A. Akbik, D. Blythe, and R. Vollgraf, Contextual String Embeddings for Sequence Labeling, Proceedings of the 27th International Conference on Computational Linguistics, pp.1638-1649, 2018.

P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, Enriching Word Vectors with Subword Information, Transactions of the Association for Computational Linguistics, vol.5, pp.135-146, 2017.

H. Cen, K. Koedinger, and B. Junker, Learning Factors Analysis -A General Method for Cognitive Model Evaluation and Improvement, Intelligent Tutoring Systems, pp.164-175, 2006.

A. T. Corbett and J. R. Anderson, Knowledge tracing: Modeling the acquisition of procedural knowledge, User Modeling and User-Adapted Interaction, vol.4, issue.4, pp.253-278, 1994.

T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel, Convolutional 2D Knowledge Graph Embeddings, Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI-18), 2018.

A. Grover and J. Leskovec, node2vec: Scalable Feature Learning for Networks. CoRR, 2016.

H. Guo, R. Tang, Y. Ye, Z. Li, and X. He, DeepFM: A Factorization-Machine based Neural Network for CTR Prediction, Proceedings of the 26th International Joint Conference on Artificial Intelligence, pp.1725-1731, 2017.

R. Hambleton, H. Swaminathan, and H. Rogers, Fundamentals of Item Response Theory, 1991.

A. Kristiadi, M. A. Khan, D. Lukovnikov, and J. Lehmann, Incorporating literals into knowledge graph embeddings, The Semantic Web -ISWC 2019, pp.347-363, 2019.

Y. Lecun, Y. Bengio, and G. E. Hinton, Deep learning, Nature, vol.521, issue.7553, pp.436-444, 2015.

J. Leskovec and R. Sosi?, SNAP: A General-Purpose Network Analysis and Graph-Mining Library, ACM Transactions on Intelligent Systems and Technology (TIST), vol.8, issue.1, p.1, 2016.

M. R. Novick, The axioms and principal results of classical test theory, Journal of Mathematical Psychology, vol.3, issue.1, pp.90002-90004, 1966.

O. Palombi, F. Jouanot, N. Nziengam, B. Omidvar-tehrani, M. C. Rousset et al., OntoSIDES: Ontology-based student progress monitoring on the national evaluation system of French Medical Schools, Artificial Intelligence in Medicine, vol.96, pp.59-67, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02089318

P. I. Pavlik, H. Cen, and K. R. Koedinger, Performance Factors Analysis -A New Alternative to Knowledge Tracing, Proceedings of the 2009 Conference on Artificial Intelligence in Education: Building Learning Systems That Care: From Knowledge Representation to Affective Modelling, pp.531-538, 2009.

C. Piech, J. Bassen, J. Huang, S. Ganguli, M. Sahami et al., Advances in Neural Information Processing Systems 28, pp.505-513, 2015.

G. Rasch, Probabilistic Models for Some Intelligence and Attainment Tests. Studies in mathematical psychology, Danmarks Paedagogiske Institut, 1960.

M. D. Reckase, The Past and Future of Multidimensional Item Response Theory, Applied Psychological Measurement, vol.21, issue.1, pp.25-36, 1997.


S. Rendle, Factorization Machines, Proceedings of the 2010 IEEE International Conference on Data Mining. pp. 995-1000. ICDM '10, 2010.

T. Trouillon, C. R. Dance, J. Welbl, S. Riedel, É. Gaussier et al., Knowledge Graph Completion via Complex Tensor Factorization, The Journal of Machine Learning Research, 2017.

J. J. Vie, Deep Factorization Machines for Knowledge Tracing, Proceedings of the 13th Workshop on Innovative Use of NLP for Building Educational Applications, 2018.

J. J. Vie and H. Kashima, Knowledge Tracing Machines: Factorization Machines for Knowledge Tracing, Proceedings of the 33th AAAI Conference on Artificial Intelligence (AAAI-19), 2019.

K. H. Wilson, Y. Karklin, B. Han, and C. Ekanadham, Back to the Basics: Bayesian extensions of IRT outperform neural networks for proficiency estimation, Proceedings of the 9th International Conference on Educational Data Mining (EDM 2016), 2016.