,

and C := V (f1, f2, f3, f4) ⊂ P4 with S = K[x0, x1, x2, x3, y]. The non-singular
curve C is a normalization of the modular curve X0(23), which is a hyperelliptic
curve of genus 2 given as an affine model in Bruin and Najman (2015). For a
method of the normalization of hyperelliptic curves, see Galbraith (2012), Chap-
ter 10. In what follows, we compute the representation matrix for the Frobenius
on H1(C,OC) for the case of p = 5. By a way similar to Example 5.1, we can
compute a basis of H1(C,OC). (For more information of the computation, see
the text files on the web page of the author (Kudo (2020)).) The output basis
of H1(C,OC) is {( 1

x0x1x2x3y
, 0

)
,
(
0, 1

x0x1x2x3y

)}
,
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which indicates that C is a curve of genus 2. From the output of our program,
the representation matrix for F ∗ with q = 1 is(

2 2
3 1

)
,

and it has full-rank. The Eigen polynomial is a2 + 2a + 1, where a is an inde-
terminate.

Different from Examples 5.1 and 5.3, we shall give an example which is not
a curve in Example 5.4:

Example 5.4. Let K be a perfect field of characteristic p > 0. We consider
a Horrocks-Mumford surface, which is an abelian variety X embedded into P4

as the (non-complete) intersection of 3 quintics and 15 sextics (cf. Manolache
(1988)). It was proved in Theorem 5.2 of Horrocks and Mumford (1973) that
any abelian surface in P4 is projectively equivalent to one of Horrocks-Mumford
surfaces. Note that X has degree 10, see also Section 7.1 of Liedtke (2013) for
other invariants of (general) abelian surfaces over (perfect) fields of positive
characteristic.

We randomly choose 3 quintics and 15 sextics defining X by using Magma’s
built-in functions RandomAbelianSurface d10g6 and DefiningPolynomials.
For reasons of space, the chosen defining equations are omitted here, but they
are written in a text file (HM-surface example1.txt) which is available at the
author’s web page Kudo (2020). For this (specific) chosen X, we demonstrate
Algorithm (I) in Subsection 3.2 to compute the representation matrix for the
Frobenius F ∗ on H1(X,OX) in the case of p = 3. Note that representation
matrices for φi and ψi, the basis {b1,b2} and the matrix Y below depend on
the choice of defining equations. We also use the same notation as in Section 3.

In Step (1-1) of Algorithm (I), the minimal free resolution F• is computed
as follows:

0 → S(−10)2
φ4−−→ S(−8)20

φ3−−→ S(−7)35
φ2−−→ S(−5)3 ⊕ S(−6)15

φ1−−→ S
φ0−−→ S/I → 0,

where S := K[x, y, z, w, v] and where we simply denote by Mn the direct
sum

⊕n
i=1M for a (graded) module M and an integer n ≥ 1. Step (1-2) com-

putes a basis of H1(X,OX) via the isomorphy H1(X,OX) ∼= H3(H4(P4,F•)) =
Ker

(
H4(φ∼

3 )
)
/Im

(
H4(φ∼

4 )
)
, where Ker

(
H4(φ∼

3 )
)
and Im

(
H4(φ∼

4 )
)
are sub-

spaces of the 700-dimensional space H4(P4,F3) ∼= H4(P4,OP4(−8))⊕20 with
the basis

V =
{
xα1yα2zα3wα4vα5ej : 1 ≤ j ≤ 20 and αk ∈ Z<0 with

∑5
k=1 αk = −8

}
.

Similarly to H4(P4,F3), we have that H4(P4,F4) and H4(P4,F2) are of di-
mension 252 and 525 respectively, and we can compute their bases explicitly.
With these bases together with representation matrices for φ4 and φ3, we can
compute a basis of H1(X,OX). For more information of the computation, see
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the text file result code HM-surface example1.txt on the web page of the au-
thor (Kudo (2020)). The output basis B for H1(X,OX) consists of two elements
represented explicitly by the following two vectors:

b1 =
2

x4yzwv
e1 +

2

x3y2zwv
e2 +

2

x2y3zwv
e3 +

2

xy4zwv
e4 +

2

x3yz2wv
e5

+
2

xy3z2wv
e6 +

2

x2yz3wv
e7 +

2

xy2z3wv
e8 +

2

xyz4wv
e9,

b2 =
2

xy3zw2v
e1 +

2

x3yzw2v
e4 +

1

xyzw4v
e6 +

1

x4yzwv
e8 +

2

x2yzw3v
e9

+
2

x3y2zwv
e10 +

2

x2y3zwv
e11 +

2

xy4zwv
e12 +

2

xy2zw3v
e13.

In Step (2-1) (resp. (2-3)), the resolution F
(p)
• for S/Ip (resp. the image B(p))

is computed from F• (resp. B), by considering the p-th power operation. By
the matrix representing ψ3 : S(−8p)20 → S(−8)20 computed in Step (2-2), we
compute the representation matrix Y for F ∗ on H1(X,OX) in Step (2-4) with
simple linear algebra. From the output of our program, Y is a rank 2-matrix
for this sample (this means that X is ordinary).

We also executed Algorithm (I) in Subsection 3.2 for some other samples
generated by RandomAbelianSurface d10g6. The computational results show
that both the cases of rank(Y ) = 1 and 0 also occur, where X with rank(Y ) = 0
is called superspecial (in fact, supersingular, see Section 7.1 of Liedtke (2013)).
See HM-surface example2.txt and HM-surface example3.txt for the defin-
ing equations of these samples at the web page Kudo (2020). It would be an
interesting problem to determine the (non-)existence of a superspecial Horrocks-
Mumford surface for large p.

5.2. Experimental results

To confirm practical time performance of our algorithm, we compute the
representation matrix for the Frobenius F ∗ on the first cohomology group of
X0(23) for 3 ≤ p ≤ 17. Table 1 shows our experimental results for X0(23) of
Example 5.3. We use the same notation as in Section 3. Note that r = 4 and
D = 2 are fixed in our experiments.

Time performance: For each 3 ≤ p ≤ 17, the computation of free resolutions
and lifting homomorphisms (Steps (1-1), (2-1) and (2-2)) is clearly domi-
nant; in particular, Step (2-2) takes so much time to terminate, e.g., 85.074
seconds for p = 17. Unlike the steps (1-1), (2-1) and (2-2), it only takes
a few seconds to proceed with Steps (1-2), (2-3) and (2-4). From this,
we see that once one gets free resolutions and lifting homomorphisms, one
may efficiently compute the matrix representing the Frobenius F ∗. On the
other hand, for examining that Steps (1-2), (2-3) and (2-4) behave in the
complexity estimated in (3.14) of Corollary 3.7 for large p, it is necessary
to improve the computation of free resolutions and lifting homomorphisms
(Steps (1-1), (2-1) and (2-2)).
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Table 1: Experimental results to examine time performance on Algorithm (I) for X0(23) in
P4 with r = 4. For each 3 ≤ p ≤ 17, the Frobenius F ∗ has full-rank (= 2), which means that
X0(23) is an ordinary curve.

p D Eigen polynomial
Total time for Steps Total time for Steps
(1-1), (2-1) and (2-2) (1-2), (2-3) and (2-4)

3 2 a2 + 1 0.118 0.037
5 2 a2 + 2a+ 1 0.445 0.046
7 2 a2 + 5a+ 3 1.796 0.089
11 2 a2 + 6a+ 4 12.106 0.516
13 2 a2 + 7a+ 9 39.634 1.316
17 2 a2 + 11a+ 4 85.129 3.142

Correctness: An affine model of X0(23) given in Bruin and Najman (2015) is

y2 + (−x3 − x− 1)y = −2x5 − 3x2 + 2x− 2,

ans its genus is 2. With Yui’s method (Yui (1978)), one can compute the
rank and the Eigen polynomial of the Cartier operator, which is dual to
the Frobenius operator F ∗. The rank and the Eigen polynomial computed
by Yui’s method coincide with those in Table 1 for each 3 ≤ p ≤ 17.

6. Concluding remarks

We proposed two explicit algorithms to compute the representation matrix
for the Frobenius F ∗ on the cohomology groups Hq(X,OX). The first algorithm
(main algorithm) works for arbitrary projective schemes, and is based on the
following three techniques: (i) Decompose F ∗ into two computable maps be-
tween cohomology groups over Pr. (ii) Compute a matrix corresponding to one
of the two maps, where its entries are homogeneous polynomials in S. (iii) Mul-
tiplying each basis element by the matrix computed in (ii) together with linear
algebra techniques, we represent the each image element by F ∗ as a K-linear
combination of the same basis. The second algorithm is a simplified version of
the first one, and is specific to complete intersections. Our algorithms also pro-
vide effective methods to classify algebraic varieties in positive characteristic,
e.g., whether curves are ordinary or superspecial.

However, the first algorithm works well under the assumption that one has
computed free resolutions and lifting homomorphisms. To make the algorithm
more efficient, we have to improve the efficiency of computing free resolutions
and lifting homomorphisms, or design a new method to efficiently compute
them. The second algorithm has room for improvement if we have a method
to efficiently extract specific coefficients in a power of a multivariate polyno-
mial. Constructing such a method and improving the second algorithm are
open problems.
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