D. Maes, M. Verdonck, H. Deluyker, and A. De-kruif, Enzootic pneumonia in pigs, Vet. Q, vol.18, pp.104-109, 1996.

D. Maes, Update on Mycoplasma hyopneumoniae infections in pigs: knowledge gaps for improved disease control, Transbound. Emerg. Dis, vol.65, pp.110-124, 2018.

S. P. Djordjevic, S. J. Cordwell, M. A. Djordjevic, J. Wilton, and F. C. Minion, Proteolytic processing of the Mycoplasma hyopneumoniae cilium adhesin, Infect. Immun, vol.72, pp.2791-2802, 2004.

M. C. Debey and R. F. Ross, Ciliostasis and loss of cilia induced by Mycoplasma hyopneumoniae in porcine tracheal organ cultures, Infect. Immun, vol.62, pp.5312-5318, 1994.

M. G. Ferrarini, Hydrogen peroxide production and myo-inositol metabolism as important traits for virulence of Mycoplasma hyopneumoniae, Mol. Microbiol, vol.108, pp.683-696, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01765751

D. P. Bartel, Micrornas: genomics, biogenesis, mechanism, and function, Cell, vol.116, pp.281-297, 2004.

Y. Luo, Detection of dietetically absorbed maize-derived micrornas in pigs, Sci. Rep, vol.7, p.645, 2017.

N. Lawless, A. B. Foroushani, M. S. Mccabe, C. O'farrelly, and D. J. Lynn, Next generation sequencing reveals the expression of a unique mirna profile in response to a gram-positive bacterial infection, PLoS ONE, vol.8, p.57543, 2013.

M. Duval, P. Cossart, and A. Lebreton, Mammalian micrornas and long noncoding rnas in the host-bacterial pathogen crosstalk, Seminars in cell & developmental biology, vol.65, pp.11-19, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01350977

L. P. Lim, Microarray analysis shows that some micrornas downregulate large numbers of target mrnas, Nature, vol.433, p.769, 2005.

V. N. Kim and J. Nam, Genomics of microrna. Trends Genet, vol.22, pp.165-173, 2006.

H. Valadi, Exosome-mediated transfer of mrnas and micrornas is a novel mechanism of genetic exchange between cells, Nat. Cell Biol, vol.9, p.654, 2007.

S. Rome, Are extracellular micrornas involved in type 2 diabetes and related pathologies?, Clin. Biochem, vol.46, pp.937-945, 2013.
URL : https://hal.archives-ouvertes.fr/hal-02644278

L. Chen, Epigenetic regulation of connective tissue growth factor by microrna-214 delivery in exosomes from mouse or human hepatic stellate cells, Hepatology, vol.59, pp.1118-1129, 2014.

J. S. Schorey, Y. Cheng, P. P. Singh, and V. L. Smith, Exosomes and other extracellular vesicles in host-pathogen interactions, EMBO Rep, vol.16, pp.24-43, 2015.

S. Rana, S. Yue, D. Stadel, and M. Zöller, Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection, Int. J. Biochem. Cell Biol, vol.44, pp.1574-1584, 2012.

A. Forterre, Myotube-derived exosomal mirnas downregulate sirtuin1 in myoblasts during muscle cell differentiation, Cell Cycle, vol.13, pp.78-89, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01859385

J. M. Silverman and N. E. Reiner, Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes, Cell. Microbiol, vol.13, pp.1-9, 2011.

S. M. Muxel, M. F. Laranjeira-silva, R. A. Zampieri, L. M. Floeter-winter, and . Leishmania, Leishmania) amazonensis induces macrophage mir-294 and mir-721 expression and modulates infection by targeting nos2 and l-arginine metabolism, Sci. Rep, vol.7, p.44141, 2017.

H. Bao, Genome-wide whole blood micrornaome and transcriptome analyses reveal mirna-mrna regulated host response to foodborne pathogen Salmonella infection in swine, Sci. Rep, vol.5, p.12620, 2015.

C. Staedel and F. Darfeuille, Micro rna s and bacterial infection, Cell. Microbiol, vol.15, pp.1496-1507, 2013.

C. Maudet, M. Mano, and A. Eulalio, Micrornas in the interaction between host and bacterial pathogens, FEBS Lett, vol.588, pp.4140-4147, 2014.

G. Zielinski and R. Ross, Effect of growth in cell cultures and strain on virulence of Mycoplasma hyopneumoniae for swine, Am. J. Vet. Res, vol.51, pp.344-348, 1990.

T. F. Young, E. L. Thacker, B. Z. Erickson, and R. F. Ross, A tissue culture system to study respiratory ciliary epithelial adherence of selected swine mycoplasmas, Vet. Microbiol, vol.71, pp.269-279, 2000.

T. A. Burnett, P159 is a proteolytically processed, surface adhesin of Mycoplasma hyopneumoniae: defined domains of p159 bind heparin and promote adherence to eukaryote cells, Mol. Microbiol, vol.60, pp.669-686, 2006.

H. Cho, S. P. Reddy, and S. R. Kleeberger, Nrf2 defends the lung from oxidative stress, Antioxid. Redox Signal, vol.8, pp.76-87, 2006.

Q. Ma, Role of nrf2 in oxidative stress and toxicity, Annu. Rev. Pharmacol. Toxicol, vol.53, pp.401-426, 2013.

R. K. Thimmulappa, Nrf2 is a critical regulator of the innate immune response and survival during experimental sepsis, J. Clin. Investig, vol.116, pp.984-995, 2016.

J. Athale, Nrf2 promotes alveolar mitochondrial biogenesis and resolution of lung injury in staphylococcus aureus pneumonia in mice, Free Radical Biol. Med, vol.53, pp.1584-1594, 2012.

N. M. Reddy, Innate immunity against bacterial infection following hyperoxia exposure is impaired in nrf2-deficient mice, J. Immunol, vol.183, pp.4601-4608, 2009.

J. C. Gomez, H. Dang, J. R. Martin, and C. M. Doerschuk, Nrf2 modulates host defense during Streptococcus pneumoniae pneumonia in mice, J. Immunol, vol.197, pp.2864-2879, 2016.

T. W. Kensler, N. Wakabayashi, and S. Biswal, Cell survival responses to environmental stresses via the keap1-nrf2-are pathway, Annu. Rev. Pharmacol. Toxicol, vol.47, pp.89-116, 2007.

S. Fourquet, R. Guerois, D. Biard, and M. B. Toledano, Activation of nrf2 by nitrosative agents and h2o2 involves keap1 disulfide formation, J. Biol. Chem, vol.285, pp.8463-8471, 2010.

C. Hames, S. Halbedel, M. Hoppert, J. Frey, and J. Stülke, Glycerol metabolism is important for cytotoxicity of Mycoplasma pneumoniae, J. Bacteriol, vol.191, pp.747-753, 2009.

E. M. Vilei and J. Frey, Genetic and biochemical characterization of glycerol uptake in Mycoplasma mycoides subsp. mycoides sc: Its impact on h2o2production and virulence, Clin. Diagn. Lab. Immunol, vol.8, pp.85-92, 2001.

D. F. Bischof, C. Janis, E. M. Vilei, G. Bertoni, and J. Frey, Cytotoxicity of mycoplasma mycoides subsp. mycoides small colony type to bovine epithelial cells, Infect. Immun, vol.76, pp.263-269, 2008.

S. Halbedel, C. Hames, and J. Stülke, In vivo activity of enzymatic and regulatory components of the phosphoenolpyruvate: sugar phosphotransferase system in mycoplasma pneumoniae, J. Bacteriol, vol.186, pp.7936-7943, 2004.

S. Biswal, R. K. Thimmulappa, and C. J. Harvey, Experimental therapeutics of nrf2 as a target for prevention of bacterial exacerbations in copd, Proc. Am. Thorac. Soc, vol.9, pp.47-51, 2012.

P. Nioi, M. Mcmahon, K. Itoh, M. Yamamoto, and J. Hayes, Identification of a novel nrf2-regulated antioxidant response element (are) in the mouse nad (p) h: quinone oxidoreductase 1 gene: reassessment of the are consensus sequence, Biochem. J, vol.374, pp.337-348, 2003.

P. Rice, I. Longden, and A. Bleasby, Emboss: the European molecular biology open software suite, 2000.

M. Araake, Comparison of ciliostasis by mycoplasmas in mouse and chicken tracheal organ cultures, Microbiol. Immunol, vol.26, pp.1-14, 1982.

M. Abu-zahr and M. Butler, Growth, cytopathogenicity and morphology of Mycoplasma gallisepticum and M. gallinarum in tracheal explants, J. Comp. Pathol, vol.86, pp.455-463, 1976.

R. Chaudhry, Pathogenesis of Mycoplasma pneumoniae: an update, Indian J. Med. Microbiol, vol.34, p.7, 2016.

M. Matsuyama, Transcriptional response of respiratory epithelium to nontuberculous mycobacteria, Am. J. Respir. Cell Mol. Biol, vol.58, pp.241-252, 2018.

D. Kobayashi and H. Takeda, Ciliary motility: the components and cytoplasmic preassembly mechanisms of the axonemal dyneins, Differentiation, vol.83, pp.23-29, 2012.

A. Tarkar, Dyx1c1 is required for axonemal dynein assembly and ciliary motility, Nat. Genet, vol.45, p.995, 2013.

W. Wang, Cep162 is an axoneme-recognition protein promoting ciliary transition zone assembly at the cilia base, Nat. Cell Biol, vol.15, p.591, 2013.

M. Schueler, Dcdc2 mutations cause a renal-hepatic ciliopathy by disrupting wnt signaling, Am. J. Human Genet, vol.96, pp.81-92, 2015.

H. L. May-simera, Loss of macf1 abolishes ciliogenesis and disrupts apicobasal polarity establishment in the retina, Cell Rep, vol.17, pp.1399-1413, 2016.

L. Shi, F. Koll, O. Arnaiz, and J. Cohen, The ciliary protein ift 57 in the macronucleus of paramecium, J. Eukaryot. Microbiol, vol.65, pp.12-27, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02183683

T. Yasunaga, The polarity protein inturned links nphp4 to daam1 to control the subapical actin network in multiciliated cells, J. Cell Biol, vol.211, pp.963-973, 2015.

P. S. Hegan, E. Ostertag, A. M. Geurts, and M. S. Mooseker, Myosin id is required for planar cell polarity in ciliated tracheal and ependymal epithelial cells, Cytoskeleton, vol.72, pp.503-516, 2015.

A. Fernandez-gonzalez, S. Kourembanas, T. A. Wyatt, and S. A. Mitsialis, Mutation of murine adenylate kinase 7 underlies a primary ciliary dyskinesia phenotype, Am. J. Respir. Cell Mol. Biol, vol.40, pp.305-313, 2009.

J. Zhou, F. Yang, N. A. Leu, and P. J. Wang, Mns1 is essential for spermiogenesis and motile ciliary functions in mice, PLoS Genet, vol.8, p.1002516, 2012.

Y. Inaba, Transport of the outer dynein arm complex to cilia requires a cytoplasmic protein lrrc6, Genes Cells, vol.21, pp.728-739, 2016.

S. N. Arachchige, Differential response of the chicken trachea to chronic infection with virulent Mycoplasma gallisepticum strain ap3as and vaxsafe mg (strain ts-304): a transcriptional profile, Infect. Immun, vol.88, 2020.

J. A. Girón, M. Lange, and J. B. Baseman, Adherence, fibronectin binding, and induction of cytoskeleton reorganization in cultured human cells by Mycoplasma penetrans, Infect. Immun, vol.64, pp.197-208, 1996.

B. Raymond, Mycoplasma hyopneumoniae resides intracellularly within porcine epithelial cells, Sci. Rep, vol.8, p.17697, 2018.

M. Mirvis, T. Stearns, and W. J. Nelson, Cilium structure, assembly, and disassembly regulated by the cytoskeleton, Biochem. J, vol.475, pp.2329-2353, 2018.

B. Raymond, Extracellular actin is a receptor for Mycoplasma hyopneumoniae, Front. Cell. Infect. Microbiol, vol.8, p.54, 2018.

M. Kang, A. Kobayashi, N. Wakabayashi, S. Kim, and M. Yamamoto, Scaffolding of keap1 to the actin cytoskeleton controls the function of nrf2 as key regulator of cytoprotective phase 2 genes, Proc. Nat. Acad. Sci, vol.101, pp.2046-2051, 2004.

G. J. Mack and D. A. Compton, Analysis of mitotic microtubule-associated proteins using mass spectrometry identifies astrin, a spindle-associated protein, Proc. Nat. Acad. Sci, vol.98, pp.14434-14439, 2001.

Y. H. Kim, J. Y. Choi, Y. Jeong, D. J. Wolgemuth, and K. Rhee, Nek2 localizes to multiple sites in mitotic cells, suggesting its involvement in multiple cellular functions during the cell cycle, Biochem. Biophys. Res. Commun, vol.290, pp.730-736, 2002.

S. Woolner, L. L. O'brien, C. Wiese, and W. M. Bement, Myosin-10 and actin filaments are essential for mitotic spindle function, J. Cell Biol, vol.182, pp.77-88, 2008.

V. M. Bolanos-garcia and T. L. Blundell, Bub1 and bubr1: multifaceted kinases of the cell cycle, Trends Biochem. Sci, vol.36, pp.141-150, 2011.

P. Wolter, Gas2l3, a target gene of the dream complex, is required for proper cytokinesis and genomic stability, J. Cell Sci, vol.125, pp.2393-2406, 2012.

X. Xu, The microtubule-associated protein aspm regulates spindle assembly and meiotic progression in mouse oocytes, PLoS ONE, vol.7, p.49303, 2012.

D. R. Matson and P. T. Stukenberg, Cenp-i and aurora b act as a molecular switch that ties rzz/mad1 recruitment to kinetochore attachment status, J. Cell Biol, vol.205, pp.541-554, 2014.

P. Wadsworth and . Tpx2, Curr. Biol, vol.25, pp.1156-1158, 2015.

R. J. Cho, Transcriptional regulation and function during the human cell cycle, Nat. Genet, vol.27, p.48, 2001.

H. Shirin, Helicobacter pylori inhibits the g1 to s transition in ags gastric epithelial cells, Cancer Res, vol.59, pp.2277-2281, 1999.

O. Marchès, Enteropathogenic and enterohaemorrhagic Escherichia coli deliver a novel effector called cif, which blocks cell cycle g2/m transition, Mol. Microbiol, vol.50, pp.1553-1567, 2003.

A. Jones, A. Jonsson, and H. Aro, Neisseria gonorrhoeae infection causes a g1 arrest in human epithelial cells, FASEB J, vol.21, pp.345-355, 2007.

L. Alekseeva, Staphylococcus aureus-induced g2/m phase transition delay in host epithelial cells increases bacterial infective efficiency, PLoS ONE, vol.8, p.63279, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00873672

F. M. Siqueira, Mycoplasma non-coding rna: identification of small rnas and targets, BMC Genom, vol.17, p.743, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01393122

M. R. Friedländer, S. D. Mackowiak, N. Li, W. Chen, and . Rajewsky, N. mirdeep2 accurately identifies known and hundreds of novel microrna genes in seven animal clades, Nucl. Acids Res, vol.40, pp.37-52, 2011.

A. Kozomara and S. Griffiths-jones, mirbase: annotating high confidence micrornas using deep sequencing data, Nucl. Acids Res, vol.42, pp.68-73, 2013.

P. Martini, Tissue-specific expression and regulatory networks of pig micrornaome, PLoS ONE, vol.9, p.89755, 2014.

D. P. Bartel and . Metazoan, Cell, vol.173, pp.20-51, 2018.

C. Stark, Biogrid: a general repository for interaction datasets, Nucl. Acids Res, vol.34, pp.535-539, 2006.

A. Chatr-aryamontri, The biogrid interaction database: 2017 update, Nucl. Acids Res, vol.45, pp.369-379, 2017.

G. Bindea, Cluego: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks, Bioinformatics, vol.25, pp.1091-1093, 2009.

M. Yang, Y. Yao, G. Eades, Y. Zhang, and Q. Zhou, Mir-28 regulates nrf2 expression through a keap1-independent mechanism, Breast Cancer Res. Treat, vol.129, pp.983-991, 2011.

L. Shi, mir-340 reverses cisplatin resistance of hepatocellular carcinoma cell lines by targeting nrf2-dependent antioxidant pathway. Asian Pac, J. Cancer Prev, vol.15, pp.10439-10444, 2015.

J. Xu, mir-19b attenuates h2o2-induced apoptosis in rat h9c2 cardiomyocytes via targeting pten, Oncotarget, vol.7, p.10870, 2016.

J. Hong, Transcriptional downregulation of microrna-19a by ros production and nf-? b deactivation governs resistance to oxidative stress-initiated apoptosis, Oncotarget, vol.8, p.70967, 2017.

A. Gao, X. Zhang, and Z. Ke, Apigenin sensitizes bel-7402/adm cells to doxorubicin through inhibiting mir-101/nrf2 pathway, Oncotarget, vol.8, p.82085, 2017.

H. Liu, Regulation of mir-92a on vascular endothelial aging via mediating nrf2-keap1-are signal pathway, Eur. Rev. Med. Pharmacol. Sci, vol.21, pp.2734-2742, 2017.

, Scientific RepoRtS |, vol.10, p.13707, 2020.

H. Yang, Activation of a novel c-myc-mir27-prohibitin 1 circuitry in cholestatic liver injury inhibits glutathione synthesis in mice, Antioxid. Redox Signal, vol.22, pp.259-274, 2015.

B. Alural, A. Ozerdem, J. Allmer, K. Genc, and S. Genc, Lithium protects against paraquat neurotoxicity by nrf2 activation and mir-34a inhibition in sh-sy5y cells, Front. Cell. Neurosci, vol.9, p.209, 2015.

J. Milara, M. Armengot, M. Mata, E. J. Morcillo, and J. Cortijo, Role of adenylate kinase type 7 expression on cilia motility: possible link in primary ciliary dyskinesia, Am. J. Rhinol. Allergy, vol.24, pp.181-185, 2010.

F. A. Zimmer, G. P. Paludo, H. Moura, J. R. Barr, and H. B. Ferreira, Differential secretome profiling of a swine tracheal cell line infected with mycoplasmas of the swine respiratory tract, J. Proteom, vol.192, pp.147-159, 2019.

M. Alexander, Exosome-delivered micrornas modulate the inflammatory response to endotoxin, Nat. Commun, vol.6, p.7321, 2015.

Y. Muneta, Immune response of gnotobiotic piglets against Mycoplasma hyopneumoniae, J. Vet. Med. Sci, vol.70, pp.1065-1070, 2008.

M. Ferrari, Establishment and characterization of two new pig cell lines for use in virological diagnostic laboratories, J. Virol. Methods, vol.107, pp.205-212, 2003.

N. Friis, Some recommendations concerning primary isolation of Mycoplasma suipneumoniae and Mycoplasma flocculare a survey, Nordisk veterinaermedicin, vol.27, pp.337-339, 1975.

P. Assunção, Evaluation of Mycoplasma hyopneumoniae growth by flow cytometry, J. Appl. Microbiol, vol.98, pp.1047-1054, 2005.

L. Moitinho-silva, Mycoplasma hyopneumoniae type i signal peptidase: expression and evaluation of its diagnostic potential, Vet. Microbiol, vol.154, pp.282-291, 2012.

C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nih image to imagej: 25 years of image analysis, Nat. Methods, vol.9, p.671, 2012.

J. Ruijter, Amplification efficiency: linking baseline and bias in the analysis of quantitative pcr data, Nucl. Acids Res, vol.37, pp.45-45, 2009.

M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet. J, vol.17, pp.10-12, 2011.

A. Dobin, Star: ultrafast universal rna-seq aligner, Bioinformatics, vol.29, pp.15-21, 2013.

S. Anders, P. T. Pyl, and W. Huber, Htseq-a python framework to work with high-throughput sequencing data, Bioinformatics, vol.31, pp.166-169, 2015.

B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, Ultrafast and memory-efficient alignment of short dna sequences to the human genome, Genome Biol, vol.10, p.25, 2009.

S. Griffiths-jones, The microrna registry, Nucl. Acids Res, vol.32, pp.109-111, 2004.

M. D. Robinson, D. J. Mccarthy, and G. K. Smyth, edger: a bioconductor package for differential expression analysis of digital gene expression data, Bioinformatics, vol.26, pp.139-140, 2010.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for rna-seq data with deseq2, Genome Biol, vol.15, p.550, 2014.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Stat. Soc.: Ser. B (Methodol.), vol.57, pp.289-300, 1995.

J. Feng, Gfold: a generalized fold change for ranking differentially expressed genes from rna-seq data, Bioinformatics, vol.28, pp.2782-2788, 2012.

D. Betel, A. Koppal, P. Agius, C. Sander, and C. Leslie, Comprehensive modeling of microrna targets predicts functional nonconserved and non-canonical sites, Genome Biol, vol.11, p.90, 2010.

B. P. Lewis, I. Shih, M. W. Jones-rhoades, D. P. Bartel, and C. B. Burge, Prediction of mammalian microrna targets, Cell, vol.115, pp.787-798, 2003.

M. Kertesz, N. Iovino, U. Unnerstall, U. Gaul, and E. Segal, The role of site accessibility in microrna target recognition, Nat. Genet, vol.39, p.1278, 2007.

J. Krüger and M. Rehmsmeier, Rnahybrid: microrna target prediction easy, fast and flexible, Nucl. Acids Res, vol.34, pp.451-454, 2006.

M. Ashburner, Gene ontology: tool for the unification of biology, Nat. Genet, vol.25, p.25, 2000.

F. Supek, M. Bo?njak, N. ?kunca, and T. ?muc, Revigo summarizes and visualizes long lists of gene ontology terms, PLoS ONE, vol.6, p.21800, 2011.

P. Shannon, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res, vol.13, pp.2498-2504, 2003.

J. D. Hayes and M. Mcmahon, Nrf2 and keap1 mutations: permanent activation of an adaptive response in cancer, Trends Biochem. Sci, vol.34, pp.176-188, 2009.

J. D. Hayes and A. T. Dinkova-kostova, The nrf2 regulatory network provides an interface between redox and intermediary metabolism, Trends Biochem. Sci, vol.39, pp.199-218, 2014.

K. Brzóska, T. M. St?pkowski, and M. Kruszewski, Basal pir expression in hela cells is driven by nrf2 via evolutionary conserved antioxidant response element, Mol. Cell. Biochem, vol.389, pp.99-111, 2014.

D. Li, S. Ma, and E. M. Ellis, Nrf2-mediated adaptive response to methyl glyoxal in hepg2 cells involves the induction of akr7a2, Chem. Biol. Interact, vol.234, pp.366-371, 2015.

D. B. Graham, Nitric oxide engages an anti-inflammatory feedback loop mediated by peroxiredoxin 5 in phagocytes, Cell Rep, vol.24, pp.838-850, 2018.

E. Reszka, Expression of nrf2 and nrf2-modulated genes in peripheral blood leukocytes of bladder cancer males, Neoplasma, vol.60, pp.123-128, 2013.

L. Dai, J. Gao, C. Zou, Y. Ma, and K. Zhang, mir-233 modulates the unfolded protein response in C. elegans during Pseudomonas aeruginosa infection, PLoS Pathog, vol.11, p.1004606, 2015.

T. Derrick, Conjunctival microrna expression in inflammatory trachomatous scarring, PLoS Negl. Trop. Dis, vol.7, p.2117, 2013.

T. Derrick, Inverse relationship between microrna-155 and-184 expression with increasing conjunctival inflammation during ocular Chlamydia trachomatis infection, BMC Infect. Dis, vol.16, p.60, 2015.

G. Liang, Altered microrna expression and pre-mrna splicing events reveal new mechanisms associated with early stage Mycobacterium avium subspecies paratuberculosis infection, Sci. Rep, vol.6, p.24964, 2016.

K. J. Siddle, Bacterial infection drives the expression dynamics of micrornas and their isomirs, PLoS Genet, vol.11, p.1005064, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01236327

A. R. Naqvi and J. B. Fordham, & Nares, S. mir-24, mir-30b, and mir-142-3p regulate phagocytosis in myeloid inflammatory cells, J. Immunol, vol.194, pp.1916-1927, 2015.

Z. Liu, Up-regulated microrna-146a negatively modulate Helicobacter pylori-induced inflammatory response in human gastric epithelial cells, Microb. Infect, vol.12, pp.854-863, 2010.

N. Li, H. pylori related proinflammatory cytokines contribute to the induction of mir-146a in human gastric epithelial cells, Mol. Biol. Rep, vol.39, pp.4655-4661, 2012.
URL : https://hal.archives-ouvertes.fr/in2p3-00906746

Z. Liu, Microrna-146a negatively regulates ptgs2 expression induced by helicobacter pylori in human gastric epithelial cells, J. Gastroenterol, vol.48, pp.86-92, 2013.

Y. Cheng, Downregulation of mir-27a* and mir-532-5p and upregulation of mir-146a and mir-155 in lps-induced raw264. 7 macrophage cells, Inflammation, vol.35, pp.1308-1313, 2012.

, Scientific RepoRtS |, vol.10, p.13707, 2020.

T. Derrick, mirnas that associate with conjunctival inflammation and ocular Chlamydia trachomatis infection do not predict progressive disease, Pathog. Dis, vol.75, 2017.

L. Zheng, Differential microrna expression in human macrophages with Mycobacterium tuberculosis infection of beijing/w and non-beijing/w strain types, PLoS ONE, vol.10, p.126018, 2015.

K. Matsushima, Microrna signatures in Helicobacter pylori-infected gastric mucosa, Int. J. Cancer, vol.128, pp.361-370, 2011.

X. Xue, Downregulation of micro rna-107 in intestinal cd 11c+ myeloid cells in response to microbiota and proinflammatory cytokines increases il-23p19 expression, Eur. J. Immunol, vol.44, pp.673-682, 2014.

F. Xue, mir-31 regulates interleukin 2 and kinase suppressor of ras 2 during t cell activation, Genes Immun, vol.14, p.127, 2013.

A. Podolska, Profiling micrornas in lung tissue from pigs infected with Actinobacillus pleuropneumoniae, BMC Genom, vol.13, p.459, 2012.

J. M. Noto, Strain-specific suppression of microrna-320 by carcinogenic Helicobacter pylori promotes expression of the antiapoptotic protein mcl-1, Am. J. Physiol.-Gastrointest. Liver Physiol, vol.305, pp.786-796, 2013.