A. Hogan, E. Blomqvist, M. Cochez, C. Amato, G. De-melo et al.,

C. Bizer, T. Heath, and T. Berners-lee, Linked data -the story so far, Int. J. Semantic Web Inf. Syst, vol.5, issue.3, pp.1-22, 2009.

P. Ristoski and H. Paulheim, Semantic web in data mining and knowledge discovery: A comprehensive survey, J. Web Semant, vol.36, pp.1-22, 2016.

L. Galárraga, G. Heitz, K. Murphy, and F. M. Suchanek, Canonicalizing open knowledge bases, Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, CIKM, pp.1679-1688, 2014.

H. Paulheim, Generating possible interpretations for statistics from linked open data, The Semantic Web: Research and Applications -9th Extended Semantic Web Conference, ESWC 2012, vol.7295, pp.560-574, 2012.

B. Shi and T. Weninger, Discriminative predicate path mining for fact checking in knowledge graphs, Knowl.-Based Syst, vol.104, pp.123-133, 2016.

T. Berners-lee, J. Hendler, and O. Lassila, The Semantic Web, Scientific American, vol.284, issue.5, pp.28-37, 2001.

R. Thomas and . Gruber, A translation approach to portable ontology specifications, Knowledge Acquisition, vol.5, issue.2, pp.199-220, 1993.

, Managing and Mining Graph Data, volume 40 of Advances in Database Systems, 2010.

P. Monnin, J. Legrand, G. Husson, P. Ringot, A. Tchechmedjiev et al., PGxO and PGxLOD: a reconciliation of pharmacogenomic knowledge of various provenances, enabling further comparison, BMC Bioinformatics, issue.4, p.20, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02103899

G. Bonfante, B. Guillaume, and G. Perrier, Application of Graph Rewriting to Natural Language Processing, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01814386

P. Barceló, L. Libkin, and J. L. Reutter, Querying graph patterns, Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2011, pp.199-210, 2011.

G. Vries and S. De-rooij, A fast and simple graph kernel for RDF, Proceedings of the International Workshop on Data Mining on Linked Data, with Linked Data Mining Challenge collocated with the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECMLPKDD 2013), vol.1082, 2013.

G. Vries and S. De-rooij, Substructure counting graph kernels for machine learning from RDF data, J. Web Semant, vol.35, pp.71-84, 2015.

L. Antonio-galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek, AMIE: association rule mining under incomplete evidence in ontological knowledge bases, International World Wide Web Conferences Steering Committee / ACM, pp.413-422, 2013.

J. Stadelmaier and S. Padó, Modeling paths for explainable knowledge base completion, Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pp.147-157, 2019.

H. Paulheim and J. Fürnkranz, Unsupervised generation of data mining features from linked open data, 2nd International Conference on Web Intelligence, Mining and Semantics, WIMS '12, vol.31, 2012.

G. Vandewiele, B. Steenwinckel, F. Ongenae, and F. D. Turck, Inducing a decision tree with discriminative paths to classify entities in a knowledge graph, Proceedings of the 4th International Workshop on Semantics-Powered Data Mining and Analytics colocated with the 18th International Semantic Web Conference (ISWC 2019), vol.2427, 2019.

R. Srikant and R. Agrawal, Mining generalized association rules, Proceedings of 21th International Conference on Very Large Data Bases, vol.95, pp.407-419, 1995.

X. Zhou and J. Geller, Raising, to enhance rule mining in web marketing with the use of an ontology, Data Mining with Ontologies: Implementations, Findings, and Frameworks, pp.18-36, 2008.

M. Aurélio-domingues and S. Oliveira-rezende, Using taxonomies to facilitate the analysis of the association rules, 2011.

C. Marinica and F. Guillet, Knowledge-based interactive postmining of association rules using ontologies, IEEE Trans. Knowl. Data Eng, vol.22, issue.6, pp.784-797, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00459393

P. Ristoski and H. Paulheim, Rdf2vec: RDF graph embeddings for data mining, The Semantic Web -ISWC 2016 -15th International Semantic Web Conference, vol.9981, pp.498-514, 2016.

M. Chen, A. Suzuki, S. Thakkar, K. Yu, C. Hu et al., DILIrank: the largest reference drug list ranked by the risk for developing drug-induced liver injury in humans, Drug Discov Today, vol.21, issue.4, pp.648-653, 2016.

F. M. Suchanek, S. Abiteboul, and P. Senellart, PARIS: probabilistic alignment of relations, instances, and schema, vol.5, pp.157-168, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00745191

P. Ristoski and H. Paulheim, Feature selection in hierarchical feature spaces, Discovery Science -17th International Conference, vol.8777, pp.288-300, 2014.

C. Amato, S. Staab, and N. Fanizzi, On the influence of description logics ontologies on conceptual similarity, Knowledge Engineering: Practice and Patterns, 16th International Conference, vol.5268, pp.48-63, 2008.

P. Ristoski and H. Paulheim, A comparison of propositionalization strategies for creating features from linked open data, Proceedings of the 1st Workshop on Linked Data for Knowledge Discovery co-located with European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2014), vol.1232, 2014.